diff --git a/environment.yml b/environment.yml index f54bf41c14c75..ebf22bbf067a6 100644 --- a/environment.yml +++ b/environment.yml @@ -3,7 +3,7 @@ channels: - conda-forge dependencies: # required - - numpy>=1.16.5, <1.20 # gh-39513 + - numpy>=1.16.5 - python=3 - python-dateutil>=2.7.3 - pytz diff --git a/pandas/compat/numpy/__init__.py b/pandas/compat/numpy/__init__.py index 1d8077da76469..e551f05efa31b 100644 --- a/pandas/compat/numpy/__init__.py +++ b/pandas/compat/numpy/__init__.py @@ -43,7 +43,9 @@ def np_datetime64_compat(s, *args, **kwargs): warning, when need to pass '2015-01-01 09:00:00' """ s = tz_replacer(s) - return np.datetime64(s, *args, **kwargs) + # error: No overload variant of "datetime64" matches argument types "Any", + # "Tuple[Any, ...]", "Dict[str, Any]" + return np.datetime64(s, *args, **kwargs) # type: ignore[call-overload] def np_array_datetime64_compat(arr, *args, **kwargs): diff --git a/pandas/core/aggregation.py b/pandas/core/aggregation.py index 0a4e03fa97402..a8a761b5f4aac 100644 --- a/pandas/core/aggregation.py +++ b/pandas/core/aggregation.py @@ -181,7 +181,9 @@ def normalize_keyword_aggregation(kwargs: dict) -> Tuple[dict, List[str], List[i # get the new index of columns by comparison col_idx_order = Index(uniquified_aggspec).get_indexer(uniquified_order) - return aggspec, columns, col_idx_order + # error: Incompatible return value type (got "Tuple[defaultdict[Any, Any], + # Any, ndarray]", expected "Tuple[Dict[Any, Any], List[str], List[int]]") + return aggspec, columns, col_idx_order # type: ignore[return-value] def _make_unique_kwarg_list( diff --git a/pandas/core/algorithms.py b/pandas/core/algorithms.py index 04eef635dc79b..57e57f48fdfe5 100644 --- a/pandas/core/algorithms.py +++ b/pandas/core/algorithms.py @@ -157,7 +157,10 @@ def _ensure_data(values: ArrayLike) -> Tuple[np.ndarray, DtypeObj]: with catch_warnings(): simplefilter("ignore", np.ComplexWarning) values = ensure_float64(values) - return values, np.dtype("float64") + # error: Incompatible return value type (got "Tuple[ExtensionArray, + # dtype[floating[_64Bit]]]", expected "Tuple[ndarray, Union[dtype[Any], + # ExtensionDtype]]") + return values, np.dtype("float64") # type: ignore[return-value] except (TypeError, ValueError, OverflowError): # if we are trying to coerce to a dtype @@ -173,7 +176,9 @@ def _ensure_data(values: ArrayLike) -> Tuple[np.ndarray, DtypeObj]: elif is_timedelta64_dtype(values.dtype): from pandas import TimedeltaIndex - values = TimedeltaIndex(values)._data + # error: Incompatible types in assignment (expression has type + # "TimedeltaArray", variable has type "ndarray") + values = TimedeltaIndex(values)._data # type: ignore[assignment] else: # Datetime if values.ndim > 1 and is_datetime64_ns_dtype(values.dtype): @@ -182,27 +187,45 @@ def _ensure_data(values: ArrayLike) -> Tuple[np.ndarray, DtypeObj]: # TODO(EA2D): special case not needed with 2D EAs asi8 = values.view("i8") dtype = values.dtype - return asi8, dtype + # error: Incompatible return value type (got "Tuple[Any, + # Union[dtype, ExtensionDtype, None]]", expected + # "Tuple[ndarray, Union[dtype, ExtensionDtype]]") + return asi8, dtype # type: ignore[return-value] from pandas import DatetimeIndex - values = DatetimeIndex(values)._data + # Incompatible types in assignment (expression has type "DatetimeArray", + # variable has type "ndarray") + values = DatetimeIndex(values)._data # type: ignore[assignment] dtype = values.dtype - return values.asi8, dtype + # error: Item "ndarray" of "Union[PeriodArray, Any, ndarray]" has no attribute + # "asi8" + return values.asi8, dtype # type: ignore[union-attr] elif is_categorical_dtype(values.dtype): - values = cast("Categorical", values) - values = values.codes + # error: Incompatible types in assignment (expression has type "Categorical", + # variable has type "ndarray") + values = cast("Categorical", values) # type: ignore[assignment] + # error: Incompatible types in assignment (expression has type "ndarray", + # variable has type "ExtensionArray") + # error: Item "ndarray" of "Union[Any, ndarray]" has no attribute "codes" + values = values.codes # type: ignore[assignment,union-attr] dtype = pandas_dtype("category") # we are actually coercing to int64 # until our algos support int* directly (not all do) values = ensure_int64(values) - return values, dtype + # error: Incompatible return value type (got "Tuple[ExtensionArray, + # Union[dtype[Any], ExtensionDtype]]", expected "Tuple[ndarray, + # Union[dtype[Any], ExtensionDtype]]") + return values, dtype # type: ignore[return-value] # we have failed, return object - values = np.asarray(values, dtype=object) + + # error: Incompatible types in assignment (expression has type "ndarray", variable + # has type "ExtensionArray") + values = np.asarray(values, dtype=object) # type: ignore[assignment] return ensure_object(values), np.dtype("object") @@ -227,24 +250,40 @@ def _reconstruct_data( return values if is_extension_array_dtype(dtype): - cls = dtype.construct_array_type() + # error: Item "dtype[Any]" of "Union[dtype[Any], ExtensionDtype]" has no + # attribute "construct_array_type" + cls = dtype.construct_array_type() # type: ignore[union-attr] if isinstance(values, cls) and values.dtype == dtype: return values values = cls._from_sequence(values) elif is_bool_dtype(dtype): - values = values.astype(dtype, copy=False) + # error: Argument 1 to "astype" of "_ArrayOrScalarCommon" has + # incompatible type "Union[dtype, ExtensionDtype]"; expected + # "Union[dtype, None, type, _SupportsDtype, str, Tuple[Any, int], + # Tuple[Any, Union[int, Sequence[int]]], List[Any], _DtypeDict, + # Tuple[Any, Any]]" + values = values.astype(dtype, copy=False) # type: ignore[arg-type] # we only support object dtypes bool Index if isinstance(original, ABCIndex): values = values.astype(object, copy=False) elif dtype is not None: if is_datetime64_dtype(dtype): - dtype = "datetime64[ns]" + # error: Incompatible types in assignment (expression has type + # "str", variable has type "Union[dtype, ExtensionDtype]") + dtype = "datetime64[ns]" # type: ignore[assignment] elif is_timedelta64_dtype(dtype): - dtype = "timedelta64[ns]" + # error: Incompatible types in assignment (expression has type + # "str", variable has type "Union[dtype, ExtensionDtype]") + dtype = "timedelta64[ns]" # type: ignore[assignment] - values = values.astype(dtype, copy=False) + # error: Argument 1 to "astype" of "_ArrayOrScalarCommon" has + # incompatible type "Union[dtype, ExtensionDtype]"; expected + # "Union[dtype, None, type, _SupportsDtype, str, Tuple[Any, int], + # Tuple[Any, Union[int, Sequence[int]]], List[Any], _DtypeDict, + # Tuple[Any, Any]]" + values = values.astype(dtype, copy=False) # type: ignore[arg-type] return values @@ -296,14 +335,18 @@ def _get_values_for_rank(values: ArrayLike): if is_categorical_dtype(values): values = cast("Categorical", values)._values_for_rank() - values, _ = _ensure_data(values) + # error: Incompatible types in assignment (expression has type "ndarray", variable + # has type "ExtensionArray") + values, _ = _ensure_data(values) # type: ignore[assignment] return values def get_data_algo(values: ArrayLike): values = _get_values_for_rank(values) - ndtype = _check_object_for_strings(values) + # error: Argument 1 to "_check_object_for_strings" has incompatible type + # "ExtensionArray"; expected "ndarray" + ndtype = _check_object_for_strings(values) # type: ignore[arg-type] htable = _hashtables.get(ndtype, _hashtables["object"]) return htable, values @@ -460,17 +503,46 @@ def isin(comps: AnyArrayLike, values: AnyArrayLike) -> np.ndarray: ) if not isinstance(values, (ABCIndex, ABCSeries, ABCExtensionArray, np.ndarray)): - values = _ensure_arraylike(list(values)) + # error: Incompatible types in assignment (expression has type "ExtensionArray", + # variable has type "Index") + # error: Incompatible types in assignment (expression has type "ExtensionArray", + # variable has type "Series") + # error: Incompatible types in assignment (expression has type "ExtensionArray", + # variable has type "ndarray") + values = _ensure_arraylike(list(values)) # type: ignore[assignment] elif isinstance(values, ABCMultiIndex): # Avoid raising in extract_array - values = np.array(values) - else: - values = extract_array(values, extract_numpy=True) - comps = _ensure_arraylike(comps) - comps = extract_array(comps, extract_numpy=True) + # error: Incompatible types in assignment (expression has type "ndarray", + # variable has type "ExtensionArray") + # error: Incompatible types in assignment (expression has type "ndarray", + # variable has type "Index") + # error: Incompatible types in assignment (expression has type "ndarray", + # variable has type "Series") + values = np.array(values) # type: ignore[assignment] + else: + # error: Incompatible types in assignment (expression has type "Union[Any, + # ExtensionArray]", variable has type "Index") + # error: Incompatible types in assignment (expression has type "Union[Any, + # ExtensionArray]", variable has type "Series") + values = extract_array(values, extract_numpy=True) # type: ignore[assignment] + + # error: Incompatible types in assignment (expression has type "ExtensionArray", + # variable has type "Index") + # error: Incompatible types in assignment (expression has type "ExtensionArray", + # variable has type "Series") + # error: Incompatible types in assignment (expression has type "ExtensionArray", + # variable has type "ndarray") + comps = _ensure_arraylike(comps) # type: ignore[assignment] + # error: Incompatible types in assignment (expression has type "Union[Any, + # ExtensionArray]", variable has type "Index") + # error: Incompatible types in assignment (expression has type "Union[Any, + # ExtensionArray]", variable has type "Series") + comps = extract_array(comps, extract_numpy=True) # type: ignore[assignment] if is_extension_array_dtype(comps.dtype): - return comps.isin(values) + # error: Incompatible return value type (got "Series", expected "ndarray") + # error: Item "ndarray" of "Union[Any, ndarray]" has no attribute "isin" + return comps.isin(values) # type: ignore[return-value,union-attr] elif needs_i8_conversion(comps.dtype): # Dispatch to DatetimeLikeArrayMixin.isin @@ -501,7 +573,19 @@ def f(c, v): f = np.in1d else: - common = np.find_common_type([values.dtype, comps.dtype], []) + # error: List item 0 has incompatible type "Union[Any, dtype[Any], + # ExtensionDtype]"; expected "Union[dtype[Any], None, type, _SupportsDType, str, + # Tuple[Any, Union[int, Sequence[int]]], List[Any], _DTypeDict, Tuple[Any, + # Any]]" + # error: List item 1 has incompatible type "Union[Any, ExtensionDtype]"; + # expected "Union[dtype[Any], None, type, _SupportsDType, str, Tuple[Any, + # Union[int, Sequence[int]]], List[Any], _DTypeDict, Tuple[Any, Any]]" + # error: List item 1 has incompatible type "Union[dtype[Any], ExtensionDtype]"; + # expected "Union[dtype[Any], None, type, _SupportsDType, str, Tuple[Any, + # Union[int, Sequence[int]]], List[Any], _DTypeDict, Tuple[Any, Any]]" + common = np.find_common_type( + [values.dtype, comps.dtype], [] # type: ignore[list-item] + ) values = values.astype(common, copy=False) comps = comps.astype(common, copy=False) name = common.name @@ -916,7 +1000,9 @@ def duplicated(values: ArrayLike, keep: Union[str, bool] = "first") -> np.ndarra ------- duplicated : ndarray """ - values, _ = _ensure_data(values) + # error: Incompatible types in assignment (expression has type "ndarray", variable + # has type "ExtensionArray") + values, _ = _ensure_data(values) # type: ignore[assignment] ndtype = values.dtype.name f = getattr(htable, f"duplicated_{ndtype}") return f(values, keep=keep) @@ -1188,7 +1274,9 @@ def _get_score(at): else: q = np.asarray(q, np.float64) result = [_get_score(x) for x in q] - result = np.array(result, dtype=np.float64) + # error: Incompatible types in assignment (expression has type + # "ndarray", variable has type "List[Any]") + result = np.array(result, dtype=np.float64) # type: ignore[assignment] return result @@ -1776,7 +1864,11 @@ def safe_sort( if not isinstance(values, (np.ndarray, ABCExtensionArray)): # don't convert to string types dtype, _ = infer_dtype_from_array(values) - values = np.asarray(values, dtype=dtype) + # error: Argument "dtype" to "asarray" has incompatible type "Union[dtype[Any], + # ExtensionDtype]"; expected "Union[dtype[Any], None, type, _SupportsDType, str, + # Union[Tuple[Any, int], Tuple[Any, Union[int, Sequence[int]]], List[Any], + # _DTypeDict, Tuple[Any, Any]]]" + values = np.asarray(values, dtype=dtype) # type: ignore[arg-type] sorter = None diff --git a/pandas/core/apply.py b/pandas/core/apply.py index cccd88ccb7a1e..57147461284fb 100644 --- a/pandas/core/apply.py +++ b/pandas/core/apply.py @@ -1016,7 +1016,11 @@ def apply_standard(self) -> FrameOrSeriesUnion: with np.errstate(all="ignore"): if isinstance(f, np.ufunc): - return f(obj) + # error: Argument 1 to "__call__" of "ufunc" has incompatible type + # "Series"; expected "Union[Union[int, float, complex, str, bytes, + # generic], Sequence[Union[int, float, complex, str, bytes, generic]], + # Sequence[Sequence[Any]], _SupportsArray]" + return f(obj) # type: ignore[arg-type] # row-wise access if is_extension_array_dtype(obj.dtype) and hasattr(obj._values, "map"): diff --git a/pandas/core/array_algos/putmask.py b/pandas/core/array_algos/putmask.py index 93046f476c6ba..b552a1be4c36e 100644 --- a/pandas/core/array_algos/putmask.py +++ b/pandas/core/array_algos/putmask.py @@ -120,7 +120,11 @@ def putmask_smart(values: np.ndarray, mask: np.ndarray, new) -> np.ndarray: return _putmask_preserve(values, new, mask) dtype = find_common_type([values.dtype, new.dtype]) - values = values.astype(dtype) + # error: Argument 1 to "astype" of "_ArrayOrScalarCommon" has incompatible type + # "Union[dtype[Any], ExtensionDtype]"; expected "Union[dtype[Any], None, type, + # _SupportsDType, str, Union[Tuple[Any, int], Tuple[Any, Union[int, Sequence[int]]], + # List[Any], _DTypeDict, Tuple[Any, Any]]]" + values = values.astype(dtype) # type: ignore[arg-type] return _putmask_preserve(values, new, mask) @@ -187,10 +191,16 @@ def extract_bool_array(mask: ArrayLike) -> np.ndarray: # We could have BooleanArray, Sparse[bool], ... # Except for BooleanArray, this is equivalent to just # np.asarray(mask, dtype=bool) - mask = mask.to_numpy(dtype=bool, na_value=False) - mask = np.asarray(mask, dtype=bool) - return mask + # error: Incompatible types in assignment (expression has type "ndarray", + # variable has type "ExtensionArray") + mask = mask.to_numpy(dtype=bool, na_value=False) # type: ignore[assignment] + + # error: Incompatible types in assignment (expression has type "ndarray", variable + # has type "ExtensionArray") + mask = np.asarray(mask, dtype=bool) # type: ignore[assignment] + # error: Incompatible return value type (got "ExtensionArray", expected "ndarray") + return mask # type: ignore[return-value] def setitem_datetimelike_compat(values: np.ndarray, num_set: int, other): diff --git a/pandas/core/array_algos/quantile.py b/pandas/core/array_algos/quantile.py index 802fc4db0a36d..501d3308b7d8b 100644 --- a/pandas/core/array_algos/quantile.py +++ b/pandas/core/array_algos/quantile.py @@ -143,10 +143,17 @@ def quantile_ea_compat( mask = np.asarray(values.isna()) mask = np.atleast_2d(mask) - values, fill_value = values._values_for_factorize() - values = np.atleast_2d(values) - - result = quantile_with_mask(values, mask, fill_value, qs, interpolation, axis) + # error: Incompatible types in assignment (expression has type "ndarray", variable + # has type "ExtensionArray") + values, fill_value = values._values_for_factorize() # type: ignore[assignment] + # error: No overload variant of "atleast_2d" matches argument type "ExtensionArray" + values = np.atleast_2d(values) # type: