-
Notifications
You must be signed in to change notification settings - Fork 4.1k
/
Copy pathsemi_structured_sparse.py
653 lines (576 loc) · 25.8 KB
/
semi_structured_sparse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
# -*- coding: utf-8 -*-
"""
(beta) Accelerating BERT with semi-structured (2:4) sparsity
=====================================================
**Author**: `Jesse Cai <https://github.com/jcaip>`_
"""
####################################################################
# Overview
# --------
#
# Like other forms of sparsity, **semi-structured sparsity** is a model
# optimization technique that seeks to reduce the memory overhead and
# latency of a neural network at the expense of some model accuracy. It is
# also known as **fine-grained structured sparsity** or **2:4 structured
# sparsity**.
#
# Semi-structured sparsity derives its name from its unique sparsity
# pattern, where n out of every 2n elements are pruned. We most often see
# n=2, hence 2:4 sparsity Semi-structured sparsity is particularly
# interesting because it can be efficiently accelerated on GPUs and
# doesn’t degrade model accuracy as much as other sparsity patterns.
#
# With the introduction of
# `semi-structured sparsity support <https://pytorch.org/docs/2.1/sparse.html#sparse-semi-structured-tensors>`_,
# it is possible to prune and accelerate a semi-structured sparse model
# without leaving PyTorch. We will explain this process in this tutorial.
#
# .. image:: ../../_static/img/pruning_flow.jpg
#
# By the end of this tutorial, we will have sparsified a BERT
# question-answering model to be 2:4 sparse, fine-tuning it to recover
# nearly all F1 loss (86.92 dense vs 86.48 sparse). Finally, we will
# accelerate this 2:4 sparse model for inference, yielding a 1.3x speedup.
#
#####################################################
# Requirements
# ------------
#
# - PyTorch >= 2.1.
# - A NVIDIA GPU with semi-structured sparsity support (Compute
# Capability 8.0+).
#
# This tutorial is designed for beginners to semi-structured sparsity and
# sparsity in general. For users with existing 2:4 sparse models,
# accelerating ``nn.Linear`` layers for inference with
# ``to_sparse_semi_structured`` is quite straightforward. Here is an example:
#
import torch
from torch.sparse import to_sparse_semi_structured, SparseSemiStructuredTensor
from torch.utils.benchmark import Timer
SparseSemiStructuredTensor._FORCE_CUTLASS = True
# mask Linear weight to be 2:4 sparse
mask = torch.Tensor([0, 0, 1, 1]).tile((3072, 2560)).cuda().bool()
linear = torch.nn.Linear(10240, 3072).half().cuda().eval()
linear.weight = torch.nn.Parameter(mask * linear.weight)
x = torch.rand(3072, 10240).half().cuda()
with torch.inference_mode():
dense_output = linear(x)
dense_t = Timer(stmt="linear(x)",
globals={"linear": linear,
"x": x}).blocked_autorange().median * 1e3
# accelerate via SparseSemiStructuredTensor
linear.weight = torch.nn.Parameter(to_sparse_semi_structured(linear.weight))
sparse_output = linear(x)
sparse_t = Timer(stmt="linear(x)",
globals={"linear": linear,
"x": x}).blocked_autorange().median * 1e3
# sparse and dense matmul are numerically equivalent
# On an A100 80GB, we see: `Dense: 0.870ms Sparse: 0.630ms | Speedup: 1.382x`
assert torch.allclose(sparse_output, dense_output, atol=1e-3)
print(f"Dense: {dense_t:.3f}ms Sparse: {sparse_t:.3f}ms | Speedup: {(dense_t / sparse_t):.3f}x")
