Skip to content

Latest commit

 

History

History
198 lines (157 loc) · 6.56 KB

px-arguments.md

File metadata and controls

198 lines (157 loc) · 6.56 KB
jupyter
jupytext kernelspec language_info plotly
notebook_metadata_filter text_representation
all
extension format_name format_version jupytext_version
.md
markdown
1.1
1.1.1
display_name language name
Python 3
python
python3
codemirror_mode file_extension mimetype name nbconvert_exporter pygments_lexer version
name version
ipython
3
.py
text/x-python
python
python
ipython3
3.6.8
description display_as language layout name order page_type permalink thumbnail
Arguments accepted by Plotly Express functions
file_settings
python
base
Plotly Express Arguments
18
u-guide
python/px-arguments/
thumbnail/plotly-express.png

Tidy Data

Plotly Express operates on "tidy" or "long" data rather than "wide" data. You may pass data in either as a Pandas DataFrame objects or as individual array-like objects which px will assemble into a data frame internally, such as lists, numpy arrays or Pandas Series objects.

What follows is a very short example of the difference between wide and tidy/long data, and the excellent Tidy Data in Python blog post contains much more information about the tidy approach to structuring data.

import pandas as pd
print("This is 'wide' data, unsuitable as-is for Plotly Express:")
wide_df = pd.DataFrame(dict(Month=["Jan", "Feb", "Mar"], London=[1,2,3], Paris=[3,1,2]))
wide_df
import pandas as pd
print("This is the same data in 'long' format, ready for Plotly Express:")
wide_df = pd.DataFrame(dict(Month=["Jan", "Feb", "Mar"], London=[1,2,3], Paris=[3,1,2]))
tidy_df = wide_df.melt(id_vars="Month")
import plotly.express as px
import pandas as pd

wide_df = pd.DataFrame(dict(Month=["Jan", "Feb", "Mar"], London=[1,2,3], Paris=[3,1,2]))
tidy_df = wide_df.melt(id_vars="Month")

fig = px.bar(tidy_df, x="Month", y="value", color="variable", barmode="group")
fig.show()

pandas DataFrame input data

px functions supports natively pandas DataFrame. Arguments can either be passed as dataframe columns, or as column names if the data_frame argument is provided.

Passing columns as arguments

import plotly.express as px
iris = px.data.iris()
# Use directly Columns as argument. You can use tab completion for this!
fig = px.scatter(iris, x=iris.sepal_length, y=iris.sepal_width, color=iris.species, size=iris.petal_length)
fig.show()

Passing name strings as arguments

import plotly.express as px
iris = px.data.iris()
# Use column names instead. This is the same chart as above.
fig = px.scatter(iris, x='sepal_length', y='sepal_width', color='species', size='petal_length')
fig.show()

Using the index of a DataFrame

In addition to columns, it is also possible to pass the index of a DataFrame as argument. In the example below the index is displayed in the hover data.

import plotly.express as px
iris = px.data.iris()
fig = px.scatter(iris, x=iris.sepal_length, y=iris.sepal_width, size=iris.petal_length,
                 hover_data=[iris.index])
fig.show()

Columns not in the data_frame argument

In the addition to columns from the data_frame argument, one may also pass columns from a different DataFrame, as long as all columns have the same length. It is also possible to pass columns without passing the data_frame argument.

However, column names are used only if they correspond to columns in the data_frame argument, in other cases, the name of the keyword argument is used. As explained below, the labels argument can be used to set names.

import plotly.express as px
import pandas as pd
df1 = pd.DataFrame(dict(time=[10, 20, 30], sales=[10, 8, 30]))
df2 = pd.DataFrame(dict(market=[4, 2, 5]))
fig = px.bar(df1, x=df1.time, y=df2.market, color=df1.sales)
fig.show()

Using labels to pass names

The labels argument can be used to override the names used for axis titles, legend entries and hovers.

import plotly.express as px
import pandas as pd

gapminder = px.data.gapminder()
gdp = gapminder['pop'] * gapminder['gdpPercap']
fig = px.bar(gapminder, x='year', y=gdp, color='continent', labels={'y':'gdp'},
             hover_data=['country'],
             title='Evolution of world GDP')
fig.show()

Using array-like arguments: NumPy arrays, lists...

px arguments can also be array-like objects such as lists, NumPy arrays.

import plotly.express as px

# List arguments
fig = px.line(x=[1, 2, 3, 4], y=[3, 5, 4, 8])
fig.show()
import numpy as np
import plotly.express as px

t = np.linspace(0, 10, 100)
# NumPy arrays arguments
fig = px.scatter(x=t, y=np.sin(t), labels={'x':'t', 'y':'sin(t)'}) # override keyword names with labels
fig.show()

Passing dictionaries or array-likes as the data_frame argument

The column-based argument data_frame can also be passed with a dict or array. Using a dictionary can be a convenient way to pass column names used in axis titles, legend entries and hovers without creating a pandas DataFrame.

import plotly.express as px
import numpy as np
N = 10000
np.random.seed(0)
fig = px.density_contour(dict(effect_size=5 + np.random.randn(N),
                              waiting_time=np.random.poisson(size=N)),
                         x="effect_size", y="waiting_time")
fig.show()

Integer column names

When the data_frame argument is a NumPy array, column names are integer corresponding to the columns of the array. In this case, keyword names are used in axis, legend and hovers. This is also the case for a pandas DataFrame with integer column names. Use the labels argument to override these names.

import numpy as np
import plotly.express as px

ar = np.arange(100).reshape((10, 10))
fig = px.scatter(ar, x=2, y=6, size=1, color=5)
fig.show()

Mixing dataframes and other types

It is possible to mix DataFrame columns, NumPy arrays and lists as arguments. Remember that the only column names to be used correspond to columns in the data_frame argument, use labels to override names displayed in axis titles, legend entries or hovers.

import plotly.express as px
import numpy as np
import pandas as pd

gapminder = px.data.gapminder()
gdp = np.log(gapminder['pop'] * gapminder['gdpPercap'])  # NumPy array
fig = px.bar(gapminder, x='year', y=gdp, color='continent', labels={'y':'log gdp'},
             hover_data=['country'],
             title='Evolution of world GDP')
fig.show()