forked from SciML/ModelingToolkit.jl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnonlinearsystem.jl
234 lines (198 loc) · 6.71 KB
/
nonlinearsystem.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
using ModelingToolkit, StaticArrays, LinearAlgebra
using ModelingToolkit: get_metadata
using DiffEqBase, SparseArrays
using Test
using NonlinearSolve
using ModelingToolkit: value
canonequal(a, b) = isequal(simplify(a), simplify(b))
# Define some variables
@parameters t σ ρ β
@constants h = 1
@variables x y z
function test_nlsys_inference(name, sys, vs, ps)
@testset "NonlinearSystem construction: $name" begin
@test Set(states(sys)) == Set(value.(vs))
@test Set(parameters(sys)) == Set(value.(ps))
end
end
# Define a nonlinear system
eqs = [0 ~ σ * (y - x) * h,
0 ~ x * (ρ - z) - y,
0 ~ x * y - β * z]
@named ns = NonlinearSystem(eqs, [x, y, z], [σ, ρ, β], defaults = Dict(x => 2))
@test eval(toexpr(ns)) == ns
test_nlsys_inference("standard", ns, (x, y, z), (σ, ρ, β))
@test begin
f = eval(generate_function(ns, [x, y, z], [σ, ρ, β])[2])
du = [0.0, 0.0, 0.0]
f(du, [1, 2, 3], [1, 2, 3])
du ≈ [1, -3, -7]
end
# Now nonlinear system with only variables
@variables x y z
@parameters σ ρ β
# Define a nonlinear system
eqs = [0 ~ σ * (y - x),
y ~ x * (ρ - z),
β * z ~ x * y]
@named ns = NonlinearSystem(eqs, [x, y, z], [σ, ρ, β])
jac = calculate_jacobian(ns)
@testset "nlsys jacobian" begin
@test canonequal(jac[1, 1], σ * -1)
@test canonequal(jac[1, 2], σ)
@test canonequal(jac[1, 3], 0)
@test canonequal(jac[2, 1], ρ - z)
@test canonequal(jac[2, 2], -1)
@test canonequal(jac[2, 3], x * -1)
@test canonequal(jac[3, 1], y)
@test canonequal(jac[3, 2], x)
@test canonequal(jac[3, 3], -1 * β)
end
nlsys_func = generate_function(ns, [x, y, z], [σ, ρ, β])
jac_func = generate_jacobian(ns)
f = @eval eval(nlsys_func)
# Intermediate calculations
a = y - x
# Define a nonlinear system
eqs = [0 ~ σ * a * h,
0 ~ x * (ρ - z) - y,
0 ~ x * y - β * z]
@named ns = NonlinearSystem(eqs, [x, y, z], [σ, ρ, β])
nlsys_func = generate_function(ns, [x, y, z], [σ, ρ, β])
nf = NonlinearFunction(ns)
jac = calculate_jacobian(ns)
@test ModelingToolkit.jacobian_sparsity(ns).colptr == sparse(jac).colptr
@test ModelingToolkit.jacobian_sparsity(ns).rowval == sparse(jac).rowval
jac = generate_jacobian(ns)
sH = calculate_hessian(ns)
@test getfield.(ModelingToolkit.hessian_sparsity(ns), :colptr) ==
getfield.(sparse.(sH), :colptr)
@test getfield.(ModelingToolkit.hessian_sparsity(ns), :rowval) ==
getfield.(sparse.(sH), :rowval)
prob = NonlinearProblem(ns, ones(3), ones(3))
@test prob.f.sys === ns
sol = solve(prob, NewtonRaphson())
@test sol.u[1] ≈ sol.u[2]
@test_throws ArgumentError NonlinearProblem(ns, ones(4), ones(3))
@variables u F s a
eqs1 = [
0 ~ σ * (y - x) * h + F,
0 ~ x * (ρ - z) - u,
0 ~ x * y - β * z,
0 ~ x + y - z - u,
]
lorenz = name -> NonlinearSystem(eqs1, [x, y, z, u, F], [σ, ρ, β], name = name)
lorenz1 = lorenz(:lorenz1)
@test_throws ArgumentError NonlinearProblem(lorenz1, zeros(5))
lorenz2 = lorenz(:lorenz2)
@named connected = NonlinearSystem([s ~ a + lorenz1.x
lorenz2.y ~ s * h
lorenz1.F ~ lorenz2.u
lorenz2.F ~ lorenz1.u], [s, a], [],
systems = [lorenz1, lorenz2])
@test_nowarn alias_elimination(connected)
# system promotion
using OrdinaryDiffEq