######################################################################
# What problem does semi-structured sparsity solve?
# -------------------------------------------------
#
# The general motivation behind sparsity is simple: if there are zeros in
# your network, you can optimize efficiency by not storing or computing those
# parameters. However, the specifics of sparsity are tricky. Zeroing out
# parameters doesn’t affect the latency / memory overhead of our model out
# of the box.
#
# This is because the dense tensor still contains the pruned (zero)
# elements, which the dense matrix multiplication kernel will still
# operate on this elements. In order to realize performance gains, we need
# to swap out dense kernels for sparse kernels, which skip calculation
# involving pruned elements.
#
# To do this, these kernels work on sparse matrices, which do not store
# the pruned elements and store the specified elements in a compressed
# format.
#
# For semi-structured sparsity, we store exactly half of the original
# parameters along with some compressed metadata about how the elements
# were arranged.
#
# .. image:: https://developer-blogs.nvidia.com/wp-content/uploads/2023/06/2-4-structured-sparsity-pattern.png
# :align: center :width: 80%
#
# Image sourced from `NVIDIA blog post <https://developer.nvidia.com/blog/structured-sparsity-in-the-nvidia-ampere-architecture-and-applications-in-search-engines/>`_ on semi-structured sparsity.
#
# There are many different sparse layouts, each with their own benefits
# and drawbacks. The 2:4 semi-structured sparse layout is particularly
# interesting for two reasons:
#
# * Unlike previous sparse formats,
# semi-structured sparsity was designed to be efficiently accelerated on
# GPUs. In 2020, NVIDIA introduced hardware support for semi-structured
# sparsity with their Ampere architecture, and have also released fast
# sparse kernels via
# CUTLASS `cuSPARSELt <https://docs.nvidia.com/cuda/cusparselt/index.html>`__.
#
# * At the same time, semi-structured sparsity tends to have a milder
# impact on model accuracy compared to other sparse formats, especially
# when accounting for more advanced pruning / fine-tuning methods. NVIDIA
# has shown in their `white paper <https://arxiv.org/abs/2104.08378>`_
# that a simple paradigm of magnitude pruning once to be 2:4 sparse and
# then retraining the model yields nearly identical model accuracies.
#
# Semi-structured exists in a sweet spot, providing a 2x (theoretical)
# speedup at a much lower sparsity level (50%), while still being granular
# enough to preserve model accuracy.
#
# +---------------------+-------------+--------+------------+-------------+
# | Network | Data Set | Metric | Dense FP16 | Sparse FP16 |
# +=====================+=============+========+============+=============+
# | ResNet-50 | ImageNet | Top-1 | 76.1 | 76.2 |
# +---------------------+-------------+--------+------------+-------------+
# | ResNeXt-101_32x8d | ImageNet | Top-1 | 79.3 | 79.3 |
# +---------------------+-------------+--------+------------+-------------+
# | Xception | ImageNet | Top-1 | 79.2 | 79.2 |
# +---------------------+-------------+--------+------------+-------------+
# | SSD-RN50 | COCO2017 | bbAP | 24.8 | 24.8 |
# +---------------------+-------------+--------+------------+-------------+
# | MaskRCNN-RN50 | COCO2017 | bbAP | 37.9 | 37.9 |
# +---------------------+-------------+--------+------------+-------------+
# | FairSeq Transformer | EN-DE WMT14 | BLEU | 28.2 | 28.5 |
# +---------------------+-------------+--------+------------+-------------+
# | BERT-Large | SQuAD v1.1 | F1 | 91.9 | 91.9 |
# +---------------------+-------------+--------+------------+-------------+
#
# Semi-structured sparsity has an additional advantage from a workflow
# perspective. Because the sparsity level is fixed at 50%, it is easier to
# decompose the problem of sparsifying a model into two distinct
# subproblems:
#
# - Accuracy - How can we find a set of 2:4 sparse weights that minimize
# the accuracy degradation of our model?
#
# - Performance - How can we accelerate our 2:4 sparse weights for
# inference and reduced memory overhead?
#
#####################################################################
