Title | PyTorch version | Date updated |
---|---|---|
PyTorch Cheat Sheet |
1.0Pre |
7/30/18 |
import torch # root package
from torch.utils.data import Dataset, DataLoader # dataset representation and loading
import torch.autograd as autograd # computation graph
from torch.autograd import Variable # variable node in computation graph
import torch.nn as nn # neural networks
import torch.nn.functional as F # layers, activations and more
import torch.optim as optim # optimizers e.g. gradient descent, ADAM, etc.
from torch.jit import script, trace # hybrid frontend decorator and tracing jit
See autograd, nn, functional and optim
torch.jit.trace() # takes your module or function and an example data input, and traces the computational steps that the data encounters as it progresses through the model
@script # decorator used to indicate data-dependent control flow within the code being traced
See Torchscript
torch.onnx.export(model, dummy data, xxxx.proto) # exports an ONNX formatted model using a trained model, dummy data and the desired file name
model = onnx.load("alexnet.proto") # load an ONNX model
onnx.checker.check_model(model) # check that the model IR is well formed
onnx.helper.printable_graph(model.graph) # print a human readable representation of the graph
See onnx
from torchvision import datasets, models, transforms # vision datasets, architectures & transforms
import torchvision.transforms as transforms # composable transforms
See torchvision
import torch.distributed as dist # distributed communication
from multiprocessing import Process # memory sharing processes
See distributed and multiprocessing
torch.randn(*size) # tensor with independent N(0,1) entries
torch.[ones|zeros](*size) # tensor with all 1's [or 0's]
torch.Tensor(L) # create tensor from [nested] list or ndarray L
x.clone() # clone of x
with torch.no_grad(): # code wrap that stops autograd from tracking tensor history
requires_grad=True # arg, when set to True, tracks computation history for future derivative calculations
See tensor
x.size() # return tuple-like object of dimensions
torch.cat(tensor_seq, dim=0) # concatenates tensors along dim
x.view(a,b,...) # reshapes x into size (a,b,...)
x.view(-1,a) # reshapes x into size (b,a) for some b
x.transpose(a,b) # swaps dimensions a and b
x.permute(*dims) # permutes dimensions
x.unsqueeze(dim) # tensor with added axis
x.unsqueeze(dim=2) # (a,b,c) tensor -> (a,b,1,c) tensor
See tensor
A.mm(B) # matrix multiplication
A.mv(x) # matrix-vector multiplication
x.t() # matrix transpose
See math operations
torch.cuda.is_available() # check for cuda
x.cuda() # move x's data from CPU to GPU and return new object
x.cpu() # move x's data from GPU to CPU and return new object
if not args.disable_cuda and torch.cuda.is_available(): # device agnostic code and modularity
args.device = torch.device('cuda') #
else: #
args.device = torch.device('cpu') #
net.to(device) # recursively convert their parameters and buffers to device specific tensors
mytensor.to(device) # copy your tensors to a device (gpu, cpu)
See cuda
nn.Linear(m,n) # fully connected layer from m to n units
nn.ConvXd(m,n,s) # X dimensional conv layer from m to n channels where X⍷{1,2,3} and the kernel size is s
nn.MaxPoolXd(s) # X dimension pooling layer (notation as above)
nn.BatchNorm # batch norm layer
nn.RNN/LSTM/GRU # recurrent layers
nn.Dropout(p=0.5, inplace=False) # dropout layer for any dimensional input
nn.Dropout2d(p=0.5, inplace=False) # 2-dimensional channel-wise dropout
nn.Embedding(num_embeddings, embedding_dim) # (tensor-wise) mapping from indices to embedding vectors
See nn
nn.X # where X is BCELoss, CrossEntropyLoss, L1Loss, MSELoss, NLLLoss, SoftMarginLoss, MultiLabelSoftMarginLoss, CosineEmbeddingLoss, KLDivLoss, MarginRankingLoss, HingeEmbeddingLoss or CosineEmbeddingLoss
See loss functions
nn.X # where X is ReLU, ReLU6, ELU, SELU, PReLU, LeakyReLU, Threshold, HardTanh, Sigmoid, Tanh, LogSigmoid, Softplus, SoftShrink, Softsign, TanhShrink, Softmin, Softmax, Softmax2d or LogSoftmax
opt = optim.x(model.parameters(), ...) # create optimizer
opt.step() # update weights
optim.X # where X is SGD, Adadelta, Adagrad, Adam, SparseAdam, Adamax, ASGD, LBFGS, RMSProp or Rprop
See optimizers
scheduler = optim.X(optimizer,...) # create lr scheduler
scheduler.step() # update lr at start of epoch
optim.lr_scheduler.X # where X is LambdaLR, StepLR, MultiStepLR, ExponentialLR or ReduceLROnPLateau
Dataset # abstract class representing dataset
TensorDataset # labelled dataset in the form of tensors
ConcatDataset # concatenation of Datasets
See datasets
DataLoader(dataset, batch_size=1, ...) # loads data batches agnostic of structure of individual data points
sampler.Sampler(dataset,...) # abstract class dealing with ways to sample from dataset
sampler.XSampler # where X is Sequential, Random, Subset, WeightedRandom or Distributed
See dataloader
- Deep Learning with PyTorch: A 60 Minute Blitz (pytorch.org)
- PyTorch Forums (discuss.pytorch.org)
- PyTorch for Numpy users (github.com/wkentaro/pytorch-for-numpy-users)