jupyter | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Plotly Express is the easy-to-use, high-level interface to Plotly, which operates on "tidy" data and produces easy-to-style figures. Every Plotly Express function returns a graph_objects.Figure
object whose data
and layout
has been pre-populated according to the provided arguments.
Note: Plotly Express was previously its own separately-installed
plotly_express
package but is now part ofplotly
and importable viaimport plotly.express as px
.
This notebook demonstrates various plotly.express
features. Reference documentation is also available, as well as a tutorial on input argument types and one on how to style figures made with Plotly Express.
You can also read our original Medium announcement article for more information on this library.
import plotly.express as px
print(px.data.iris.__doc__)
px.data.iris().head()
Refer to the main scatter and line plot page for full documentation.
import plotly.express as px
df = px.data.iris()
fig = px.scatter(df, x="sepal_width", y="sepal_length")
fig.show()
import plotly.express as px
df = px.data.iris()
fig = px.scatter(df, x="sepal_width", y="sepal_length", color="species")
fig.show()
import plotly.express as px
df = px.data.iris()
fig = px.scatter(df, x="sepal_width", y="sepal_length", color="species", marginal_y="rug", marginal_x="histogram")
fig
import plotly.express as px
df = px.data.iris()
fig = px.scatter(df, x="sepal_width", y="sepal_length", color="species", marginal_y="violin",
marginal_x="box", trendline="ols")
fig.show()
import plotly.express as px
df = px.data.iris()
df["e"] = df["sepal_width"]/100
fig = px.scatter(df, x="sepal_width", y="sepal_length", color="species", error_x="e", error_y="e")
fig.show()
import plotly.express as px
df = px.data.tips()
fig = px.scatter(df, x="total_bill", y="tip", facet_row="time", facet_col="day", color="smoker", trendline="ols",
category_orders={"day": ["Thur", "Fri", "Sat", "Sun"], "time": ["Lunch", "Dinner"]})
fig.show()
import plotly.express as px
df = px.data.iris()
fig = px.scatter_matrix(df)
fig.show()
import plotly.express as px
df = px.data.iris()
fig = px.scatter_matrix(df, dimensions=["sepal_width", "sepal_length", "petal_width", "petal_length"], color="species")
fig.show()
import plotly.express as px
df = px.data.iris()
fig = px.parallel_coordinates(df, color="species_id", labels={"species_id": "Species",
"sepal_width": "Sepal Width", "sepal_length": "Sepal Length",
"petal_width": "Petal Width", "petal_length": "Petal Length", },
color_continuous_scale=px.colors.diverging.Tealrose, color_continuous_midpoint=2)
fig.show()
import plotly.express as px
df = px.data.tips()
fig = px.parallel_categories(df, color="size", color_continuous_scale=px.colors.sequential.Inferno)
fig.show()
import plotly.express as px
df = px.data.tips()
fig = px.scatter(df, x="total_bill", y="tip", color="size", facet_col="sex",
color_continuous_scale=px.colors.sequential.Viridis, render_mode="webgl")
fig.show()
import plotly.express as px
df = px.data.gapminder()
fig = px.scatter(df.query("year==2007"), x="gdpPercap", y="lifeExp", size="pop", color="continent",
hover_name="country", log_x=True, size_max=60)
fig.show()
import plotly.express as px
df = px.data.gapminder()
fig = px.scatter(df, x="gdpPercap", y="lifeExp", animation_frame="year", animation_group="country",
size="pop", color="continent", hover_name="country", facet_col="continent",
log_x=True, size_max=45, range_x=[100,100000], range_y=[25,90])
fig.show()
import plotly.express as px
df = px.data.gapminder()
fig = px.line(df, x="year", y="lifeExp", color="continent", line_group="country", hover_name="country",
line_shape="spline", render_mode="svg")
fig.show()
import plotly.express as px
df = px.data.gapminder()
fig = px.area(df, x="year", y="pop", color="continent", line_group="country")
fig.show()
Refer to the main statistical graphs page for full documentation.