# .. math::
#
# \begin{bmatrix}
# 1 & 1 & 0 & 0 \\
# 0 & 0 & 1 & 1 \\
# 1 & 0 & 0 & 0 \\
# 0 & 0 & 1 & 1 \\
# \end{bmatrix}
#
# The natural handoff point between these two problems are zeroed-out
# dense tensors. Our inference solution is designed to compress and
# accelerate tensors in this format. We anticipate many users coming up
# with custom masking solution, as this is an active area of research.
#
# Now that we’ve learned a little more about semi-structured sparsity,
# let’s apply it to a BERT model trained on a question answering task,
# SQuAD.
#
# Intro & Setup
# -------------
#
# Let’s start by importing all the packages we need.
#
# If you are running this in Google Colab, run:
# .. code-block: python
#
# !pip install datasets transformers evaluate accelerate pandas
#
import os
os.environ["WANDB_DISABLED"] = "true"
import collections
import datasets
import evaluate
import numpy as np
import torch
import torch.utils.benchmark as benchmark
from torch import nn
from torch.sparse import to_sparse_semi_structured, SparseSemiStructuredTensor
from torch.ao.pruning import WeightNormSparsifier
import transformers
# force CUTLASS use if ``cuSPARSELt`` is not available
SparseSemiStructuredTensor._FORCE_CUTLASS = True
torch.manual_seed(100)
# Set default device to "cuda:0"
torch.set_default_device(torch.device("cuda:0" if torch.cuda.is_available() else "cpu"))
######################################################################
# We’ll also need to define some helper functions that are specific to the
# dataset / task at hand. These were adapted from
# `this <https://huggingface.co/learn/nlp-course/chapter7/7?fw=pt>`__
# Hugging Face course as a reference.
#
def preprocess_validation_function(examples, tokenizer):
inputs = tokenizer(
[q.strip() for q in examples["question"]],
examples["context"],
max_length=384,
truncation="only_second",
return_overflowing_tokens=True,
return_offsets_mapping=True,
padding="max_length",
)
sample_map = inputs.pop("overflow_to_sample_mapping")
example_ids = []
for i in range(len(inputs["input_ids"])):
sample_idx = sample_map[i]
example_ids.append(examples["id"][sample_idx])
sequence_ids = inputs.sequence_ids(i)
offset = inputs["offset_mapping"][i]
inputs["offset_mapping"][i] = [
o if sequence_ids[k] == 1 else None for k, o in enumerate(offset)
]
inputs["example_id"] = example_ids
return inputs
def preprocess_train_function(examples, tokenizer):
inputs = tokenizer(
[q.strip() for q in examples["question"]],
examples["context"],
max_length=384,
truncation="only_second",
return_offsets_mapping=True,
padding="max_length",
)
offset_mapping = inputs["offset_mapping"]
answers = examples["answers"]
start_positions = []
end_positions = []
for i, (offset, answer) in enumerate(zip(offset_mapping, answers)):
start_char = answer["answer_start"][0]
end_char = start_char + len(answer["text"][0])
sequence_ids = inputs.sequence_ids(i)
# Find the start and end of the context
idx = 0
while sequence_ids[idx] != 1:
idx += 1
context_start = idx
while sequence_ids[idx] == 1:
idx += 1
context_end = idx - 1
# If the answer is not fully inside the context, label it (0, 0)
if offset[context_start][0] > end_char or offset[context_end][1] < start_char:
start_positions.append(0)
end_positions.append(0)
else:
# Otherwise it's the start and end token positions
idx = context_start
while idx <= context_end and offset[idx][0] <= start_char:
idx += 1
start_positions.append(idx - 1)
idx = context_end
while idx >= context_start and offset[idx][1] >= end_char:
idx -= 1
end_positions.append(idx + 1)
