192192 < div class ="pytorch-left-menu-search ">
193193
194194 < div class ="version ">
195- < a href ='https://pytorch.org/docs/versions.html '> master (1.10.0a0+git55e9cf2 ) ▼</ a >
195+ < a href ='https://pytorch.org/docs/versions.html '> master (1.10.0a0+git27cbbb8 ) ▼</ a >
196196 </ div >
197197
198198
@@ -685,7 +685,7 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
685685 < span class ="k "> return</ span > < span class ="nb "> type</ span > < span class ="p "> (</ span > < span class ="n "> obj</ span > < span class ="p "> )</ span > < span class ="ow "> in</ span > < span class ="n "> _storage_classes</ span >
686686
687687
688- < span class ="k "> def</ span > < span class ="nf "> set_default_tensor_type</ span > < span class ="p "> (</ span > < span class ="n "> t</ span > < span class ="p "> ):</ span >
688+ < div class =" viewcode-block " id =" set_default_tensor_type " > < a class =" viewcode-back " href =" ../generated/torch.set_default_tensor_type.html#torch.set_default_tensor_type " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> set_default_tensor_type</ span > < span class ="p "> (</ span > < span class ="n "> t</ span > < span class ="p "> ):</ span >
689689 < span class ="sa "> r</ span > < span class ="sd "> """Sets the default ``torch.Tensor`` type to floating point tensor type</ span >
690690< span class ="sd "> ``t``. This type will also be used as default floating point type for</ span >
691691< span class ="sd "> type inference in :func:`torch.tensor`.</ span >
@@ -706,10 +706,10 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
706706< span class ="sd "> """</ span >
707707 < span class ="k "> if</ span > < span class ="nb "> isinstance</ span > < span class ="p "> (</ span > < span class ="n "> t</ span > < span class ="p "> ,</ span > < span class ="n "> _string_classes</ span > < span class ="p "> ):</ span >
708708 < span class ="n "> t</ span > < span class ="o "> =</ span > < span class ="n "> _import_dotted_name</ span > < span class ="p "> (</ span > < span class ="n "> t</ span > < span class ="p "> )</ span >
709- < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_default_tensor_type</ span > < span class ="p "> (</ span > < span class ="n "> t</ span > < span class ="p "> )</ span >
709+ < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_default_tensor_type</ span > < span class ="p "> (</ span > < span class ="n "> t</ span > < span class ="p "> )</ span > </ div >
710710
711711
712- < span class ="k "> def</ span > < span class ="nf "> set_default_dtype</ span > < span class ="p "> (</ span > < span class ="n "> d</ span > < span class ="p "> ):</ span >
712+ < div class =" viewcode-block " id =" set_default_dtype " > < a class =" viewcode-back " href =" ../generated/torch.set_default_dtype.html#torch.set_default_dtype " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> set_default_dtype</ span > < span class ="p "> (</ span > < span class ="n "> d</ span > < span class ="p "> ):</ span >
713713 < span class ="sa "> r</ span > < span class ="sd "> """Sets the default floating point dtype to :attr:`d`.</ span >
714714< span class ="sd "> This dtype is:</ span >
715715
@@ -737,9 +737,9 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
737737< span class ="sd "> torch.complex128</ span >
738738
739739< span class ="sd "> """</ span >
740- < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_default_dtype</ span > < span class ="p "> (</ span > < span class ="n "> d</ span > < span class ="p "> )</ span >
740+ < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_default_dtype</ span > < span class ="p "> (</ span > < span class ="n "> d</ span > < span class ="p "> )</ span > </ div >
741741
742- < div class =" viewcode-block " id =" use_deterministic_algorithms " > < a class =" viewcode-back " href =" ../generated/torch.use_deterministic_algorithms.html#torch.use_deterministic_algorithms " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> use_deterministic_algorithms</ span > < span class ="p "> (</ span > < span class ="n "> mode</ span > < span class ="p "> ):</ span >
742+ < span class ="k "> def</ span > < span class ="nf "> use_deterministic_algorithms</ span > < span class ="p "> (</ span > < span class ="n "> mode</ span > < span class ="p "> ):</ span >
743743 < span class ="sa "> r</ span > < span class ="sd "> """ Sets whether PyTorch operations must use "deterministic"</ span >
744744< span class ="sd "> algorithms. That is, algorithms which, given the same input, and when</ span >
745745< span class ="sd "> run on the same software and hardware, always produce the same output.</ span >
@@ -854,7 +854,7 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
854854< span class ="sd "> ...</ span >
855855< span class ="sd "> RuntimeError: index_add_cuda_ does not have a deterministic implementation...</ span >
856856< span class ="sd "> """</ span >
857- < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_deterministic_algorithms</ span > < span class ="p "> (</ span > < span class ="n "> mode</ span > < span class ="p "> )</ span > </ div >
857+ < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_deterministic_algorithms</ span > < span class ="p "> (</ span > < span class ="n "> mode</ span > < span class ="p "> )</ span >
858858
859859< span class ="k "> def</ span > < span class ="nf "> set_deterministic</ span > < span class ="p "> (</ span > < span class ="n "> d</ span > < span class ="p "> ):</ span >
860860 < span class ="sa "> r</ span > < span class ="sd "> """This function is deprecated and will be removed in a future release.</ span >
@@ -882,7 +882,7 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
882882 < span class ="k "> return</ span > < span class ="n "> are_deterministic_algorithms_enabled</ span > < span class ="p "> ()</ span >
883883
884884
885- < span class ="k "> def</ span > < span class ="nf "> set_warn_always</ span > < span class ="p "> (</ span > < span class ="n "> b</ span > < span class ="p "> ):</ span >
885+ < div class =" viewcode-block " id =" set_warn_always " > < a class =" viewcode-back " href =" ../generated/torch.set_warn_always.html#torch.set_warn_always " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> set_warn_always</ span > < span class ="p "> (</ span > < span class ="n "> b</ span > < span class ="p "> ):</ span >
886886 < span class ="sa "> r</ span > < span class ="sd "> """When this flag is False (default) then some PyTorch warnings may only</ span >
887887< span class ="sd "> appear once per process. This helps avoid excessive warning information.</ span >
888888< span class ="sd "> Setting it to True causes these warnings to always appear, which may be</ span >
@@ -892,7 +892,7 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
892892< span class ="sd "> b (:class:`bool`): If True, force warnings to always be emitted</ span >
893893< span class ="sd "> If False, set to the default behaviour</ span >
894894< span class ="sd "> """</ span >
895- < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_warnAlways</ span > < span class ="p "> (</ span > < span class ="n "> b</ span > < span class ="p "> )</ span >
895+ < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_warnAlways</ span > < span class ="p "> (</ span > < span class ="n "> b</ span > < span class ="p "> )</ span > </ div >
896896
897897< span class ="k "> def</ span > < span class ="nf "> is_warn_always_enabled</ span > < span class ="p "> ():</ span >
898898 < span class ="sa "> r</ span > < span class ="sd "> """Returns True if the global warn_always flag is turned on. Refer to</ span >
0 commit comments