-
-
Notifications
You must be signed in to change notification settings - Fork 640
/
Copy pathactor_critic.py
153 lines (121 loc) · 4.72 KB
/
actor_critic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import argparse
from collections import namedtuple
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.distributions import Categorical
from ignite.engine import Engine, Events
try:
import gym
except ImportError:
raise RuntimeError("Please install opengym: pip install gym")
SavedAction = namedtuple("SavedAction", ["log_prob", "value"])
class Policy(nn.Module):
def __init__(self):
super(Policy, self).__init__()
self.affine1 = nn.Linear(4, 128)
self.action_head = nn.Linear(128, 2)
self.value_head = nn.Linear(128, 1)
self.saved_actions = []
self.rewards = []
def forward(self, x):
x = F.relu(self.affine1(x))
action_scores = self.action_head(x)
state_values = self.value_head(x)
return F.softmax(action_scores, dim=-1), state_values
def select_action(model, observation):
observation = torch.from_numpy(observation).float()
probs, observation_value = model(observation)
m = Categorical(probs)
action = m.sample()
model.saved_actions.append(SavedAction(m.log_prob(action), observation_value))
return action.item()
def finish_episode(model, optimizer, gamma, eps):
R = 0
saved_actions = model.saved_actions
policy_losses = []
value_losses = []
rewards = []
for r in model.rewards[::-1]:
R = r + gamma * R
rewards.insert(0, R)
rewards = torch.tensor(rewards)
rewards = (rewards - rewards.mean()) / (rewards.std() + eps)
for (log_prob, value), r in zip(saved_actions, rewards):
reward = r - value.item()
policy_losses.append(-log_prob * reward)
value_losses.append(F.smooth_l1_loss(value, torch.tensor([r])))
optimizer.zero_grad()
loss = torch.stack(policy_losses).sum() + torch.stack(value_losses).sum()
loss.backward()
optimizer.step()
del model.rewards[:]
del model.saved_actions[:]
EPISODE_STARTED = Events.EPOCH_STARTED
EPISODE_COMPLETED = Events.EPOCH_COMPLETED
def main(env, args):
model = Policy()
optimizer = optim.Adam(model.parameters(), lr=3e-2)
eps = np.finfo(np.float32).eps.item()
timesteps = list(range(10000))
def run_single_timestep(engine, timestep):
observation = engine.state.observation
action = select_action(model, observation)
engine.state.observation, reward, done, _ = env.step(action)
if args.render:
env.render()
model.rewards.append(reward)
if done:
engine.terminate_epoch()
engine.state.timestep = timestep
trainer = Engine(run_single_timestep)
@trainer.on(Events.STARTED)
def initialize(engine):
engine.state.running_reward = 10
@trainer.on(EPISODE_STARTED)
def reset_environment_state(engine):
engine.state.observation = env.reset()
@trainer.on(EPISODE_COMPLETED)
def update_model(engine):
t = engine.state.timestep
engine.state.running_reward = engine.state.running_reward * 0.99 + t * 0.01
finish_episode(model, optimizer, args.gamma, eps)
@trainer.on(EPISODE_COMPLETED(every=args.log_interval))
def log_episode(engine):
i_episode = engine.state.epoch
print(
f"Episode {i_episode}\tLast length: {engine.state.timestep:5d}"
f"\tAverage length: {engine.state.running_reward:.2f}"
)
@trainer.on(EPISODE_COMPLETED)
def should_finish_training(engine):
running_reward = engine.state.running_reward
if running_reward > env.spec.reward_threshold:
print(
f"Solved! Running reward is now {running_reward} and "
f"the last episode runs to {engine.state.timestep} time steps!"
)
engine.should_terminate = True
trainer.run(timesteps, max_epochs=args.max_episodes)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Ignite actor-critic example")
parser.add_argument("--gamma", type=float, default=0.99, metavar="G", help="discount factor (default: 0.99)")
parser.add_argument("--seed", type=int, default=543, metavar="N", help="random seed (default: 1)")
parser.add_argument("--render", action="store_true", help="render the environment")
parser.add_argument(
"--log-interval", type=int, default=10, metavar="N", help="interval between training status logs (default: 10)"
)
parser.add_argument(
"--max-episodes",
type=int,
default=1000000,
metavar="N",
help="Number of episodes for the training (default: 1000000)",
)
args = parser.parse_args()
env = gym.make("CartPole-v0")
env.seed(args.seed)
torch.manual_seed(args.seed)
main(env, args)