inputs["start_positions"] = start_positions
inputs["end_positions"] = end_positions
return inputs
def compute_metrics(start_logits, end_logits, features, examples):
n_best = 20
max_answer_length = 30
metric = evaluate.load("squad")
example_to_features = collections.defaultdict(list)
for idx, feature in enumerate(features):
example_to_features[feature["example_id"]].append(idx)
predicted_answers = []
# for example in ``tqdm`` (examples):
for example in examples:
example_id = example["id"]
context = example["context"]
answers = []
# Loop through all features associated with that example
for feature_index in example_to_features[example_id]:
start_logit = start_logits[feature_index]
end_logit = end_logits[feature_index]
offsets = features[feature_index]["offset_mapping"]
start_indexes = np.argsort(start_logit)[-1 : -n_best - 1 : -1].tolist()
end_indexes = np.argsort(end_logit)[-1 : -n_best - 1 : -1].tolist()
for start_index in start_indexes:
for end_index in end_indexes:
# Skip answers that are not fully in the context
if offsets[start_index] is None or offsets[end_index] is None:
continue
# Skip answers with a length that is either < 0
# or > max_answer_length
if (
end_index < start_index
or end_index - start_index + 1 > max_answer_length
):
continue
answer = {
"text": context[
offsets[start_index][0] : offsets[end_index][1]
],
"logit_score": start_logit[start_index] + end_logit[end_index],
}
answers.append(answer)
# Select the answer with the best score
if len(answers) > 0:
best_answer = max(answers, key=lambda x: x["logit_score"])
predicted_answers.append(
{"id": example_id, "prediction_text": best_answer["text"]}
)
else:
predicted_answers.append({"id": example_id, "prediction_text": ""})
theoretical_answers = [
{"id": ex["id"], "answers": ex["answers"]} for ex in examples
]
return metric.compute(predictions=predicted_answers, references=theoretical_answers)
######################################################################
# Now that those are defined, we just need one additional helper function,
# which will help us benchmark our model.
#
def measure_execution_time(model, batch_sizes, dataset):
dataset_for_model = dataset.remove_columns(["example_id", "offset_mapping"])
dataset_for_model.set_format("torch")
batch_size_to_time_sec = {}
for batch_size in batch_sizes:
batch = {
k: dataset_for_model[k][:batch_size].cuda()
for k in dataset_for_model.column_names
}
with torch.no_grad():
baseline_predictions = model(**batch)
timer = benchmark.Timer(
stmt="model(**batch)", globals={"model": model, "batch": batch}
)
p50 = timer.blocked_autorange().median * 1000
batch_size_to_time_sec[batch_size] = p50
model_c = torch.compile(model, fullgraph=True)
timer = benchmark.Timer(
stmt="model(**batch)", globals={"model": model_c, "batch": batch}
)
p50 = timer.blocked_autorange().median * 1000
batch_size_to_time_sec[f"{batch_size}_compile"] = p50
new_predictions = model_c(**batch)
return batch_size_to_time_sec
######################################################################
# We will get started by loading our model and tokenizer, and then setting
# up our dataset.
#
# load model
model_name = "bert-base-cased"
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
model = transformers.AutoModelForQuestionAnswering.from_pretrained(model_name)
print(f"Loading tokenizer: {model_name}")
print(f"Loading model: {model_name}")
# set up train and val dataset
squad_dataset = datasets.load_dataset("squad")
tokenized_squad_dataset = {}
tokenized_squad_dataset["train"] = squad_dataset["train"].map(
lambda x: preprocess_train_function(x, tokenizer), batched=True
)
tokenized_squad_dataset["validation"] = squad_dataset["validation"].map(
lambda x: preprocess_validation_function(x, tokenizer),
batched=True,
remove_columns=squad_dataset["train"].column_names,
)
data_collator = transformers.DataCollatorWithPadding(tokenizer=tokenizer)