ignore[call-overload] + + # error: Argument 1 to "quantile_with_mask" has incompatible type "ExtensionArray"; + # expected "ndarray" + result = quantile_with_mask( + values, mask, fill_value, qs, interpolation, axis # type: ignore[arg-type] + ) if not is_sparse(orig.dtype): # shape[0] should be 1 as long as EAs are 1D @@ -160,4 +167,5 @@ def quantile_ea_compat( assert result.shape == (1, len(qs)), result.shape result = type(orig)._from_factorized(result[0], orig) - return result + # error: Incompatible return value type (got "ndarray", expected "ExtensionArray") + return result # type: ignore[return-value] diff --git a/pandas/core/array_algos/replace.py b/pandas/core/array_algos/replace.py index 201b9fdcc51cc..b0c0799750859 100644 --- a/pandas/core/array_algos/replace.py +++ b/pandas/core/array_algos/replace.py @@ -95,7 +95,9 @@ def _check_comparison_types( if is_numeric_v_string_like(a, b): # GH#29553 avoid deprecation warnings from numpy - return np.zeros(a.shape, dtype=bool) + # error: Incompatible return value type (got "ndarray", expected + # "Union[ExtensionArray, bool]") + return np.zeros(a.shape, dtype=bool) # type: ignore[return-value] elif is_datetimelike_v_numeric(a, b): # GH#29553 avoid deprecation warnings from numpy @@ -152,6 +154,8 @@ def re_replacer(s): f = np.vectorize(re_replacer, otypes=[values.dtype]) if mask is None: - values[:] = f(values) + # error: Invalid index type "slice" for "ExtensionArray"; expected type + # "Union[int, ndarray]" + values[:] = f(values) # type: ignore[index] else: values[mask] = f(values[mask]) diff --git a/pandas/core/array_algos/take.py b/pandas/core/array_algos/take.py index 054497089c5ab..7eed31663f1cb 100644 --- a/pandas/core/array_algos/take.py +++ b/pandas/core/array_algos/take.py @@ -140,7 +140,14 @@ def take_1d( """ if not isinstance(arr, np.ndarray): # ExtensionArray -> dispatch to their method - return arr.take(indexer, fill_value=fill_value, allow_fill=allow_fill) + + # error: Argument 1 to "take" of "ExtensionArray" has incompatible type + # "ndarray"; expected "Sequence[int]" + return arr.take( + indexer, # type: ignore[arg-type] + fill_value=fill_value, + allow_fill=allow_fill, + ) indexer, dtype, fill_value, mask_info = _take_preprocess_indexer_and_fill_value( arr, indexer, 0, None, fill_value, allow_fill @@ -174,7 +181,9 @@ def take_2d_multi( row_idx = ensure_int64(row_idx) col_idx = ensure_int64(col_idx) - indexer = row_idx, col_idx + # error: Incompatible types in assignment (expression has type "Tuple[Any, Any]", + # variable has type "ndarray") + indexer = row_idx, col_idx # type: ignore[assignment] mask_info = None # check for promotion based on types only (do this first because @@ -485,8 +494,13 @@ def _take_preprocess_indexer_and_fill_value( if dtype != arr.dtype and (out is None or out.dtype != dtype): # check if promotion is actually required based on indexer mask = indexer == -1 - needs_masking = mask.any() - mask_info = mask, needs_masking + # error: Item "bool" of "Union[Any, bool]" has no attribute "any" + # [union-attr] + needs_masking = mask.any() # type: ignore[union-attr] + # error: Incompatible types in assignment (expression has type + # "Tuple[Union[Any, bool], Any]", variable has type + # "Optional[Tuple[None, bool]]") + mask_info = mask, needs_masking # type: ignore[assignment] if needs_masking: if out is not None and out.dtype != dtype: raise TypeError("Incompatible type for fill_value") diff --git a/pandas/core/arraylike.py b/pandas/core/arraylike.py index 3f45f503d0f62..588fe8adc7241 100644 --- a/pandas/core/arraylike.py +++ b/pandas/core/arraylike.py @@ -258,7 +258,12 @@ def array_ufunc(self, ufunc: np.ufunc, method: str, *inputs: Any, **kwargs: Any) return result # Determine if we should defer. - no_defer = (np.ndarray.__array_ufunc__, cls.__array_ufunc__) + + # error: "Type[ndarray]" has no attribute "__array_ufunc__" + no_defer = ( + np.ndarray.__array_ufunc__, # type: ignore[attr-defined] + cls.__array_ufunc__, + ) for item in inputs: higher_priority = ( diff --git a/pandas/core/arrays/_mixins.py b/pandas/core/arrays/_mixins.py index d54d1855ac2f8..8beafe3fe4578 100644 --- a/pandas/core/arrays/_mixins.py +++ b/pandas/core/arrays/_mixins.py @@ -104,7 +104,9 @@ def take( new_data = take( self._ndarray, - indices, + # error: Argument 2 to "take" has incompatible type "Sequence[int]"; + # expected "ndarray" + indices, # type: ignore[arg-type] allow_fill=allow_fill, fill_value=fill_value, axis=axis, @@ -147,7 +149,8 @@ def ndim(self) -> int: @cache_readonly def size(self) -> int: - return np.prod(self.shape) + # error: Incompatible return value type (got "number", expected "int") + return np.prod(self.shape) # type: ignore[return-value] @cache_readonly def nbytes(self) -> int: @@ -217,7 +220,9 @@ def _concat_same_type( new_values = [x._ndarray for x in to_concat] new_values = np.concatenate(new_values, axis=axis) - return to_concat[0]._from_backing_data(new_values) + # error: Argument 1 to "_from_backing_data" of "NDArrayBackedExtensionArray" has + # incompatible type "List[ndarray]"; expected "ndarray" + return to_concat[0]._from_backing_data(new_values) # type: ignore[arg-type] @doc(ExtensionArray.searchsorted) def searchsorted(self, value, side="left", sorter=None): @@ -258,7 +263,13 @@ def __getitem__( return self._box_func(result) return self._from_backing_data(result) - key = extract_array(key, extract_numpy=True) + # error: Value of type variable "AnyArrayLike" of "extract_array" cannot be + # "Union[int, slice, ndarray]" + # error: Incompatible types in assignment (expression has type "ExtensionArray", + # variable has type "Union[int, slice, ndarray]") + key = extract_array( # type: ignore[type-var,assignment] + key, extract_numpy=True + ) key = check_array_indexer(self, key) result = self._ndarray[key] if lib.is_scalar(result): @@ -274,9 +285,14 @@ def fillna( value, method = validate_fillna_kwargs(value, method) mask = self.isna() - value = missing.check_value_size(value, mask, len(self)) + # error: Argument 2 to "check_value_size" has incompatible type + # "ExtensionArray"; expected "ndarray" + value = missing.check_value_size( + value, mask, len(self) # type: ignore[arg-type] + ) - if mask.any(): + # error: "ExtensionArray" has no attribute "any" + if mask.any(): # type: ignore[attr-defined] if method is not None: # TODO: check value is None # (for now) when self.ndim == 2, we assume axis=0 @@ -412,7 +428,8 @@ def value_counts(self, dropna: bool = True): ) if dropna: - values = self[~self.isna()]._ndarray + # error: Unsupported operand type for ~ ("ExtensionArray") + values = self[~self.isna()]._ndarray # type: ignore[operator] else: values = self._ndarray diff --git a/pandas/core/arrays/_ranges.py b/pandas/core/arrays/_ranges.py index c001c57ffe757..34d5ea6cfb20d 100644 --- a/pandas/core/arrays/_ranges.py +++ b/pandas/core/arrays/_ranges.py @@ -161,7 +161,9 @@ def _generate_range_overflow_safe_signed( # Putting this into a DatetimeArray/TimedeltaArray # would incorrectly be interpreted as NaT raise OverflowError - return result + # error: Incompatible return value type (got "signedinteger[_64Bit]", + # expected "int") + return result # type: ignore[return-value] except (FloatingPointError, OverflowError): # with endpoint negative and addend positive we risk # FloatingPointError; with reversed signed we risk OverflowError @@ -175,11 +177,16 @@ def _generate_range_overflow_safe_signed( # watch out for very special case in which we just slightly # exceed implementation bounds, but when passing the result to # np.arange will get a result slightly within the bounds - result = np.uint64(endpoint) + np.uint64(addend) + + # error: Incompatible types in assignment (expression has type + # "unsignedinteger[_64Bit]", variable has type "signedinteger[_64Bit]") + result = np.uint64(endpoint) + np.uint64(addend) # type: ignore[assignment] i64max = np.uint64(np.iinfo(np.int64).max) assert result > i64max if result <= i64max + np.uint64(stride): - return result + # error: Incompatible return value type (got "unsignedinteger", expected + # "int") + return result # type: ignore[return-value] raise OutOfBoundsDatetime( f"Cannot generate range with {side}={endpoint} and periods={periods}" diff --git a/pandas/core/arrays/base.py b/pandas/core/arrays/base.py index 86a1bcf24167c..99838602eeb63 100644 --- a/pandas/core/arrays/base.py +++ b/pandas/core/arrays/base.py @@ -391,13 +391,15 @@ def __contains__(self, item) -> bool: if not self._can_hold_na: return False elif item is self.dtype.na_value or isinstance(item, self.dtype.type): - return self.isna().any() + # error: "ExtensionArray" has no attribute "any" + return self.isna().any() # type: ignore[attr-defined] else: return False else: return (item == self).any() - def __eq__(self, other: Any) -> ArrayLike: + # error: Signature of "__eq__" incompatible with supertype "object" + def __eq__(self, other: Any) -> ArrayLike: # type: ignore[override] """ Return for `self == other` (element-wise equality). """ @@ -409,7 +411,8 @@ def __eq__(self, other: Any) -> ArrayLike: # underlying arrays) raise AbstractMethodError(self) - def __ne__(self, other: Any) -> ArrayLike: + # error: Signature of "__ne__" incompatible with supertype "object" + def __ne__(self, other: Any) -> ArrayLike: # type: ignore[override] """ Return for `self != other` (element-wise in-equality). """ @@ -446,7 +449,12 @@ def to_numpy( ------- numpy.ndarray """ - result = np.asarray(self, dtype=dtype) + # error: Argument "dtype" to "asarray" has incompatible type + # "Union[ExtensionDtype, str, dtype[Any], Type[str], Type[float], Type[int], + # Type[complex], Type[bool], Type[object], None]"; expected "Union[dtype[Any], + # None, type, _SupportsDType, str, Union[Tuple[Any, int], Tuple[Any, Union[int, + # Sequence[int]]], List[Any], _DTypeDict, Tuple[Any, Any]]]" + result = np.asarray(self, dtype=dtype) # type: ignore[arg-type] if copy or na_value is not lib.no_default: result = result.copy() if na_value is not lib.no_default: @@ -476,7 +484,8 @@ def size(self) -> int: """ The number of elements in the array. """ - return np.prod(self.shape) + # error: Incompatible return value type (got "number", expected "int") + return np.prod(self.shape) # type: ignore[return-value] @property def ndim(self) -> int: @@ -639,7 +648,8 @@ def argmin(self, skipna: bool = True) -> int: ExtensionArray.argmax """ validate_bool_kwarg(skipna, "skipna") - if not skipna and self.isna().any(): + # error: "ExtensionArray" has no attribute "any" + if not skipna and self.isna().any(): # type: