Skip to content

Commit ca24949

Browse files
xhluxhlulu
xhlu
authored and
xhlulu
committed
ML Docs: Remove 2 sections
Removed: * 3D scatter * Splom
1 parent 4b71430 commit ca24949

File tree

1 file changed

+16
-68
lines changed

1 file changed

+16
-68
lines changed

doc/python/ml-knn.md

+16-68
Original file line numberDiff line numberDiff line change
@@ -34,7 +34,20 @@ jupyter:
3434
thumbnail: thumbnail/knn-classification.png
3535
---
3636

37-
## Basic Binary Classification with `plotly.express`
37+
## Basic binary classification with kNN
38+
39+
40+
### Display training and test splits
41+
42+
```python
43+
44+
```
45+
46+
### Visualize predictions on test split
47+
48+
```python
49+
50+
```
3851

3952
```python
4053
import numpy as np
@@ -113,7 +126,7 @@ fig.add_trace(
113126
showscale=False,
114127
colorscale=['Blue', 'Red'],
115128
opacity=0.4,
116-
name='Confidence'
129+
name='Score'
117130
)
118131
)
119132
fig.show()
@@ -150,7 +163,7 @@ Z = Z.reshape(ll.shape)
150163
proba = clf.predict_proba(np.c_[ll.ravel(), ww.ravel()])
151164
proba = proba.reshape(ll.shape + (3,))
152165

153-
fig = px.scatter(df, x='sepal_length', y='sepal_width', color='species', width=1000, height=1000)
166+
fig = px.scatter(df, x='sepal_length', y='sepal_width', color='species')
154167
fig.update_traces(marker_size=10, marker_line_width=1)
155168
fig.add_trace(
156169
go.Heatmap(
@@ -173,77 +186,12 @@ fig.add_trace(
173186
fig.show()
174187
```
175188

176-
## 3D Classification with `px.scatter_3d`
177-
178-
```python
179-
import numpy as np
180-
import plotly.express as px
181-
import plotly.graph_objects as go
182-
from sklearn.neighbors import KNeighborsClassifier
183-
from sklearn.model_selection import train_test_split
184-
185-
df = px.data.iris()
186-
features = ["sepal_width", "sepal_length", "petal_width"]
187-
188-
X = df[features]
189-
y = df.species
190-
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
191-
192-
# Create classifier, run predictions on grid
193-
clf = KNeighborsClassifier(15, weights='distance')
194-
clf.fit(X_train, y_train)
195-
y_pred = clf.predict(X_test)
196-
y_score = clf.predict_proba(X_test)
197-
y_score = np.around(y_score.max(axis=1), 4)
198-
199-
fig = px.scatter_3d(
200-
X_test,
201-
x='sepal_length',
202-
y='sepal_width',
203-
z='petal_width',
204-
symbol=y_pred,
205-
color=y_score,
206-
labels={'symbol': 'prediction', 'color': 'score'}
207-
)
208-
fig.update_layout(legend=dict(x=0, y=0))
209-
fig.show()
210-
```
211-
212-
## High Dimension Visualization with `px.scatter_matrix`
213-
214-
If you need to visualize classifications that go beyond 3D, you can use the [scatter plot matrix](https://plot.ly/python/splom/).
215-
216-
```python
217-
import numpy as np
218-
import plotly.express as px
219-
import plotly.graph_objects as go
220-
from sklearn.neighbors import KNeighborsClassifier
221-
from sklearn.model_selection import train_test_split
222-
223-
df = px.data.iris()
224-
features = ["sepal_width", "sepal_length", "petal_width", "petal_length"]
225-
226-
X = df[features]
227-
y = df.species
228-
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
229-
230-
# Create classifier, run predictions on grid
231-
clf = KNeighborsClassifier(15, weights='distance')
232-
clf.fit(X_train, y_train)
233-
y_pred = clf.predict(X_test)
234-
235-
fig = px.scatter_matrix(X_test, dimensions=features, color=y_pred, labels={'color': 'prediction'})
236-
fig.show()
237-
```
238-
239189
### Reference
240190

241191
Learn more about `px`, `go.Contour`, and `go.Heatmap` here:
242192
* https://plot.ly/python/plotly-express/
243193
* https://plot.ly/python/heatmaps/
244194
* https://plot.ly/python/contour-plots/
245-
* https://plot.ly/python/3d-scatter-plots/
246-
* https://plot.ly/python/splom/
247195

248196
This tutorial was inspired by amazing examples from the official scikit-learn docs:
249197
* https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html

0 commit comments

Comments
 (0)