-
Notifications
You must be signed in to change notification settings - Fork 513
/
Copy pathtest_gradient.py
244 lines (224 loc) · 9.29 KB
/
test_gradient.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#!/usr/bin/env python3
from typing import List, Tuple
import torch
from captum._utils.gradient import (
apply_gradient_requirements,
compute_gradients,
compute_layer_gradients_and_eval,
undo_gradient_requirements,
)
from tests.helpers.basic import assertTensorAlmostEqual, BaseTest
from tests.helpers.basic_models import (
BasicModel,
BasicModel2,
BasicModel4_MultiArgs,
BasicModel5_MultiArgs,
BasicModel6_MultiTensor,
BasicModel_MultiLayer,
)
class Test(BaseTest):
def test_apply_gradient_reqs(self) -> None:
initial_grads = [False, True, False]
test_tensor = torch.tensor([[6.0]], requires_grad=True)
test_tensor.grad = torch.tensor([[7.0]])
test_tensor_tuple = (torch.tensor([[5.0]]), test_tensor, torch.tensor([[7.0]]))
out_mask = apply_gradient_requirements(test_tensor_tuple)
for i in range(len(test_tensor_tuple)):
self.assertTrue(test_tensor_tuple[i].requires_grad)
self.assertEqual(out_mask[i], initial_grads[i])
def test_undo_gradient_reqs(self) -> None:
initial_grads = [False, True, False]
test_tensor = torch.tensor([[6.0]], requires_grad=True)
test_tensor.grad = torch.tensor([[7.0]])
test_tensor_tuple = (
torch.tensor([[6.0]], requires_grad=True),
test_tensor,
torch.tensor([[7.0]], requires_grad=True),
)
undo_gradient_requirements(test_tensor_tuple, initial_grads)
for i in range(len(test_tensor_tuple)):
self.assertEqual(test_tensor_tuple[i].requires_grad, initial_grads[i])
def test_gradient_basic(self) -> None:
model = BasicModel()
input = torch.tensor([[5.0]], requires_grad=True)
input.grad = torch.tensor([[9.0]])
grads = compute_gradients(model, input)[0]
assertTensorAlmostEqual(self, grads, [[0.0]], delta=0.01, mode="max")
# Verify grad attribute is not altered
assertTensorAlmostEqual(self, input.grad, [[9.0]], delta=0.0, mode="max")
def test_gradient_basic_2(self) -> None:
model = BasicModel()
input = torch.tensor([[-3.0]], requires_grad=True)
input.grad = torch.tensor([[14.0]])
grads = compute_gradients(model, input)[0]
assertTensorAlmostEqual(self, grads, [[1.0]], delta=0.01, mode="max")
# Verify grad attribute is not altered
assertTensorAlmostEqual(self, input.grad, [[14.0]], delta=0.0, mode="max")
def test_gradient_multiinput(self) -> None:
model = BasicModel6_MultiTensor()
input1 = torch.tensor([[-3.0, -5.0]], requires_grad=True)
input2 = torch.tensor([[-5.0, 2.0]], requires_grad=True)
grads = compute_gradients(model, (input1, input2))
assertTensorAlmostEqual(self, grads[0], [[0.0, 1.0]], delta=0.01, mode="max")
assertTensorAlmostEqual(self, grads[1], [[0.0, 1.0]], delta=0.01, mode="max")
def test_gradient_additional_args(self) -> None:
model = BasicModel4_MultiArgs()
input1 = torch.tensor([[10.0]], requires_grad=True)
input2 = torch.tensor([[8.0]], requires_grad=True)
grads = compute_gradients(model, (input1, input2), additional_forward_args=(2,))
assertTensorAlmostEqual(self, grads[0], [[1.0]], delta=0.01, mode="max")
assertTensorAlmostEqual(self, grads[1], [[-0.5]], delta=0.01, mode="max")
def test_gradient_additional_args_2(self) -> None:
model = BasicModel5_MultiArgs()
input1 = torch.tensor([[-10.0]], requires_grad=True)
input2 = torch.tensor([[6.0]], requires_grad=True)
grads = compute_gradients(
model, (input1, input2), additional_forward_args=([3, -4],)
)
assertTensorAlmostEqual(self, grads[0], [[0.0]], delta=0.01, mode="max")
assertTensorAlmostEqual(self, grads[1], [[4.0]], delta=0.01, mode="max")
def test_gradient_target_int(self) -> None:
model = BasicModel2()
input1 = torch.tensor([[4.0, -1.0]], requires_grad=True)
input2 = torch.tensor([[2.0, 5.0]], requires_grad=True)
grads0 = compute_gradients(model, (input1, input2), target_ind=0)
grads1 = compute_gradients(model, (input1, input2), target_ind=1)