ignore[attr-defined] raise NotImplementedError return nargminmax(self, "argmin") @@ -663,7 +673,8 @@ def argmax(self, skipna: bool = True) -> int: ExtensionArray.argmin """ validate_bool_kwarg(skipna, "skipna") - if not skipna and self.isna().any(): + # error: "ExtensionArray" has no attribute "any" + if not skipna and self.isna().any(): # type: ignore[attr-defined] raise NotImplementedError return nargminmax(self, "argmax") @@ -697,9 +708,14 @@ def fillna(self, value=None, method=None, limit=None): value, method = validate_fillna_kwargs(value, method) mask = self.isna() - value = missing.check_value_size(value, mask, len(self)) + # error: Argument 2 to "check_value_size" has incompatible type + # "ExtensionArray"; expected "ndarray" + value = missing.check_value_size( + value, mask, len(self) # type: ignore[arg-type] + ) - if mask.any(): + # error: "ExtensionArray" has no attribute "any" + if mask.any(): # type: ignore[attr-defined] if method is not None: func = missing.get_fill_func(method) new_values, _ = func(self.astype(object), limit=limit, mask=mask) @@ -720,7 +736,8 @@ def dropna(self): ------- valid : ExtensionArray """ - return self[~self.isna()] + # error: Unsupported operand type for ~ ("ExtensionArray") + return self[~self.isna()] # type: ignore[operator] def shift(self, periods: int = 1, fill_value: object = None) -> ExtensionArray: """ @@ -865,7 +882,8 @@ def equals(self, other: object) -> bool: if isinstance(equal_values, ExtensionArray): # boolean array with NA -> fill with False equal_values = equal_values.fillna(False) - equal_na = self.isna() & other.isna() + # error: Unsupported left operand type for & ("ExtensionArray") + equal_na = self.isna() & other.isna() # type: ignore[operator] return bool((equal_values | equal_na).all()) def isin(self, values) -> np.ndarray: @@ -954,7 +972,9 @@ def factorize(self, na_sentinel: int = -1) -> Tuple[np.ndarray, ExtensionArray]: ) uniques = self._from_factorized(uniques, self) - return codes, uniques + # error: Incompatible return value type (got "Tuple[ndarray, ndarray]", + # expected "Tuple[ndarray, ExtensionArray]") + return codes, uniques # type: ignore[return-value] _extension_array_shared_docs[ "repeat" @@ -1136,7 +1156,9 @@ def view(self, dtype: Optional[Dtype] = None) -> ArrayLike: # giving a view with the same dtype as self. if dtype is not None: raise NotImplementedError(dtype) - return self[:] + # error: Incompatible return value type (got "Union[ExtensionArray, Any]", + # expected "ndarray") + return self[:] # type: ignore[return-value] # ------------------------------------------------------------------------ # Printing diff --git a/pandas/core/arrays/boolean.py b/pandas/core/arrays/boolean.py index b37cf0a0ec579..a84b33d3da9af 100644 --- a/pandas/core/arrays/boolean.py +++ b/pandas/core/arrays/boolean.py @@ -406,14 +406,18 @@ def astype(self, dtype, copy: bool = True) -> ArrayLike: dtype = pandas_dtype(dtype) if isinstance(dtype, ExtensionDtype): - return super().astype(dtype, copy) + # error: Incompatible return value type (got "ExtensionArray", expected + # "ndarray") + return super().astype(dtype, copy) # type: ignore[return-value] if is_bool_dtype(dtype): # astype_nansafe converts np.nan to True if self._hasna: raise ValueError("cannot convert float NaN to bool") else: - return self._data.astype(dtype, copy=copy) + # error: Incompatible return value type (got "ndarray", expected + # "ExtensionArray") + return self._data.astype(dtype, copy=copy) # type: ignore[return-value] # for integer, error if there are missing values if is_integer_dtype(dtype) and self._hasna: @@ -425,7 +429,12 @@ def astype(self, dtype, copy: bool = True) -> ArrayLike: if is_float_dtype(dtype): na_value = np.nan # coerce - return self.to_numpy(dtype=dtype, na_value=na_value, copy=False) + + # error: Incompatible return value type (got "ndarray", expected + # "ExtensionArray") + return self.to_numpy( # type: ignore[return-value] + dtype=dtype, na_value=na_value, copy=False + ) def _values_for_argsort(self) -> np.ndarray: """ @@ -613,7 +622,9 @@ def _logical_method(self, other, op): elif op.__name__ in {"xor", "rxor"}: result, mask = ops.kleene_xor(self._data, other, self._mask, mask) - return BooleanArray(result, mask) + # error: Argument 2 to "BooleanArray" has incompatible type "Optional[Any]"; + # expected "ndarray" + return BooleanArray(result, mask) # type: ignore[arg-type] def _cmp_method(self, other, op): from pandas.arrays import ( diff --git a/pandas/core/arrays/categorical.py b/pandas/core/arrays/categorical.py index 8c242e3800e48..8588bc9aa94ec 100644 --- a/pandas/core/arrays/categorical.py +++ b/pandas/core/arrays/categorical.py @@ -412,7 +412,12 @@ def __init__( if null_mask.any(): # We remove null values here, then below will re-insert # them, grep "full_codes" - arr = [values[idx] for idx in np.where(~null_mask)[0]] + + # error: Incompatible types in assignment (expression has type + # "List[Any]", variable has type "ExtensionArray") + arr = [ # type: ignore[assignment] + values[idx] for idx in np.where(~null_mask)[0] + ] arr = sanitize_array(arr, None) values = arr @@ -440,7 +445,9 @@ def __init__( dtype = CategoricalDtype(categories, dtype.ordered) elif is_categorical_dtype(values.dtype): - old_codes = extract_array(values)._codes + # error: Item "ExtensionArray" of "Union[Any, ExtensionArray]" has no + # attribute "_codes" + old_codes = extract_array(values)._codes # type: ignore[union-attr] codes = recode_for_categories( old_codes, values.dtype.categories, dtype.categories, copy=copy ) @@ -504,13 +511,32 @@ def astype(self, dtype: Dtype, copy: bool = True) -> ArrayLike: raise ValueError("Cannot convert float NaN to integer") elif len(self.codes) == 0 or len(self.categories) == 0: - result = np.array(self, dtype=dtype, copy=copy) + # error: Incompatible types in assignment (expression has type "ndarray", + # variable has type "Categorical") + result = np.array( # type: ignore[assignment] + self, + # error: Argument "dtype" to "array" has incompatible type + # "Union[ExtensionDtype, str, dtype[Any], Type[str], Type[float], + # Type[int], Type[complex], Type[bool], Type[object]]"; expected + # "Union[dtype[Any], None, type, _SupportsDType, str, Union[Tuple[Any, + # int], Tuple[Any, Union[int, Sequence[int]]], List[Any], _DTypeDict, + # Tuple[Any, Any]]]" + dtype=dtype, # type: ignore[arg-type] + copy=copy, + ) else: # GH8628 (PERF): astype category codes instead of astyping array try: new_cats = np.asarray(self.categories) - new_cats = new_cats.astype(dtype=dtype, copy=copy) + # error: Argument "dtype" to "astype" of "_ArrayOrScalarCommon" has + # incompatible type "Union[ExtensionDtype, dtype[Any]]"; expected + # "Union[dtype[Any], None, type, _SupportsDType, str, Union[Tuple[Any, + # int], Tuple[Any, Union[int, Sequence[int]]], List[Any], _DTypeDict, + # Tuple[Any, Any]]]" + new_cats = new_cats.astype( + dtype=dtype, copy=copy # type: ignore[arg-type] + ) except ( TypeError, # downstream error msg for CategoricalIndex is misleading ValueError, @@ -518,9 +544,14 @@ def astype(self, dtype: Dtype, copy: bool = True) -> ArrayLike: msg = f"Cannot cast {self.categories.dtype} dtype to {dtype}" raise ValueError(msg) - result = take_nd(new_cats, libalgos.ensure_platform_int(self._codes)) + # error: Incompatible types in assignment (expression has type "ndarray", + # variable has type "Categorical") + result = take_nd( # type: ignore[assignment] + new_cats, libalgos.ensure_platform_int(self._codes) + ) - return result + # error: Incompatible return value type (got "Categorical", expected "ndarray") + return result # type: ignore[return-value] @cache_readonly def itemsize(self) -> int: @@ -1311,7 +1342,9 @@ def _validate_searchsorted_value(self, value): codes = self._unbox_scalar(value) else: locs = [self.categories.get_loc(x) for x in value] - codes = np.array(locs, dtype=self.codes.dtype) + # error: Incompatible types in assignment (expression has type + # "ndarray", variable has type "int") + codes = np.array(locs, dtype=self.codes.dtype) # type: ignore[assignment] return codes def _validate_fill_value(self, fill_value): @@ -2126,7 +2159,11 @@ def mode(self, dropna=True): if dropna: good = self._codes != -1 codes = self._codes[good] - codes = sorted(htable.mode_int64(ensure_int64(codes), dropna)) + # error: Incompatible types in assignment (expression has type "List[Any]", + # variable has type "ndarray") + codes = sorted( # type: ignore[assignment] + htable.mode_int64(ensure_int64(codes), dropna) + ) codes = coerce_indexer_dtype(codes, self.dtype.categories) return self._from_backing_data(codes) @@ -2418,7 +2455,11 @@ def _str_get_dummies(self, sep="|"): # sep may not be in categories. Just bail on this. from pandas.core.arrays import PandasArray - return PandasArray(self.astype(str))._str_get_dummies(sep) + # error: Argument 1 to "PandasArray" has incompatible type + # "ExtensionArray"; expected "Union[ndarray, PandasArray]" + return PandasArray(self.astype(str))._str_get_dummies( # type: ignore[arg-type] + sep + ) # The Series.cat accessor @@ -2618,7 +2659,8 @@ def _get_codes_for_values(values, categories: Index) -> np.ndarray: # Only hit here when we've already coerced to object dtypee. hash_klass, vals = get_data_algo(values) - _, cats = get_data_algo(categories) + # error: Value of type variable "ArrayLike" of "get_data_algo" cannot be "Index" + _, cats = get_data_algo(categories) # type: ignore[type-var] t = hash_klass(len(cats)) t.map_locations(cats) return coerce_indexer_dtype(t.lookup(vals), cats) diff --git a/pandas/core/arrays/datetimelike.py b/pandas/core/arrays/datetimelike.py index 633a20d6bed37..c2ac7517ecba3 100644 --- a/pandas/core/arrays/datetimelike.py +++ b/pandas/core/arrays/datetimelike.py @@ -378,7 +378,10 @@ def _get_getitem_freq(self, key): return self._get_getitem_freq(new_key) return freq - def __setitem__( + # error: Argument 1 of "__setitem__" is incompatible with supertype + # "ExtensionArray"; supertype defines the argument type as "Union[int, + # ndarray]" + def __setitem__( # type: ignore[override] self, key: Union[int, Sequence[int], Sequence[bool], slice], value: Union[NaTType, Any, Sequence[Any]], @@ -455,26 +458,45 @@ def view(self, dtype: Optional[Dtype] = None) -> ArrayLike: # dtypes here. Everything else we pass through to the underlying # ndarray. if dtype is None or dtype is self.dtype: - return type(self)(self._ndarray, dtype=self.dtype) + # error: Incompatible return value type (got "DatetimeLikeArrayMixin", + # expected "ndarray") + return type(self)( # type: