-
Notifications
You must be signed in to change notification settings - Fork 4.1k
/
Copy pathflava_finetuning_tutorial.py
190 lines (162 loc) · 6.74 KB
/
flava_finetuning_tutorial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# -*- coding: utf-8 -*-
"""
TorchMultimodal Tutorial: Finetuning FLAVA
============================================
"""
######################################################################
# Multimodal AI has recently become very popular owing to its ubiquitous
# nature, from use cases like image captioning and visual search to more
# recent applications like image generation from text. **TorchMultimodal
# is a library powered by Pytorch consisting of building blocks and end to
# end examples, aiming to enable and accelerate research in
# multimodality**.
#
# In this tutorial, we will demonstrate how to use a **pretrained SoTA
# model called** `FLAVA <https://arxiv.org/pdf/2112.04482.pdf>`__ **from
# TorchMultimodal library to finetune on a multimodal task i.e. visual
# question answering** (VQA). The model consists of two unimodal transformer
# based encoders for text and image and a multimodal encoder to combine
# the two embeddings. It is pretrained using contrastive, image text matching and
# text, image and multimodal masking losses.
######################################################################
# Installation
# -----------------
# We will use TextVQA dataset and ``bert tokenizer`` from Hugging Face for this
# tutorial. So you need to install datasets and transformers in addition to TorchMultimodal.
#
# .. note::
#
# When running this tutorial in Google Colab, install the required packages by
# creating a new cell and running the following commands:
#
# .. code-block::
#
# !pip install torchmultimodal-nightly
# !pip install datasets
# !pip install transformers
#
######################################################################
# Steps
# -----
#
# 1. Download the Hugging Face dataset to a directory on your computer by running the following command:
#
# .. code-block::
#
# wget http://dl.fbaipublicfiles.com/pythia/data/vocab.tar.gz
# tar xf vocab.tar.gz
#
# .. note::
# If you are running this tutorial in Google Colab, run these commands
# in a new cell and prepend these commands with an exclamation mark (!)
#
#
# 2. For this tutorial, we treat VQA as a classification task where
# the inputs are images and question (text) and the output is an answer class.
# So we need to download the vocab file with answer classes and create the answer to
# label mapping.
#
# We also load the `textvqa
# dataset <https://arxiv.org/pdf/1904.08920.pdf>`__ containing 34602 training samples
# (images,questions and answers) from Hugging Face
#
# We see there are 3997 answer classes including a class representing
# unknown answers.
#
with open("data/vocabs/answers_textvqa_more_than_1.txt") as f:
vocab = f.readlines()
answer_to_idx = {}
for idx, entry in enumerate(vocab):
answer_to_idx[entry.strip("\n")] = idx
print(len(vocab))
print(vocab[:5])
from datasets import load_dataset
dataset = load_dataset("textvqa")
######################################################################
# Lets display a sample entry from the dataset:
#
import matplotlib.pyplot as plt
import numpy as np
idx = 5
print("Question: ", dataset["train"][idx]["question"])
print("Answers: " ,dataset["train"][idx]["answers"])
im = np.asarray(dataset["train"][idx]["image"].resize((500,500)))
plt.imshow(im)
plt.show()
######################################################################
# 3. Next, we write the transform function to convert the image and text into
# Tensors consumable by our model - For images, we use the transforms from
# torchvision to convert to Tensor and resize to uniform sizes - For text,
# we tokenize (and pad) them using the ``BertTokenizer`` from Hugging Face -
# For answers (i.e. labels), we take the most frequently occurring answer
# as the label to train with:
#
import torch
from torchvision import transforms
from collections import defaultdict
from transformers import BertTokenizer
from functools import partial
def transform(tokenizer, input):
batch = {}
image_transform = transforms.Compose([transforms.ToTensor(), transforms.Resize([224,224])])
image = image_transform(input["image"][0].convert("RGB"))
batch["image"] = [image]
tokenized=tokenizer(input["question"],return_tensors='pt',padding="max_length",max_length=512)
batch.update(tokenized)
ans_to_count = defaultdict(int)
for ans in input["answers"][0]:
ans_to_count[ans] += 1
max_value = max(ans_to_count, key=ans_to_count.get)
ans_idx = answer_to_idx.get(max_value,0)
batch["answers"] = torch.as_tensor([ans_idx])
return batch
tokenizer=BertTokenizer.from_pretrained("bert-base-uncased",padding="max_length",max_length=512)
transform=partial(transform,tokenizer)
dataset.set_transform(transform)
######################################################################
# 4. Finally, we import the ``flava_model_for_classification`` from
# ``torchmultimodal``. It loads the pretrained FLAVA checkpoint by default and
# includes a classification head.
#
# The model forward function passes the image through the visual encoder
# and the question through the text encoder. The image and question
# embeddings are then passed through the multimodal encoder. The final
# embedding corresponding to the CLS token is passed through a MLP head
# which finally gives the probability distribution over each possible
# answers.
#
from torchmultimodal.models.flava.model import flava_model_for_classification
model = flava_model_for_classification(num_classes=len(vocab))
######################################################################
# 5. We put together the dataset and model in a toy training loop to
# demonstrate how to train the model for 3 iterations:
#
from torch import nn
BATCH_SIZE = 2
MAX_STEPS = 3
from torch.utils.data import DataLoader
train_dataloader = DataLoader(dataset["train"], batch_size= BATCH_SIZE)
optimizer = torch.optim.AdamW(model.parameters())
epochs = 1
for _ in range(epochs):
for idx, batch in enumerate(train_dataloader):
optimizer.zero_grad()
out = model(text = batch["input_ids"], image = batch["image"], labels = batch["answers"])
loss = out.loss
loss.backward()
optimizer.step()
print(f"Loss at step {idx} = {loss}")
if idx >= MAX_STEPS-1:
break
######################################################################
# Conclusion
# -------------------
#
# This tutorial introduced the basics around how to finetune on a
# multimodal task using FLAVA from TorchMultimodal. Please also check out
# other examples from the library like
# `MDETR <https://github.com/facebookresearch/multimodal/tree/main/torchmultimodal/models/mdetr>`__
# which is a multimodal model for object detection and
# `Omnivore <https://github.com/facebookresearch/multimodal/blob/main/torchmultimodal/models/omnivore.py>`__
# which is multitask model spanning image, video and 3d classification.
#