-
-
Notifications
You must be signed in to change notification settings - Fork 640
/
Copy pathtraining.py
331 lines (241 loc) · 11.3 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
# This a training script launched with py_config_runner
# It should obligatory contain `run(config, **kwargs)` method
from pathlib import Path
import torch
from apex import amp
from py_config_runner.config_utils import TRAINVAL_CONFIG, assert_config, get_params
from py_config_runner.utils import set_seed
from utils import exp_tracking
from utils.handlers import predictions_gt_images_handler
import ignite
import ignite.distributed as idist
from ignite.contrib.engines import common
from ignite.engine import Engine, Events, _prepare_batch, create_supervised_evaluator
from ignite.metrics import Accuracy, TopKCategoricalAccuracy
from ignite.utils import setup_logger
def initialize(config):
model = config.model.to(config.device)
optimizer = config.optimizer
# Setup Nvidia/Apex AMP
model, optimizer = amp.initialize(model, optimizer, opt_level=getattr(config, "fp16_opt_level", "O2"), num_losses=1)
# Adapt model to dist conf
model = idist.auto_model(model)
criterion = config.criterion.to(config.device)
return model, optimizer, criterion
def create_trainer(model, optimizer, criterion, train_sampler, config, logger):
prepare_batch = config.prepare_batch
device = config.device
# Setup trainer
accumulation_steps = getattr(config, "accumulation_steps", 1)
model_output_transform = getattr(config, "model_output_transform", lambda x: x)
def train_update_function(engine, batch):
model.train()
x, y = prepare_batch(batch, device=device, non_blocking=True)
y_pred = model(x)
y_pred = model_output_transform(y_pred)
loss = criterion(y_pred, y) / accumulation_steps
with amp.scale_loss(loss, optimizer, loss_id=0) as scaled_loss:
scaled_loss.backward()
if engine.state.iteration % accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
return {
"supervised batch loss": loss.item(),
}
output_names = getattr(config, "output_names", ["supervised batch loss"])
lr_scheduler = config.lr_scheduler
trainer = Engine(train_update_function)
trainer.logger = logger
to_save = {"model": model, "optimizer": optimizer, "lr_scheduler": lr_scheduler, "trainer": trainer, "amp": amp}
save_every_iters = getattr(config, "save_every_iters", 1000)
common.setup_common_training_handlers(
trainer,
train_sampler,
to_save=to_save,
save_every_iters=save_every_iters,
output_path=config.output_path.as_posix(),
lr_scheduler=lr_scheduler,
with_gpu_stats=True,
output_names=output_names,
with_pbars=False,
)
common.ProgressBar(persist=False).attach(trainer, metric_names="all")
return trainer
def create_evaluators(model, metrics, config):
model_output_transform = getattr(config, "model_output_transform", lambda x: x)
evaluator_args = dict(
model=model,
metrics=metrics,
device=config.device,
non_blocking=True,
prepare_batch=config.prepare_batch,
output_transform=lambda x, y, y_pred: (model_output_transform(y_pred), y),
)
train_evaluator = create_supervised_evaluator(**evaluator_args)
evaluator = create_supervised_evaluator(**evaluator_args)
common.ProgressBar(persist=False).attach(train_evaluator)
common.ProgressBar(persist=False).attach(evaluator)
return evaluator, train_evaluator
def log_metrics(logger, epoch, elapsed, tag, metrics):
metrics_output = "\n".join([f"\t{k}: {v}" for k, v in metrics.items()])
logger.info(f"\nEpoch {epoch} - Evaluation time (seconds): {elapsed} - {tag} metrics:\n {metrics_output}")
def log_basic_info(logger, config):
msg = f"\n- PyTorch version: {torch.__version__}"
msg += f"\n- Ignite version: {ignite.__version__}"
logger.info(msg)
if idist.get_world_size() > 1:
msg = "\nDistributed setting:"
msg += f"\tbackend: {idist.backend()}"
msg += f"\trank: {idist.get_rank()}"
msg += f"\tworld size: {idist.get_world_size()}"
logger.info(msg)
def training(local_rank, config, logger=None):
if not getattr(config, "use_fp16", True):
raise RuntimeError("This training script uses by default fp16 AMP")
torch.backends.cudnn.benchmark = True
set_seed(config.seed + local_rank)
train_loader, val_loader, train_eval_loader = config.train_loader, config.val_loader, config.train_eval_loader
# Setup model, optimizer, criterion
model, optimizer, criterion = initialize(config)
if not hasattr(config, "prepare_batch"):
config.prepare_batch = _prepare_batch
# Setup trainer for this specific task
trainer = create_trainer(model, optimizer, criterion, train_loader.sampler, config, logger)
if getattr(config, "benchmark_dataflow", False):
benchmark_dataflow_num_iters = getattr(config, "benchmark_dataflow_num_iters", 1000)
DataflowBenchmark(benchmark_dataflow_num_iters, prepare_batch=config.prepare_batch).attach(
trainer, train_loader
)
# Setup evaluators
val_metrics = {
"Accuracy": Accuracy(),
"Top-5 Accuracy": TopKCategoricalAccuracy(k=5),
}
if hasattr(config, "val_metrics") and isinstance(config.val_metrics, dict):
val_metrics.update(config.val_metrics)
