diff --git a/_static/img/profiler_rocm_chrome_trace_view.png b/_static/img/profiler_rocm_chrome_trace_view.png
new file mode 100644
index 00000000000..cff7ba98c8a
Binary files /dev/null and b/_static/img/profiler_rocm_chrome_trace_view.png differ
diff --git a/_static/img/profiler_rocm_tensorboard_operartor_view.png b/_static/img/profiler_rocm_tensorboard_operartor_view.png
new file mode 100644
index 00000000000..27effb91e7c
Binary files /dev/null and b/_static/img/profiler_rocm_tensorboard_operartor_view.png differ
diff --git a/en-wordlist.txt b/en-wordlist.txt
index d34ba670543..4f9020a86e8 100644
--- a/en-wordlist.txt
+++ b/en-wordlist.txt
@@ -197,6 +197,7 @@ Radford
ReLU
ReLUs
ResNet
+ROCm
Runtime's
SDPA
SGD
diff --git a/intermediate_source/tensorboard_profiler_tutorial.py b/intermediate_source/tensorboard_profiler_tutorial.py
index e27c123f8e9..4ac30945fd1 100644
--- a/intermediate_source/tensorboard_profiler_tutorial.py
+++ b/intermediate_source/tensorboard_profiler_tutorial.py
@@ -36,6 +36,7 @@
# 4. Use TensorBoard to view results and analyze model performance
# 5. Improve performance with the help of profiler
# 6. Analyze performance with other advanced features
+# 7. Additional Practices: Profiling PyTorch on AMD GPUs
#
# 1. Prepare the data and model
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@@ -392,6 +393,102 @@ def train(data):
#
# The "Communication Operations Stats" summarizes the detailed statistics of all communication ops in each worker.
+######################################################################
+# 7. Additional Practices: Profiling PyTorch on AMD GPUs
+# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+#
+#
+# The AMD ROCm Platform is an open-source software stack designed for GPU computation, consisting of drivers, development tools, and APIs.
+# We can run the above mentioned steps on AMD GPUs. In this section, we will use Docker to install the ROCm base development image
+# before installing PyTorch.
+
+
+######################################################################
+# For the purpose of example, let's create a directory called ``profiler_tutorial``, and save the code in **Step 1** as ``test_cifar10.py`` in this directory.
+#
+# .. code-block::
+#
+# mkdir ~/profiler_tutorial
+# cd profiler_tutorial
+# vi test_cifar10.py
+
+
+######################################################################
+# At the time of this writing, the Stable(``2.1.1``) Linux version of PyTorch on ROCm Platform is `ROCm 5.6 `_.
+#
+#
+# - Obtain a base Docker image with the correct user-space ROCm version installed from `Docker Hub `_.
+#
+# It is ``rocm/dev-ubuntu-20.04:5.6``.
+#
+# - Start the ROCm base Docker container:
+#
+#
+# .. code-block::
+#
+# docker run -it --network=host --device=/dev/kfd --device=/dev/dri --group-add=video --ipc=host --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --shm-size 8G -v ~/profiler_tutorial:/profiler_tutorial rocm/dev-ubuntu-20.04:5.6
+#
+#
+# - Inside the container, install any dependencies needed for installing the wheels package.
+#
+# .. code-block::
+#
+# sudo apt update
+# sudo apt install libjpeg-dev python3-dev -y
+# pip3 install wheel setuptools
+# sudo apt install python-is-python3
+#
+#
+# - Install the wheels:
+#
+# .. code-block::
+#
+# pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm5.6
+#
+#
+# - Install the ``torch_tb_profiler``, and then, run the Python file ``test_cifar10.py``:
+#
+# .. code-block::
+#
+# pip install torch_tb_profiler
+# cd /profiler_tutorial
+# python test_cifar10.py
+#
+#
+# Now, we have all the data needed to view in TensorBoard:
+#
+# .. code-block::
+#
+# tensorboard --logdir=./log
+#
+# Choose different views as described in **Step 4**. For example, below is the **Operator** View:
+#
+# .. image:: ../../_static/img/profiler_rocm_tensorboard_operartor_view.png
+# :scale: 25 %
+
+
+######################################################################
+# At the time this section is written, **Trace** view does not work and it displays nothing. You can work around by typing ``chrome://tracing`` in your Chrome Browser.
+#
+#
+# - Copy the ``trace.json`` file under ``~/profiler_tutorial/log/resnet18`` directory to the Windows.
+# You may need to copy the file by using ``scp`` if the file is located in a remote location.
+#
+# - Click **Load** button to load the trace JSON file from the ``chrome://tracing`` page in the browser.
+#
+# .. image:: ../../_static/img/profiler_rocm_chrome_trace_view.png
+# :scale: 25 %
+
+
+######################################################################
+# As mentioned previously, you can move the graph and zoom in and out.
+# You can also use keyboard to zoom and move around inside the timeline.
+# The ``w`` and ``s`` keys zoom in centered around the mouse,
+# and the ``a`` and ``d`` keys move the timeline left and right.
+# You can hit these keys multiple times until you see a readable representation.
+
+
+
######################################################################
# Learn More
# ----------