######################################################################
# Establishing a baseline
# =======================
#
# Next, we’ll train a quick baseline of our model on SQuAD. This task asks
# our model to identify spans, or segments of text, in a given context
# (Wikipedia articles) that answer a given question. Running the following
# code gives me an F1 score of 86.9. This is quite close to the reported
# NVIDIA score and the difference is likely due to BERT-base
# vs. BERT-large or fine-tuning hyperparameters.
#
training_args = transformers.TrainingArguments(
"trainer",
num_train_epochs=1,
lr_scheduler_type="constant",
per_device_train_batch_size=32,
per_device_eval_batch_size=256,
logging_steps=50,
# Limit max steps for tutorial runners. Delete the below line to see the reported accuracy numbers.
max_steps=500,
report_to=None,
)
trainer = transformers.Trainer(
model,
training_args,
train_dataset=tokenized_squad_dataset["train"],
eval_dataset=tokenized_squad_dataset["validation"],
data_collator=data_collator,
tokenizer=tokenizer,
)
trainer.train()
# batch sizes to compare for eval
batch_sizes = [4, 16, 64, 256]
# 2:4 sparsity require fp16, so we cast here for a fair comparison
with torch.autocast("cuda"):
with torch.no_grad():
predictions = trainer.predict(tokenized_squad_dataset["validation"])
start_logits, end_logits = predictions.predictions
fp16_baseline = compute_metrics(
start_logits,
end_logits,
tokenized_squad_dataset["validation"],
squad_dataset["validation"],
)
fp16_time = measure_execution_time(
model,
batch_sizes,
tokenized_squad_dataset["validation"],
)
print("fp16", fp16_baseline)
print("cuda_fp16 time", fp16_time)
import pandas as pd
df = pd.DataFrame(trainer.state.log_history)
df.plot.line(x='step', y='loss', title="Loss vs. # steps", ylabel="loss")
######################################################################
# Pruning BERT to be 2:4 sparse
# -----------------------------
#
# Now that we have our baseline, it’s time we prune BERT. There are many
# different pruning strategies, but one of the most common is **magnitude
# pruning**, which seeks to remove the weights with the lowest L1 norm.
# Magnitude pruning was used by NVIDIA in all their results and is a
# common baseline.
#
# To do this, we will use the ``torch.ao.pruning`` package, which contains
# a weight-norm (magnitude) sparsifier. These sparsifiers work by applying
# mask parametrizations to the weight tensors in a model. This lets them
# simulate sparsity by masking out the pruned weights.
#
# We’ll also have to decide what layers of the model to apply sparsity to,
# which in this case is all of the ``nn.Linear`` layers, except for the
# task-specific head outputs. That’s because semi-structured sparsity has
# `shape constraints <https://pytorch.org/docs/2.1/sparse.html#constructing-sparse-semi-structured-tensors>`_,
# and the task-specific ``nn.Linear`` layers do not satisfy them.
#
sparsifier = WeightNormSparsifier(
# apply sparsity to all blocks
sparsity_level=1.0,
# shape of 4 elements is a block
sparse_block_shape=(1, 4),
# two zeros for every block of 4
zeros_per_block=2
)
# add to config if ``nn.Linear`` and in the BERT model.
sparse_config = [
{"tensor_fqn": f"{fqn}.weight"}
for fqn, module in model.named_modules()
if isinstance(module, nn.Linear) and "layer" in fqn
]
######################################################################
# The first step for pruning the model is to insert parametrizations for
# masking the weights of the model. This is done by the prepare step.
# Anytime we try to access the ``.weight`` we will get ``mask * weight``
# instead.
#
# Prepare the model, insert fake-sparsity parametrizations for training
sparsifier.prepare(model, sparse_config)
print(model.bert.encoder.layer[0].output)
######################################################################
# Then, we’ll take a single pruning step. All pruners implement a
# ``update_mask()`` method that updates the mask with the logic being
# determined by the pruner implementation. The step method calls this
# ``update_mask`` functions for the weights specified in the sparse
# config.
#
# We will also evaluate the model to show the accuracy degradation of
# zero-shot pruning, or pruning without fine-tuning / retraining.
#
sparsifier.step()
with torch.autocast("cuda"):
with torch.no_grad():
predictions = trainer.predict(tokenized_squad_dataset["validation"])
pruned = compute_metrics(
*predictions.predictions,
tokenized_squad_dataset["validation"],
squad_dataset["validation"],
)
print("pruned eval metrics:", pruned)