evaluator, train_evaluator = create_evaluators(model, val_metrics, config)
@trainer.on(Events.EPOCH_COMPLETED(every=getattr(config, "val_interval", 1)) | Events.COMPLETED)
def run_validation():
epoch = trainer.state.epoch
state = train_evaluator.run(train_eval_loader)
log_metrics(logger, epoch, state.times["COMPLETED"], "Train", state.metrics)
state = evaluator.run(val_loader)
log_metrics(logger, epoch, state.times["COMPLETED"], "Test", state.metrics)
if getattr(config, "start_by_validation", False):
trainer.add_event_handler(Events.STARTED, run_validation)
score_metric_name = "Accuracy"
if hasattr(config, "es_patience"):
common.add_early_stopping_by_val_score(config.es_patience, evaluator, trainer, metric_name=score_metric_name)
# Store 3 best models by validation accuracy:
common.save_best_model_by_val_score(
config.output_path.as_posix(),
evaluator,
model=model,
metric_name=score_metric_name,
n_saved=3,
trainer=trainer,
tag="val",
)
if idist.get_rank() == 0:
tb_logger = common.setup_tb_logging(
config.output_path.as_posix(),
trainer,
optimizer,
evaluators={"training": train_evaluator, "validation": evaluator},
)
exp_tracking_logger = exp_tracking.setup_logging(
trainer, optimizer, evaluators={"training": train_evaluator, "validation": evaluator}
)
# Log train/val predictions:
tb_logger.attach(
evaluator,
log_handler=predictions_gt_images_handler(
img_denormalize_fn=config.img_denormalize, n_images=15, another_engine=trainer, prefix_tag="validation"
),
event_name=Events.ITERATION_COMPLETED(once=len(val_loader) // 2),
)
tb_logger.attach(
train_evaluator,
log_handler=predictions_gt_images_handler(
img_denormalize_fn=config.img_denormalize, n_images=15, another_engine=trainer, prefix_tag="training"
),
event_name=Events.ITERATION_COMPLETED(once=len(train_eval_loader) // 2),
)
trainer.run(train_loader, max_epochs=config.num_epochs)
if idist.get_rank() == 0:
tb_logger.close()
exp_tracking_logger.close()
def run(config, **kwargs):
"""This is the main method to run the training. As this training script is launched with `py_config_runner`
it should obligatory contain `run(config, **kwargs)` method.
"""
assert torch.cuda.is_available(), torch.cuda.is_available()
assert torch.backends.cudnn.enabled, "Nvidia/Amp requires cudnn backend to be enabled."
with idist.Parallel(backend="nccl") as parallel:
logger = setup_logger(name="ImageNet Training", distributed_rank=idist.get_rank())
assert_config(config, TRAINVAL_CONFIG)
# The following attributes are automatically added by py_config_runner
assert hasattr(config, "config_filepath") and isinstance(config.config_filepath, Path)
assert hasattr(config, "script_filepath") and isinstance(config.script_filepath, Path)
if idist.get_rank() == 0 and exp_tracking.has_clearml:
try:
from clearml import Task
except ImportError:
# Backwards-compatibility for legacy Trains SDK
from trains import Task
task = Task.init("ImageNet Training", config.config_filepath.stem)
task.connect_configuration(config.config_filepath.as_posix())
log_basic_info(logger, config)
config.output_path = Path(exp_tracking.get_output_path())
# dump python files to reproduce the run
exp_tracking.log_artifact(config.config_filepath.as_posix())
exp_tracking.log_artifact(config.script_filepath.as_posix())
exp_tracking.log_params(get_params(config, TRAINVAL_CONFIG))
try:
parallel.run(training, config, logger=logger)
except KeyboardInterrupt:
logger.info("Catched KeyboardInterrupt -> exit")
except Exception as e: # noqa
logger.exception("")
raise e
class DataflowBenchmark:
def __init__(self, num_iters=100, prepare_batch=None):
from ignite.handlers import Timer
device = idist.device()
def upload_to_gpu(engine, batch):
if prepare_batch is not None:
x, y = prepare_batch(batch, device=device, non_blocking=False)
self.num_iters = num_iters
self.benchmark_dataflow = Engine(upload_to_gpu)
@self.benchmark_dataflow.on(Events.ITERATION_COMPLETED(once=num_iters))
def stop_benchmark_dataflow(engine):
engine.terminate()
if idist.get_rank() == 0:
@self.benchmark_dataflow.on(Events.ITERATION_COMPLETED(every=num_iters // 100))
def show_progress_benchmark_dataflow(engine):
print(".", end=" ")
self.timer = Timer(average=False)
self.timer.attach(
self.benchmark_dataflow,
start=Events.EPOCH_STARTED,
resume=Events.ITERATION_STARTED,
pause=Events.ITERATION_COMPLETED,
step=Events.ITERATION_COMPLETED,
)
def attach(self, trainer, train_loader):
from torch.utils.data import DataLoader
@trainer.on(Events.STARTED)
def run_benchmark(_):
if idist.get_rank() == 0:
print("-" * 50)
print(" - Dataflow benchmark")
self.benchmark_dataflow.run(train_loader)
t = self.timer.value()
if idist.get_rank() == 0:
print(" ")
print(f" Total time ({self.num_iters} iterations) : {t:.5f} seconds")
print(f" time per iteration : {t / self.num_iters} seconds")
if isinstance(train_loader, DataLoader):
num_images = train_loader.batch_size * self.num_iters
print(f" number of images / s : {num_images / t}")
print("-" * 50)