assertTensorAlmostEqual(self, grads0[0], [[1.0, 0.0]], delta=0.01, mode="max")
assertTensorAlmostEqual(self, grads0[1], [[-1.0, 0.0]], delta=0.01, mode="max")
assertTensorAlmostEqual(self, grads1[0], [[0.0, 0.0]], delta=0.01, mode="max")
assertTensorAlmostEqual(self, grads1[1], [[0.0, 0.0]], delta=0.01, mode="max")
def test_gradient_target_list(self) -> None:
model = BasicModel2()
input1 = torch.tensor([[4.0, -1.0], [3.0, 10.0]], requires_grad=True)
input2 = torch.tensor([[2.0, -5.0], [-2.0, 1.0]], requires_grad=True)
grads = compute_gradients(model, (input1, input2), target_ind=[0, 1])
assertTensorAlmostEqual(
self,
grads[0],
[[1.0, 0.0], [0.0, 1.0]],
delta=0.01,
mode="max",
)
assertTensorAlmostEqual(
self,
grads[1],
[[-1.0, 0.0], [0.0, -1.0]],
delta=0.01,
mode="max",
)
def test_gradient_target_tuple(self) -> None:
model = BasicModel()
input = torch.tensor(
[[[4.0, 2.0], [-1.0, -2.0]], [[3.0, -4.0], [10.0, 5.0]]], requires_grad=True
)
grads = compute_gradients(model, input, target_ind=(0, 1))[0]
assertTensorAlmostEqual(
self,
grads,
[[[0.0, 0.0], [0.0, 0.0]], [[0.0, 1.0], [0.0, 0.0]]],
delta=0.01,
mode="max",
)
def test_gradient_target_listtuple(self) -> None:
model = BasicModel()
input = torch.tensor(
[[[4.0, 2.0], [-1.0, -2.0]], [[3.0, -4.0], [10.0, 5.0]]], requires_grad=True
)
target: List[Tuple[int, ...]] = [(1, 1), (0, 1)]
grads = compute_gradients(model, input, target_ind=target)[0]
assertTensorAlmostEqual(
self,
grads,
[[[0.0, 0.0], [0.0, 1.0]], [[0.0, 1.0], [0.0, 0.0]]],
delta=0.01,
mode="max",
)
def test_gradient_inplace(self) -> None:
model = BasicModel_MultiLayer(inplace=True)
input = torch.tensor([[1.0, 6.0, -3.0]], requires_grad=True)
grads = compute_gradients(model, input, target_ind=0)[0]
assertTensorAlmostEqual(self, grads, [[3.0, 3.0, 3.0]], delta=0.01, mode="max")
def test_layer_gradient_linear0(self) -> None:
model = BasicModel_MultiLayer()
input = torch.tensor([[5.0, -11.0, 23.0]], requires_grad=True)
grads, eval = compute_layer_gradients_and_eval(
model, model.linear0, input, target_ind=0
)
assertTensorAlmostEqual(
self, grads[0], [[4.0, 4.0, 4.0]], delta=0.01, mode="max"
)
assertTensorAlmostEqual(
self,
eval[0],
[[5.0, -11.0, 23.0]],
delta=0.01,
mode="max",
)
def test_layer_gradient_linear1(self) -> None:
model = BasicModel_MultiLayer()
input = torch.tensor([[5.0, 2.0, 1.0]], requires_grad=True)
grads, eval = compute_layer_gradients_and_eval(
model, model.linear1, input, target_ind=1
)
assertTensorAlmostEqual(
self,
grads[0],
[[0.0, 1.0, 1.0, 1.0]],
delta=0.01,
mode="max",
)
assertTensorAlmostEqual(
self,
eval[0],
[[-2.0, 9.0, 9.0, 9.0]],
delta=0.01,
mode="max",
)
def test_layer_gradient_linear1_inplace(self) -> None:
model = BasicModel_MultiLayer(inplace=True)
input = torch.tensor([[5.0, 2.0, 1.0]], requires_grad=True)
grads, eval = compute_layer_gradients_and_eval(
model, model.linear1, input, target_ind=1
)
assertTensorAlmostEqual(
self,
grads[0],
[[0.0, 1.0, 1.0, 1.0]],
delta=0.01,
mode="max",
)
assertTensorAlmostEqual(
self,
eval[0],
[[-2.0, 9.0, 9.0, 9.0]],
delta=0.01,
mode="max",
)
def test_layer_gradient_relu_input_inplace(self) -> None:
model = BasicModel_MultiLayer(inplace=True)
input = torch.tensor([[5.0, 2.0, 1.0]], requires_grad=True)
grads, eval = compute_layer_gradients_and_eval(
model, model.relu, input, target_ind=1, attribute_to_layer_input=True
)
assertTensorAlmostEqual(
self,
grads[0],
[[0.0, 1.0, 1.0, 1.0]],
delta=0.01,
mode="max",
)
assertTensorAlmostEqual(
self,
eval[0],
[[-2.0, 9.0, 9.0, 9.0]],
delta=0.01,
mode="max",
)
def test_layer_gradient_output(self) -> None:
model = BasicModel_MultiLayer()
input = torch.tensor([[5.0, 2.0, 1.0]], requires_grad=True)
grads, eval = compute_layer_gradients_and_eval(
model, model.linear2, input, target_ind=1
)
assertTensorAlmostEqual(self, grads[0], [[0.0, 1.0]], delta=0.01, mode="max")
assertTensorAlmostEqual(self, eval[0], [[26.0, 28.0]], delta=0.01, mode="max")