import plotly.express as px
df = px.data.iris()
fig = px.density_contour(df, x="sepal_width", y="sepal_length")
fig.show()
import plotly.express as px
df = px.data.iris()
fig = px.density_contour(df, x="sepal_width", y="sepal_length", color="species", marginal_x="rug", marginal_y="histogram")
fig.show()
import plotly.express as px
df = px.data.iris()
fig = px.density_heatmap(df, x="sepal_width", y="sepal_length", marginal_x="rug", marginal_y="histogram")
fig.show()
import plotly.express as px
df = px.data.tips()
fig = px.bar(df, x="sex", y="total_bill", color="smoker", barmode="group")
fig.show()
import plotly.express as px
df = px.data.tips()
fig = px.bar(df, x="sex", y="total_bill", color="smoker", barmode="group", facet_row="time", facet_col="day",
category_orders={"day": ["Thur", "Fri", "Sat", "Sun"], "time": ["Lunch", "Dinner"]})
fig.show()
import plotly.express as px
df = px.data.tips()
fig = px.histogram(df, x="total_bill", y="tip", color="sex", marginal="rug", hover_data=df.columns)
fig.show()
import plotly.express as px
df = px.data.tips()
fig = px.histogram(df, x="sex", y="tip", histfunc="avg", color="smoker", barmode="group",
facet_row="time", facet_col="day", category_orders={"day": ["Thur", "Fri", "Sat", "Sun"],
"time": ["Lunch", "Dinner"]})
fig.show()
import plotly.express as px
df = px.data.tips()
fig = px.strip(df, x="total_bill", y="time", orientation="h", color="smoker")
fig.show()
import plotly.express as px
df = px.data.tips()
fig = px.box(df, x="day", y="total_bill", color="smoker", notched=True)
fig.show()
import plotly.express as px
df = px.data.tips()
fig = px.violin(df, y="tip", x="smoker", color="sex", box=True, points="all", hover_data=df.columns)
fig.show()
import plotly.express as px
df = px.data.election()
fig = px.scatter_ternary(df, a="Joly", b="Coderre", c="Bergeron", color="winner", size="total", hover_name="district",
size_max=15, color_discrete_map = {"Joly": "blue", "Bergeron": "green", "Coderre":"red"} )
fig.show()
import plotly.express as px
df = px.data.election()
fig = px.line_ternary(df, a="Joly", b="Coderre", c="Bergeron", color="winner", line_dash="winner")
fig.show()
import plotly.express as px
import numpy as np
img_rgb = np.array([[[255, 0, 0], [0, 255, 0], [0, 0, 255]],
[[0, 255, 0], [0, 0, 255], [255, 0, 0]]
], dtype=np.uint8)
fig = px.imshow(img_rgb)
fig.show()
import plotly.express as px
df = px.data.election()
fig = px.scatter_3d(df, x="Joly", y="Coderre", z="Bergeron", color="winner", size="total", hover_name="district",
symbol="result", color_discrete_map = {"Joly": "blue", "Bergeron": "green", "Coderre":"red"})
fig.show()
import plotly.express as px
df = px.data.election()
fig = px.line_3d(df, x="Joly", y="Coderre", z="Bergeron", color="winner", line_dash="winner")
fig.show()
import plotly.express as px
df = px.data.wind()
fig = px.scatter_polar(df, r="frequency", theta="direction", color="strength", symbol="strength",
color_discrete_sequence=px.colors.sequential.Plasma_r)
fig.show()
import plotly.express as px
df = px.data.wind()
fig = px.line_polar(df, r="frequency", theta="direction", color="strength", line_close=True,
color_discrete_sequence=px.colors.sequential.Plasma_r)
fig.show()
import plotly.express as px
df = px.data.wind()
fig = px.bar_polar(df, r="frequency", theta="direction", color="strength", template="plotly_dark",
color_discrete_sequence= px.colors.sequential.Plasma_r)
fig.show()
import plotly.express as px
px.set_mapbox_access_token(open(".mapbox_token").read())
df = px.data.carshare()
fig = px.scatter_mapbox(df, lat="centroid_lat", lon="centroid_lon", color="peak_hour", size="car_hours",
color_continuous_scale=px.colors.cyclical.IceFire, size_max=15, zoom=10)
fig.show()
import plotly.express as px
px.set_mapbox_access_token(open(".mapbox_token").read())
df = px.data.carshare()
fig = px.line_mapbox(df, lat="centroid_lat", lon="centroid_lon", color="peak_hour")
fig.show()
import plotly.express as px
df = px.data.gapminder()
fig = px.scatter_geo(df, locations="iso_alpha", color="continent", hover_name="country", size="pop",
animation_frame="year", projection="natural earth")
fig.show()
import plotly.express as px
df = px.data.gapminder()
fig = px.line_geo(df.query("year==2007"), locations="iso_alpha", color="continent", projection="orthographic")
fig.show()
import plotly.express as px
df = px.data.gapminder()
fig = px.choropleth(df, locations="iso_alpha", color="lifeExp", hover_name="country", animation_frame="year", range_color=[20,80])
fig.show()