@@ -89,35 +89,30 @@ eqs = [D(x) ~ σ′*(y-x),
89
89
D (z) ~ x* y - β* z]
90
90
de = ODESystem (eqs)
91
91
test_diffeq_inference (" global iv-varying" , de, t, (x, y, z), (σ′, ρ, β))
92
- @test begin
93
- f = eval (generate_function (de, [x,y,z], [σ′,ρ,β])[2 ])
94
- du = [0.0 ,0.0 ,0.0 ]
95
- f (du, [1.0 ,2.0 ,3.0 ], [x-> x+ 7 ,2 ,3 ], 5.0 )
96
- du ≈ [11 , - 3 , - 7 ]
97
- end
92
+
93
+ f = eval (generate_function (de, [x,y,z], [σ′,ρ,β])[2 ])
94
+ du = [0.0 ,0.0 ,0.0 ]
95
+ f (du, [1.0 ,2.0 ,3.0 ], [x-> x+ 7 ,2 ,3 ], 5.0 )
96
+ @test du ≈ [11 , - 3 , - 7 ]
98
97
99
98
@parameters σ (.. )
100
99
eqs = [D (x) ~ σ (t- 1 )* (y- x),
101
100
D (y) ~ x* (ρ- z)- y,
102
101
D (z) ~ x* y - β* z]
103
102
de = ODESystem (eqs)
104
103
test_diffeq_inference (" single internal iv-varying" , de, t, (x, y, z), (σ (t- 1 ), ρ, β))
105
- @test begin
106
- f = eval (generate_function (de, [x,y,z], [σ,ρ,β])[2 ])
107
- du = [0.0 ,0.0 ,0.0 ]
108
- f (du, [1.0 ,2.0 ,3.0 ], [x-> x+ 7 ,2 ,3 ], 5.0 )
109
- du ≈ [11 , - 3 , - 7 ]
110
- end
104
+ f = eval (generate_function (de, [x,y,z], [σ,ρ,β])[2 ])
105
+ du = [0.0 ,0.0 ,0.0 ]
106
+ f (du, [1.0 ,2.0 ,3.0 ], [x-> x+ 7 ,2 ,3 ], 5.0 )
107
+ @test du ≈ [11 , - 3 , - 7 ]
111
108
112
109
eqs = [D (x) ~ x + 10 σ (t- 1 ) + 100 σ (t- 2 ) + 1000 σ (t^ 2 )]
113
110
de = ODESystem (eqs)
114
111
test_diffeq_inference (" many internal iv-varying" , de, t, (x,), (σ (t- 2 ),σ (t^ 2 ), σ (t- 1 )))
115
- @test begin
116
- f = eval (generate_function (de, [x], [σ])[2 ])
117
- du = [0.0 ]
118
- f (du, [1.0 ], [t -> t + 2 ], 5.0 )
119
- du ≈ [27561 ]
120
- end
112
+ f = eval (generate_function (de, [x], [σ])[2 ])
113
+ du = [0.0 ]
114
+ f (du, [1.0 ], [t -> t + 2 ], 5.0 )
115
+ @test du ≈ [27561 ]
121
116
122
117
# Conversion to first-order ODEs #17
123
118
D3 = Differential (t)^ 3
0 commit comments