@variables t
D = Differential(t)
@named subsys = convert_system(ODESystem, lorenz1, t)
@named sys = ODESystem([D(subsys.x) ~ subsys.x + subsys.x], t, systems = [subsys])
sys = structural_simplify(sys)
u0 = [subsys.x => 1, subsys.z => 2.0, subsys.y => 1.0]
prob = ODEProblem(sys, u0, (0, 1.0), [subsys.σ => 1, subsys.ρ => 2, subsys.β => 3])
sol = solve(prob, FBDF(), reltol = 1e-7, abstol = 1e-7)
@test sol[subsys.x] + sol[subsys.y] - sol[subsys.z]≈sol[subsys.u] atol=1e-7
@test_throws ArgumentError convert_system(ODESystem, sys, t)
@parameters t σ ρ β
@variables x y z
# Define a nonlinear system
eqs = [0 ~ σ * (y - x),
0 ~ x * (ρ - z) - y,
0 ~ x * y - β * z * h]
@named ns = NonlinearSystem(eqs, [x, y, z], [σ, ρ, β])
np = NonlinearProblem(ns, [0, 0, 0], [1, 2, 3], jac = true, sparse = true)
@test calculate_jacobian(ns, sparse = true) isa SparseMatrixCSC
# issue #819
@testset "Combined system name collisions" begin
function makesys(name)
@parameters a
@variables x f
NonlinearSystem([0 ~ -a * x + f], [x, f], [a]; name)
end
function issue819()
sys1 = makesys(:sys1)
sys2 = makesys(:sys1)
@test_throws ArgumentError NonlinearSystem([sys2.f ~ sys1.x, sys1.f ~ 0], [], [],
systems = [sys1, sys2], name = :foo)
end
issue819()
end
# issue #1115
@testset "Extending a NonlinearSystem with no iv" begin
@parameters a b
@variables x y
eqs1 = [
0 ~ a * x,
]
eqs2 = [
0 ~ b * y,
]
@named sys1 = NonlinearSystem(eqs1, [x], [a])
@named sys2 = NonlinearSystem(eqs2, [y], [b])
@named sys3 = extend(sys1, sys2)
@test isequal(union(Set(parameters(sys1)), Set(parameters(sys2))),
Set(parameters(sys3)))
@test isequal(union(Set(states(sys1)), Set(states(sys2))), Set(states(sys3)))
@test isequal(union(Set(equations(sys1)), Set(equations(sys2))), Set(equations(sys3)))
end
# observed variable handling
@variables t x(t) RHS(t)
@parameters τ
@named fol = NonlinearSystem([0 ~ (1 - x * h) / τ], [x], [τ];
observed = [RHS ~ (1 - x) / τ])
@test isequal(RHS, @nonamespace fol.RHS)
RHS2 = RHS
@unpack RHS = fol
@test isequal(RHS, RHS2)
# issue #1358
@variables t
@variables v1(t) v2(t) i1(t) i2(t)
eq = [v1 ~ sin(2pi * t * h)
v1 - v2 ~ i1
v2 ~ i2
i1 ~ i2]
@named sys = ODESystem(eq)
@test length(equations(structural_simplify(sys))) == 0
@testset "Issue: 1504" begin
@variables u[1:4]
eqs = [u[1] ~ 1,
u[2] ~ 1,
u[3] ~ 1,
u[4] ~ h]
sys = NonlinearSystem(eqs, collect(u[1:4]), Num[], defaults = Dict([]), name = :test)
prob = NonlinearProblem(sys, ones(length(states(sys))))
sol = NonlinearSolve.solve(prob, NewtonRaphson())
@test sol[u] ≈ ones(4)
end
@variables x(t)
@parameters a
eqs = [0 ~ a * x]
testdict = Dict([:test => 1])
@named sys = NonlinearSystem(eqs, [x], [a], metadata = testdict)
@test get_metadata(sys) == testdict
@testset "Remake" begin
@parameters a=1.0 b=1.0 c=1.0
@constants h = 1
@variables x y z
eqs = [0 ~ a * (y - x) * h,
0 ~ x * (b - z) - y,
0 ~ x * y - c * z]
@named sys = NonlinearSystem(eqs, [x, y, z], [a, b, c], defaults = Dict(x => 2.0))
prob = NonlinearProblem(sys, ones(length(states(sys))))
prob_ = remake(prob, u0 = [1.0, 2.0, 3.0], p = [1.1, 1.2, 1.3])
@test prob_.u0 == [1.0, 2.0, 3.0]
@test prob_.p == [1.1, 1.2, 1.3]
prob_ = remake(prob, u0 = Dict(y => 2.0), p = Dict(a => 2.0))
@test prob_.u0 == [1.0, 2.0, 1.0]
@test prob_.p == [2.0, 1.0, 1.0]
end