-
Notifications
You must be signed in to change notification settings - Fork 7k
/
Copy pathtrain.py
254 lines (207 loc) · 9.63 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import datetime
import os
import time
import presets
import torch
import torch.utils.data
import torchvision
import utils
from coco_utils import get_coco
from torch import nn
def get_dataset(dir_path, name, image_set, transform):
def sbd(*args, **kwargs):
return torchvision.datasets.SBDataset(*args, mode="segmentation", **kwargs)
paths = {
"voc": (dir_path, torchvision.datasets.VOCSegmentation, 21),
"voc_aug": (dir_path, sbd, 21),
"coco": (dir_path, get_coco, 21),
}
p, ds_fn, num_classes = paths[name]
ds = ds_fn(p, image_set=image_set, transforms=transform)
return ds, num_classes
def get_transform(train):
base_size = 520
crop_size = 480
return presets.SegmentationPresetTrain(base_size, crop_size) if train else presets.SegmentationPresetEval(base_size)
def criterion(inputs, target):
losses = {}
for name, x in inputs.items():
losses[name] = nn.functional.cross_entropy(x, target, ignore_index=255)
if len(losses) == 1:
return losses["out"]
return losses["out"] + 0.5 * losses["aux"]
def evaluate(model, data_loader, device, num_classes):
model.eval()
confmat = utils.ConfusionMatrix(num_classes)
metric_logger = utils.MetricLogger(delimiter=" ")
header = "Test:"
with torch.no_grad():
for image, target in metric_logger.log_every(data_loader, 100, header):
image, target = image.to(device), target.to(device)
output = model(image)
output = output["out"]
confmat.update(target.flatten(), output.argmax(1).flatten())
confmat.reduce_from_all_processes()
return confmat
def train_one_epoch(model, criterion, optimizer, data_loader, lr_scheduler, device, epoch, print_freq):
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter("lr", utils.SmoothedValue(window_size=1, fmt="{value}"))
header = "Epoch: [{}]".format(epoch)
for image, target in metric_logger.log_every(data_loader, print_freq, header):
image, target = image.to(device), target.to(device)
output = model(image)
loss = criterion(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
lr_scheduler.step()
metric_logger.update(loss=loss.item(), lr=optimizer.param_groups[0]["lr"])
def main(args):
if args.output_dir:
utils.mkdir(args.output_dir)
utils.init_distributed_mode(args)
print(args)
device = torch.device(args.device)
dataset, num_classes = get_dataset(args.data_path, args.dataset, "train", get_transform(train=True))
dataset_test, _ = get_dataset(args.data_path, args.dataset, "val", get_transform(train=False))
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
test_sampler = torch.utils.data.distributed.DistributedSampler(dataset_test)
else:
train_sampler = torch.utils.data.RandomSampler(dataset)
test_sampler = torch.utils.data.SequentialSampler(dataset_test)
data_loader = torch.utils.data.DataLoader(
dataset,
batch_size=args.batch_size,
sampler=train_sampler,
num_workers=args.workers,
collate_fn=utils.collate_fn,
drop_last=True,
)
data_loader_test = torch.utils.data.DataLoader(
dataset_test, batch_size=1, sampler=test_sampler, num_workers=args.workers, collate_fn=utils.collate_fn
)
model = torchvision.models.segmentation.__dict__[args.model](
num_classes=num_classes, aux_loss=args.aux_loss, pretrained=args.pretrained
)
model.to(device)
if args.distributed:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
params_to_optimize = [
{"params": [p for p in model_without_ddp.backbone.parameters() if p.requires_grad]},
{"params": [p for p in model_without_ddp.classifier.parameters() if p.requires_grad]},
]
if args.aux_loss:
params = [p for p in model_without_ddp.aux_classifier.parameters() if p.requires_grad]
params_to_optimize.append({"params": params, "lr": args.lr * 10})
optimizer = torch.optim.SGD(params_to_optimize, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
iters_per_epoch = len(data_loader)
main_lr_scheduler = torch.optim.lr_scheduler.LambdaLR(
optimizer, lambda x: (1 - x / (iters_per_epoch * (args.epochs - args.lr_warmup_epochs))) ** 0.9
)
if args.lr_warmup_epochs > 0:
warmup_iters = iters_per_epoch * args.lr_warmup_epochs
args.lr_warmup_method = args.lr_warmup_method.lower()
