Skip to content

Commit fb7a0f6

Browse files
authored
Merge branch 'pytorch:main' into issue#1757
2 parents 8800ec5 + 0bee138 commit fb7a0f6

12 files changed

+31
-21
lines changed

advanced_source/neural_style_tutorial.py

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -423,6 +423,9 @@ def run_style_transfer(cnn, normalization_mean, normalization_std,
423423
# We want to optimize the input and not the model parameters so we
424424
# update all the requires_grad fields accordingly
425425
input_img.requires_grad_(True)
426+
# We also put the model in evaluation mode, so that specific layers
427+
# such as dropout or batch normalization layers behave correctly.
428+
model.eval()
426429
model.requires_grad_(False)
427430

428431
optimizer = get_input_optimizer(input_img)

advanced_source/super_resolution_with_onnxruntime.py

Lines changed: 1 addition & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -16,10 +16,7 @@
1616
and `ONNX Runtime <https://github.com/microsoft/onnxruntime>`__.
1717
You can get binary builds of ONNX and ONNX Runtime with
1818
``pip install onnx onnxruntime``.
19-
Note that ONNX Runtime is compatible with Python versions 3.5 to 3.7.
20-
21-
``NOTE``: This tutorial needs PyTorch master branch which can be installed by following
22-
the instructions `here <https://github.com/pytorch/pytorch#from-source>`__
19+
ONNX Runtime recommends using the latest stable runtime for PyTorch.
2320
2421
"""
2522

beginner_source/README.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -23,4 +23,4 @@ Beginner Tutorials
2323

2424
6. transformer_translation.py
2525
Language Translation with Transformers
26-
https://pytorch.org/tutorials/beginner/transformer_tutorial.html
26+
https://pytorch.org/tutorials/beginner/translation_transformer.html

beginner_source/deep_learning_60min_blitz.rst

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -20,11 +20,12 @@ Goal of this tutorial:
2020
- Understand PyTorch’s Tensor library and neural networks at a high level.
2121
- Train a small neural network to classify images
2222

23-
To run the tutorials below, make sure you have the `torch`_ and `torchvision`_
24-
packages installed.
23+
To run the tutorials below, make sure you have the `torch`_, `torchvision`_,
24+
and `matplotlib`_ packages installed.
2525

2626
.. _torch: https://github.com/pytorch/pytorch
2727
.. _torchvision: https://github.com/pytorch/vision
28+
.. _matplotlib: https://github.com/matplotlib/matplotlib
2829

2930
.. toctree::
3031
:hidden:

beginner_source/introyt/trainingyt.py

Lines changed: 12 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -290,15 +290,19 @@ def train_one_epoch(epoch_index, tb_writer):
290290
model.train(True)
291291
avg_loss = train_one_epoch(epoch_number, writer)
292292

293-
# We don't need gradients on to do reporting
294-
model.train(False)
295-
293+
296294
running_vloss = 0.0
297-
for i, vdata in enumerate(validation_loader):
298-
vinputs, vlabels = vdata
299-
voutputs = model(vinputs)
300-
vloss = loss_fn(voutputs, vlabels)
301-
running_vloss += vloss
295+
# Set the model to evaluation mode, disabling dropout and using population
296+
# statistics for batch normalization.
297+
model.eval()
298+
299+
# Disable gradient computation and reduce memory consumption.
300+
with torch.no_grad():
301+
for i, vdata in enumerate(validation_loader):
302+
vinputs, vlabels = vdata
303+
voutputs = model(vinputs)
304+
vloss = loss_fn(voutputs, vlabels)
305+
running_vloss += vloss
302306

303307
avg_vloss = running_vloss / (i + 1)
304308
print('LOSS train {} valid {}'.format(avg_loss, avg_vloss))

beginner_source/nn_tutorial.py

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -75,6 +75,11 @@
7575
import numpy as np
7676

7777
pyplot.imshow(x_train[0].reshape((28, 28)), cmap="gray")
78+
# ``pyplot.show()`` only if not on Colab
79+
try:
80+
import google.colab
81+
except ImportError:
82+
pyplot.show()
7883
print(x_train.shape)
7984

8085
###############################################################################

beginner_source/transformer_tutorial.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -37,7 +37,7 @@
3737
# ``nn.TransformerEncoder`` consists of multiple layers of
3838
# `nn.TransformerEncoderLayer <https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoderLayer.html>`__.
3939
# Along with the input sequence, a square attention mask is required because the
40-
# self-attention layers in ``nn.TransformerEncoder`` are only allowed to attend
40+
# self-attention layers in ``nn.TransformerDecoder`` are only allowed to attend
4141
# the earlier positions in the sequence. For the language modeling task, any
4242
# tokens on the future positions should be masked. To produce a probability
4343
# distribution over output words, the output of the ``nn.TransformerEncoder``

intermediate_source/char_rnn_classification_tutorial.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22
"""
33
NLP From Scratch: Classifying Names with a Character-Level RNN
44
**************************************************************
5-
**Author**: `Sean Robertson <https://github.com/spro/practical-pytorch>`_
5+
**Author**: `Sean Robertson <https://github.com/spro>`_
66
77
We will be building and training a basic character-level RNN to classify
88
words. This tutorial, along with the following two, show how to do

intermediate_source/char_rnn_generation_tutorial.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22
"""
33
NLP From Scratch: Generating Names with a Character-Level RNN
44
*************************************************************
5-
**Author**: `Sean Robertson <https://github.com/spro/practical-pytorch>`_
5+
**Author**: `Sean Robertson <https://github.com/spro>`_
66
77
This is our second of three tutorials on "NLP From Scratch".
88
In the `first tutorial </intermediate/char_rnn_classification_tutorial>`

intermediate_source/dynamic_quantization_bert_tutorial.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -68,7 +68,7 @@ built-in F1 score calculation helper function.
6868
.. code:: shell
6969
7070
pip install sklearn
71-
pip install transformers
71+
pip install transformers==4.29.2
7272
7373
7474
Because we will be using the beta parts of the PyTorch, it is

intermediate_source/seq2seq_translation_tutorial.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22
"""
33
NLP From Scratch: Translation with a Sequence to Sequence Network and Attention
44
*******************************************************************************
5-
**Author**: `Sean Robertson <https://github.com/spro/practical-pytorch>`_
5+
**Author**: `Sean Robertson <https://github.com/spro>`_
66
77
This is the third and final tutorial on doing "NLP From Scratch", where we
88
write our own classes and functions to preprocess the data to do our NLP

intermediate_source/torchvision_tutorial.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -145,7 +145,7 @@ Let’s write a ``torch.utils.data.Dataset`` class for this dataset.
145145
num_objs = len(obj_ids)
146146
boxes = []
147147
for i in range(num_objs):
148-
pos = np.where(masks[i])
148+
pos = np.nonzero(masks[i])
149149
xmin = np.min(pos[1])
150150
xmax = np.max(pos[1])
151151
ymin = np.min(pos[0])

0 commit comments

Comments
 (0)