######################################################################
# In this state, we can start fine-tuning the model, updating the elements
# that wouldn’t be pruned to better account for the accuracy loss. Once
# we’ve reached a satisfied state, we can call ``squash_mask`` to fuse the
# mask and the weight together. This will remove the parametrizations and
# we are left with a zeroed-out 2:4 dense model.
#
trainer.train()
sparsifier.squash_mask()
torch.set_printoptions(edgeitems=4)
print(model.bert.encoder.layer[0].intermediate.dense.weight[:8, :8])
df["sparse_loss"] = pd.DataFrame(trainer.state.log_history)["loss"]
df.plot.line(x='step', y=["loss", "sparse_loss"], title="Loss vs. # steps", ylabel="loss")
######################################################################
# Accelerating 2:4 sparse models for inference
# --------------------------------------------
#
# Now that we have a model in this format, we can accelerate it for
# inference just like in the QuickStart Guide.
#
model = model.cuda().half()
# accelerate for sparsity
for fqn, module in model.named_modules():
if isinstance(module, nn.Linear) and "layer" in fqn:
module.weight = nn.Parameter(to_sparse_semi_structured(module.weight))
with torch.no_grad():
predictions = trainer.predict(tokenized_squad_dataset["validation"])
start_logits, end_logits = predictions.predictions
metrics_sparse = compute_metrics(
start_logits,
end_logits,
tokenized_squad_dataset["validation"],
squad_dataset["validation"],
)
print("sparse eval metrics: ", metrics_sparse)
sparse_perf = measure_execution_time(
model,
batch_sizes,
tokenized_squad_dataset["validation"],
)
print("sparse perf metrics: ", sparse_perf)
######################################################################
# Retraining our model after magnitude pruning has recovered nearly all of
# the F1 that has been lost when the model was pruned. At the same time we
# have achieved a 1.28x speedup for ``bs=16``. Note that not all shapes are
# amenable to performance improvements. When batch sizes are small and
# limited time is spent in compute sparse kernels may be slower than their
# dense counterparts.
#
# Because semi-structured sparsity is implemented as a tensor subclass, it
# is compatible with ``torch.compile``. When composed with
# ``to_sparse_semi_structured``, we are able to achieve a total 2x speedup
# on BERT.
#
# .. table::
#
# +--------------------+--------+--------------+-----------------+-----------+
# | Metrics | fp16 | 2:4 sparse | delta / speedup | compiled |
# +====================+========+==============+=================+===========+
# | Exact Match (%) | 78.53 | 78.44 | -0.09 | |
# +--------------------+--------+--------------+-----------------+-----------+
# | F1 (%) | 86.93 | 86.49 | -0.44 | |
# +--------------------+--------+--------------+-----------------+-----------+
# | Time (bs=4) | 11.10 | 15.54 | 0.71x | no |
# +--------------------+--------+--------------+-----------------+-----------+
# | Time (bs=16) | 19.35 | 15.74 | 1.23x | no |
# +--------------------+--------+--------------+-----------------+-----------+
# | Time (bs=64) | 72.71 | 59.41 | 1.22x | no |
# +--------------------+--------+--------------+-----------------+-----------+
# | Time (bs=256) | 286.65 | 247.63 | 1.14x | no |
# +--------------------+--------+--------------+-----------------+-----------+
# | Time (bs=4) | 7.59 | 7.46 | 1.02x | yes |
# +--------------------+--------+--------------+-----------------+-----------+
# | Time (bs=16) | 11.47 | 9.68 | 1.18x | yes |
# +--------------------+--------+--------------+-----------------+-----------+
# | Time (bs=64) | 41.57 | 36.92 | 1.13x | yes |
# +--------------------+--------+--------------+-----------------+-----------+
# | Time (bs=256) | 159.22 | 142.23 | 1.12x | yes |
# +--------------------+--------+--------------+-----------------+-----------+
#
# Conclusion
# ==========
#
# In this tutorial, we have shown how to prune BERT to be 2:4 sparse and
# how to accelerate a 2:4 sparse model for inference. By taking advantage
# of our ``SparseSemiStructuredTensor`` subclass, we were able to achieve a
# 1.3x speedup over the fp16 baseline, and up to 2x with
# ``torch.compile``. We also demonstrated the benefits of 2:4 sparsity by
# fine-tuning BERT to recover any lost F1 (86.92 dense vs 86.48 sparse).
#