-
Notifications
You must be signed in to change notification settings - Fork 7k
/
Copy pathtest_datasets_transforms.py
72 lines (58 loc) · 2.68 KB
/
test_datasets_transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import os
import shutil
import contextlib
import tempfile
import unittest
from torchvision.datasets import ImageFolder
FAKEDATA_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)),
'assets', 'fakedata')
@contextlib.contextmanager
def tmp_dir(src=None, **kwargs):
tmp_dir = tempfile.mkdtemp(**kwargs)
if src is not None:
os.rmdir(tmp_dir)
shutil.copytree(src, tmp_dir)
try:
yield tmp_dir
finally:
shutil.rmtree(tmp_dir)
def mock_transform(return_value, arg_list):
def mock(arg):
arg_list.append(arg)
return return_value
return mock
class Tester(unittest.TestCase):
def test_transform(self):
with tmp_dir(src=os.path.join(FAKEDATA_DIR, 'imagefolder')) as root:
class_a_image_files = [os.path.join(root, 'a', file)
for file in ('a1.png', 'a2.png', 'a3.png')]
class_b_image_files = [os.path.join(root, 'b', file)
for file in ('b1.png', 'b2.png', 'b3.png', 'b4.png')]
return_value = os.path.join(root, 'a', 'a1.png')
args = []
transform = mock_transform(return_value, args)
dataset = ImageFolder(root, loader=lambda x: x, transform=transform)
outputs = [dataset[i][0] for i in range(len(dataset))]
self.assertEqual([return_value] * len(outputs), outputs)
imgs = sorted(class_a_image_files + class_b_image_files)
self.assertEqual(imgs, sorted(args))
def test_target_transform(self):
with tmp_dir(src=os.path.join(FAKEDATA_DIR, 'imagefolder')) as root:
class_a_image_files = [os.path.join(root, 'a', file)
for file in ('a1.png', 'a2.png', 'a3.png')]
class_b_image_files = [os.path.join(root, 'b', file)
for file in ('b1.png', 'b2.png', 'b3.png', 'b4.png')]
return_value = os.path.join(root, 'a', 'a1.png')
args = []
target_transform = mock_transform(return_value, args)
dataset = ImageFolder(root, loader=lambda x: x,
target_transform=target_transform)
outputs = [dataset[i][1] for i in range(len(dataset))]
self.assertEqual([return_value] * len(outputs), outputs)
class_a_idx = dataset.class_to_idx['a']
class_b_idx = dataset.class_to_idx['b']
targets = sorted([class_a_idx] * len(class_a_image_files) +
[class_b_idx] * len(class_b_image_files))
self.assertEqual(targets, sorted(args))
if __name__ == '__main__':
unittest.main()