|
53 | 53 |
|
54 | 54 | <!-- 这里可写通用的实现逻辑 -->
|
55 | 55 |
|
| 56 | +**方法一:动态规划** |
| 57 | + |
| 58 | +定义 $dp[i][0]$ 表示栅栏 $[0,..i]$ 且最后两个栅栏颜色不同的方案数,$dp[i][1]$ 表示栅栏 $[0,..i]$ 且最后两个栅栏颜色相同的方案数。 |
| 59 | + |
| 60 | +初始时 $dp[0][0]=k$。当 $i \ge 1$ 时,有: |
| 61 | + |
| 62 | +$$ |
| 63 | +\begin{cases} |
| 64 | +dp[i][0]=(dp[i-1][0]+dp[i-1]) \times (k-1)\\ |
| 65 | +dp[i][1]=dp[i-1][0] |
| 66 | +\end{cases} |
| 67 | +$$ |
| 68 | + |
| 69 | +答案为 $dp[n-1][0] + dp[n-1][1]$。 |
| 70 | + |
| 71 | +时间复杂度 $O(n)$,空间复杂度 $O(1)$。其中 $n$ 是栅栏柱的数量。 |
| 72 | + |
56 | 73 | <!-- tabs:start -->
|
57 | 74 |
|
58 | 75 | ### **Python3**
|
59 | 76 |
|
60 | 77 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
61 | 78 |
|
62 | 79 | ```python
|
63 |
| - |
| 80 | +class Solution: |
| 81 | + def numWays(self, n: int, k: int) -> int: |
| 82 | + dp = [[0] * 2 for _ in range(n)] |
| 83 | + dp[0][0] = k |
| 84 | + for i in range(1, n): |
| 85 | + dp[i][0] = (dp[i - 1][0] + dp[i - 1][1]) * (k - 1) |
| 86 | + dp[i][1] = dp[i - 1][0] |
| 87 | + return sum(dp[-1]) |
64 | 88 | ```
|
65 | 89 |
|
66 | 90 | ### **Java**
|
67 | 91 |
|
68 | 92 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
69 | 93 |
|
70 | 94 | ```java
|
| 95 | +class Solution { |
| 96 | + public int numWays(int n, int k) { |
| 97 | + int[][] dp = new int[n][2]; |
| 98 | + dp[0][0] = k; |
| 99 | + for (int i = 1; i < n; ++i) { |
| 100 | + dp[i][0] = (dp[i - 1][0] + dp[i - 1][1]) * (k - 1); |
| 101 | + dp[i][1] = dp[i - 1][0]; |
| 102 | + } |
| 103 | + return dp[n - 1][0] + dp[n - 1][1]; |
| 104 | + } |
| 105 | +} |
| 106 | +``` |
| 107 | + |
| 108 | +### **C++** |
| 109 | + |
| 110 | +```cpp |
| 111 | +class Solution { |
| 112 | +public: |
| 113 | + int numWays(int n, int k) { |
| 114 | + vector<vector<int>> dp(n, vector<int>(2)); |
| 115 | + dp[0][0] = k; |
| 116 | + for (int i = 1; i < n; ++i) { |
| 117 | + dp[i][0] = (dp[i - 1][0] + dp[i - 1][1]) * (k - 1); |
| 118 | + dp[i][1] = dp[i - 1][0]; |
| 119 | + } |
| 120 | + return dp[n - 1][0] + dp[n - 1][1]; |
| 121 | + } |
| 122 | +}; |
| 123 | +``` |
71 | 124 |
|
| 125 | +### **Go** |
| 126 | +
|
| 127 | +```go |
| 128 | +func numWays(n int, k int) int { |
| 129 | + dp := make([][]int, n) |
| 130 | + for i := range dp { |
| 131 | + dp[i] = make([]int, 2) |
| 132 | + } |
| 133 | + dp[0][0] = k |
| 134 | + for i := 1; i < n; i++ { |
| 135 | + dp[i][0] = (dp[i-1][0] + dp[i-1][1]) * (k - 1) |
| 136 | + dp[i][1] = dp[i-1][0] |
| 137 | + } |
| 138 | + return dp[n-1][0] + dp[n-1][1] |
| 139 | +} |
72 | 140 | ```
|
73 | 141 |
|
74 | 142 | ### **...**
|
|
0 commit comments