if args.lr_warmup_method == "linear":
warmup_lr_scheduler = torch.optim.lr_scheduler.LinearLR(
optimizer, start_factor=args.lr_warmup_decay, total_iters=warmup_iters
)
elif args.lr_warmup_method == "constant":
warmup_lr_scheduler = torch.optim.lr_scheduler.ConstantLR(
optimizer, factor=args.lr_warmup_decay, total_iters=warmup_iters
)
else:
raise RuntimeError(
"Invalid warmup lr method '{}'. Only linear and constant "
"are supported.".format(args.lr_warmup_method)
)
lr_scheduler = torch.optim.lr_scheduler.SequentialLR(
optimizer, schedulers=[warmup_lr_scheduler, main_lr_scheduler], milestones=[warmup_iters]
)
else:
lr_scheduler = main_lr_scheduler
if args.resume:
checkpoint = torch.load(args.resume, map_location="cpu")
model_without_ddp.load_state_dict(checkpoint["model"], strict=not args.test_only)
if not args.test_only:
optimizer.load_state_dict(checkpoint["optimizer"])
lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
args.start_epoch = checkpoint["epoch"] + 1
if args.test_only:
confmat = evaluate(model, data_loader_test, device=device, num_classes=num_classes)
print(confmat)
return
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
train_sampler.set_epoch(epoch)
train_one_epoch(model, criterion, optimizer, data_loader, lr_scheduler, device, epoch, args.print_freq)
confmat = evaluate(model, data_loader_test, device=device, num_classes=num_classes)
print(confmat)
checkpoint = {
"model": model_without_ddp.state_dict(),
"optimizer": optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict(),
"epoch": epoch,
"args": args,
}
utils.save_on_master(checkpoint, os.path.join(args.output_dir, "model_{}.pth".format(epoch)))
utils.save_on_master(checkpoint, os.path.join(args.output_dir, "checkpoint.pth"))
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print("Training time {}".format(total_time_str))
def get_args_parser(add_help=True):
import argparse
parser = argparse.ArgumentParser(description="PyTorch Segmentation Training", add_help=add_help)
parser.add_argument("--data-path", default="/datasets01/COCO/022719/", help="dataset path")
parser.add_argument("--dataset", default="coco", help="dataset name")
parser.add_argument("--model", default="fcn_resnet101", help="model")
parser.add_argument("--aux-loss", action="store_true", help="auxiliar loss")
parser.add_argument("--device", default="cuda", help="device")
parser.add_argument("-b", "--batch-size", default=8, type=int)
parser.add_argument("--epochs", default=30, type=int, metavar="N", help="number of total epochs to run")
parser.add_argument(
"-j", "--workers", default=16, type=int, metavar="N", help="number of data loading workers (default: 16)"
)
parser.add_argument("--lr", default=0.01, type=float, help="initial learning rate")
parser.add_argument("--momentum", default=0.9, type=float, metavar="M", help="momentum")
parser.add_argument(
"--wd",
"--weight-decay",
default=1e-4,
type=float,
metavar="W",
help="weight decay (default: 1e-4)",
dest="weight_decay",
)
parser.add_argument("--lr-warmup-epochs", default=0, type=int, help="the number of epochs to warmup (default: 0)")
parser.add_argument("--lr-warmup-method", default="linear", type=str, help="the warmup method (default: linear)")
parser.add_argument("--lr-warmup-decay", default=0.01, type=float, help="the decay for lr")
parser.add_argument("--print-freq", default=10, type=int, help="print frequency")
parser.add_argument("--output-dir", default=".", help="path where to save")
parser.add_argument("--resume", default="", help="resume from checkpoint")
parser.add_argument("--start-epoch", default=0, type=int, metavar="N", help="start epoch")
parser.add_argument(
"--test-only",
dest="test_only",
help="Only test the model",
action="store_true",
)
parser.add_argument(
"--pretrained",
dest="pretrained",
help="Use pre-trained models from the modelzoo",
action="store_true",
)
# distributed training parameters
parser.add_argument("--world-size", default=1, type=int, help="number of distributed processes")
parser.add_argument("--dist-url", default="env://", help="url used to set up distributed training")
return parser
if __name__ == "__main__":
args = get_args_parser().parse_args()
main(args)