-
-
Notifications
You must be signed in to change notification settings - Fork 644
/
Copy pathmnist_with_wandb_logger.py
157 lines (124 loc) · 5.36 KB
/
mnist_with_wandb_logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
"""
MNIST example with training and validation monitoring using Weights & Biases
Requirements:
Weights & Biases: `pip install wandb`
Usage:
Make sure you are logged into Weights & Biases (use the `wandb` command).
Run the example:
```bash
python mnist_with_wandb_logger.py
```
Go to https://wandb.com and explore your experiment.
"""
from argparse import ArgumentParser
import torch
import torch.nn.functional as F
from torch import nn
from torch.optim import SGD
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision.transforms import Compose, Normalize, ToTensor
from ignite.contrib.handlers.wandb_logger import WandBLogger, global_step_from_engine
from ignite.engine import Events, create_supervised_evaluator, create_supervised_trainer
from ignite.handlers import ModelCheckpoint
from ignite.metrics import Accuracy, Loss
from ignite.utils import setup_logger
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=-1)
def get_data_loaders(train_batch_size, val_batch_size):
data_transform = Compose([ToTensor(), Normalize((0.1307,), (0.3081,))])
train_loader = DataLoader(
MNIST(download=True, root=".", transform=data_transform, train=True), batch_size=train_batch_size, shuffle=True
)
val_loader = DataLoader(
MNIST(download=False, root=".", transform=data_transform, train=False), batch_size=val_batch_size, shuffle=False
)
return train_loader, val_loader
def run(train_batch_size, val_batch_size, epochs, lr, momentum):
train_loader, val_loader = get_data_loaders(train_batch_size, val_batch_size)
model = Net()
device = "cpu"
if torch.cuda.is_available():
device = "cuda"
model.to(device) # Move model before creating optimizer
optimizer = SGD(model.parameters(), lr=lr, momentum=momentum)
criterion = nn.CrossEntropyLoss()
trainer = create_supervised_trainer(model, optimizer, criterion, device=device)
trainer.logger = setup_logger("Trainer")
metrics = {"accuracy": Accuracy(), "loss": Loss(criterion)}
train_evaluator = create_supervised_evaluator(model, metrics=metrics, device=device)
train_evaluator.logger = setup_logger("Train Evaluator")
validation_evaluator = create_supervised_evaluator(model, metrics=metrics, device=device)
validation_evaluator.logger = setup_logger("Val Evaluator")
@trainer.on(Events.EPOCH_COMPLETED)
def compute_metrics(engine):
train_evaluator.run(train_loader)
validation_evaluator.run(val_loader)
wandb_logger = WandBLogger(
project="pytorch-ignite-integration",
name="ignite-mnist-example",
config={
"train_batch_size": train_batch_size,
"val_batch_size": val_batch_size,
"epochs": epochs,
"lr": lr,
"momentum": momentum,
},
)
wandb_logger.attach_output_handler(
trainer,
event_name=Events.ITERATION_COMPLETED(every=100),
tag="training",
output_transform=lambda loss: {"batchloss": loss},
)
for tag, evaluator in [("training", train_evaluator), ("validation", validation_evaluator)]:
wandb_logger.attach_output_handler(
evaluator,
event_name=Events.EPOCH_COMPLETED,
tag=tag,
metric_names=["loss", "accuracy"],
global_step_transform=lambda *_: trainer.state.iteration,
)
wandb_logger.attach_opt_params_handler(
trainer, event_name=Events.ITERATION_COMPLETED(every=100), optimizer=optimizer
)
wandb_logger.watch(model, log="all")
def score_function(engine):
return engine.state.metrics["accuracy"]
model_checkpoint = ModelCheckpoint(
wandb_logger.run.dir,
n_saved=2,
filename_prefix="best",
score_function=score_function,
score_name="validation_accuracy",
global_step_transform=global_step_from_engine(trainer),
)
validation_evaluator.add_event_handler(Events.COMPLETED, model_checkpoint, {"model": model})
# kick everything off
trainer.run(train_loader, max_epochs=epochs)
wandb_logger.close()
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--batch_size", type=int, default=64, help="input batch size for training (default: 64)")
parser.add_argument(
"--val_batch_size", type=int, default=1000, help="input batch size for validation (default: 1000)"
)
parser.add_argument("--epochs", type=int, default=10, help="number of epochs to train (default: 10)")
parser.add_argument("--lr", type=float, default=0.01, help="learning rate (default: 0.01)")
parser.add_argument("--momentum", type=float, default=0.5, help="SGD momentum (default: 0.5)")
args = parser.parse_args()
run(args.batch_size, args.val_batch_size, args.epochs, args.lr, args.momentum)