forked from SciML/ModelingToolkit.jl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjacobiansparsity.jl
83 lines (70 loc) · 3.04 KB
/
jacobiansparsity.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
using OrdinaryDiffEq, ModelingToolkit, Test, SparseArrays
N = 3
xyd_brusselator = range(0, stop = 1, length = N)
brusselator_f(x, y, t) = (((x - 0.3)^2 + (y - 0.6)^2) <= 0.1^2) * (t >= 1.1) * 5.0
limit(a, N) = ModelingToolkit.ifelse(a == N + 1, 1, ModelingToolkit.ifelse(a == 0, N, a))
function brusselator_2d_loop(du, u, p, t)
A, B, alpha, dx = p
alpha = alpha / dx^2
@inbounds for I in CartesianIndices((N, N))
i, j = Tuple(I)
x, y = xyd_brusselator[I[1]], xyd_brusselator[I[2]]
ip1, im1, jp1, jm1 = limit(i + 1, N), limit(i - 1, N), limit(j + 1, N),
limit(j - 1, N)
du[i, j, 1] = alpha * (u[im1, j, 1] + u[ip1, j, 1] + u[i, jp1, 1] + u[i, jm1, 1] -
4u[i, j, 1]) +
B + u[i, j, 1]^2 * u[i, j, 2] - (A + 1) * u[i, j, 1] +
brusselator_f(x, y, t)
du[i, j, 2] = alpha * (u[im1, j, 2] + u[ip1, j, 2] + u[i, jp1, 2] + u[i, jm1, 2] -
4u[i, j, 2]) +
A * u[i, j, 1] - u[i, j, 1]^2 * u[i, j, 2]
end
end
# Test with tuple parameters
p = (3.4, 1.0, 10.0, step(xyd_brusselator))
function init_brusselator_2d(xyd)
N = length(xyd)
u = zeros(N, N, 2)
for I in CartesianIndices((N, N))
x = xyd[I[1]]
y = xyd[I[2]]
u[I, 1] = 22 * (y * (1 - y))^(3 / 2)
u[I, 2] = 27 * (x * (1 - x))^(3 / 2)
end
u
end
u0 = init_brusselator_2d(xyd_brusselator)
prob_ode_brusselator_2d = ODEProblem(brusselator_2d_loop,
u0, (0.0, 11.5), p)
sys = modelingtoolkitize(prob_ode_brusselator_2d)
# test sparse jacobian pattern only.
prob = ODEProblem(sys, u0, (0, 11.5), sparse = true, jac = false)
JP = prob.f.jac_prototype
@test findnz(Symbolics.jacobian_sparsity(map(x -> x.rhs, equations(sys)), states(sys)))[1:2] ==
findnz(JP)[1:2]
# test sparse jacobian
prob = ODEProblem(sys, u0, (0, 11.5), sparse = true, jac = true)
@test_nowarn solve(prob, Rosenbrock23())
@test findnz(calculate_jacobian(sys, sparse = true))[1:2] ==
findnz(prob.f.jac_prototype)[1:2]
# test when not sparse
prob = ODEProblem(sys, u0, (0, 11.5), sparse = false, jac = true)
@test prob.f.jac_prototype == nothing
prob = ODEProblem(sys, u0, (0, 11.5), sparse = false, jac = false)
@test prob.f.jac_prototype == nothing
# test when u0 is nothing
f = DiffEqBase.ODEFunction(sys, u0 = nothing, sparse = true, jac = true)
@test findnz(f.jac_prototype)[1:2] == findnz(JP)[1:2]
@test eltype(f.jac_prototype) == Float64
f = DiffEqBase.ODEFunction(sys, u0 = nothing, sparse = true, jac = false)
@test findnz(f.jac_prototype)[1:2] == findnz(JP)[1:2]
@test eltype(f.jac_prototype) == Float64
# test when u0 is not Float64
u0 = similar(init_brusselator_2d(xyd_brusselator), Float32)
prob_ode_brusselator_2d = ODEProblem(brusselator_2d_loop,
u0, (0.0, 11.5), p)
sys = modelingtoolkitize(prob_ode_brusselator_2d)
prob = ODEProblem(sys, u0, (0, 11.5), sparse = true, jac = false)
@test eltype(prob.f.jac_prototype) == Float32
prob = ODEProblem(sys, u0, (0, 11.5), sparse = true, jac = true)
@test eltype(prob.f.jac_prototype) == Float32