ignore[return-value] + self._ndarray, dtype=self.dtype + ) if isinstance(dtype, type): # we sometimes pass non-dtype objects, e.g np.ndarray; # pass those through to the underlying ndarray - return self._ndarray.view(dtype) + + # error: Incompatible return value type (got "ndarray", expected + # "ExtensionArray") + return self._ndarray.view(dtype) # type: ignore[return-value] dtype = pandas_dtype(dtype) if isinstance(dtype, (PeriodDtype, DatetimeTZDtype)): cls = dtype.construct_array_type() - return cls(self.asi8, dtype=dtype) + # error: Incompatible return value type (got "Union[PeriodArray, + # DatetimeArray]", expected "ndarray") + return cls(self.asi8, dtype=dtype) # type: ignore[return-value] elif dtype == "M8[ns]": from pandas.core.arrays import DatetimeArray - return DatetimeArray(self.asi8, dtype=dtype) + # error: Incompatible return value type (got "DatetimeArray", expected + # "ndarray") + return DatetimeArray(self.asi8, dtype=dtype) # type: ignore[return-value] elif dtype == "m8[ns]": from pandas.core.arrays import TimedeltaArray - return TimedeltaArray(self.asi8, dtype=dtype) - return self._ndarray.view(dtype=dtype) + # error: Incompatible return value type (got "TimedeltaArray", expected + # "ndarray") + return TimedeltaArray(self.asi8, dtype=dtype) # type: ignore[return-value] + # error: Incompatible return value type (got "ndarray", expected + # "ExtensionArray") + # error: Argument "dtype" to "view" of "_ArrayOrScalarCommon" has incompatible + # type "Union[ExtensionDtype, dtype[Any]]"; expected "Union[dtype[Any], None, + # type, _SupportsDType, str, Union[Tuple[Any, int], Tuple[Any, Union[int, + # Sequence[int]]], List[Any], _DTypeDict, Tuple[Any, Any]]]" + return self._ndarray.view(dtype=dtype) # type: ignore[return-value,arg-type] # ------------------------------------------------------------------ # ExtensionArray Interface @@ -849,7 +871,9 @@ def isin(self, values) -> np.ndarray: # ------------------------------------------------------------------ # Null Handling - def isna(self) -> np.ndarray: + # error: Return type "ndarray" of "isna" incompatible with return type "ArrayLike" + # in supertype "ExtensionArray" + def isna(self) -> np.ndarray: # type: ignore[override] return self._isnan @property # NB: override with cache_readonly in immutable subclasses @@ -864,7 +888,8 @@ def _hasnans(self) -> np.ndarray: """ return if I have any nans; enables various perf speedups """ - return bool(self._isnan.any()) + # error: Incompatible return value type (got "bool", expected "ndarray") + return bool(self._isnan.any()) # type: ignore[return-value] def _maybe_mask_results( self, result: np.ndarray, fill_value=iNaT, convert=None @@ -1208,7 +1233,13 @@ def _addsub_object_array(self, other: np.ndarray, op): res_values = op(self.astype("O"), np.asarray(other)) result = pd_array(res_values.ravel()) - result = extract_array(result, extract_numpy=True).reshape(self.shape) + # error: Item "ExtensionArray" of "Union[Any, ExtensionArray]" has no attribute + # "reshape" + result = extract_array( + result, extract_numpy=True + ).reshape( # type: ignore[union-attr] + self.shape + ) return result def _time_shift(self, periods, freq=None): @@ -1758,7 +1789,8 @@ def _with_freq(self, freq): freq = to_offset(self.inferred_freq) arr = self.view() - arr._freq = freq + # error: "ExtensionArray" has no attribute "_freq" + arr._freq = freq # type: ignore[attr-defined] return arr # -------------------------------------------------------------- diff --git a/pandas/core/arrays/datetimes.py b/pandas/core/arrays/datetimes.py index ce0ea7bca55cd..7e200097d7e82 100644 --- a/pandas/core/arrays/datetimes.py +++ b/pandas/core/arrays/datetimes.py @@ -504,7 +504,10 @@ def _box_func(self, x) -> Union[Timestamp, NaTType]: return Timestamp(x, freq=self.freq, tz=self.tz) @property - def dtype(self) -> Union[np.dtype, DatetimeTZDtype]: + # error: Return type "Union[dtype, DatetimeTZDtype]" of "dtype" + # incompatible with return type "ExtensionDtype" in supertype + # "ExtensionArray" + def dtype(self) -> Union[np.dtype, DatetimeTZDtype]: # type: ignore[override] """ The dtype for the DatetimeArray. diff --git a/pandas/core/arrays/floating.py b/pandas/core/arrays/floating.py index aace5583ff47a..bbe2f23421fcf 100644 --- a/pandas/core/arrays/floating.py +++ b/pandas/core/arrays/floating.py @@ -305,19 +305,27 @@ def astype(self, dtype, copy: bool = True) -> ArrayLike: dtype = pandas_dtype(dtype) if isinstance(dtype, ExtensionDtype): - return super().astype(dtype, copy=copy) + # error: Incompatible return value type (got "ExtensionArray", expected + # "ndarray") + return super().astype(dtype, copy=copy) # type: ignore[return-value] # coerce if is_float_dtype(dtype): # In astype, we consider dtype=float to also mean na_value=np.nan kwargs = {"na_value": np.nan} elif is_datetime64_dtype(dtype): - kwargs = {"na_value": np.datetime64("NaT")} + # error: Dict entry 0 has incompatible type "str": "datetime64"; expected + # "str": "float" + kwargs = {"na_value": np.datetime64("NaT")} # type: ignore[dict-item] else: kwargs = {} - data = self.to_numpy(dtype=dtype, **kwargs) - return astype_nansafe(data, dtype, copy=False) + # error: Argument 2 to "to_numpy" of "BaseMaskedArray" has incompatible + # type "**Dict[str, float]"; expected "bool" + data = self.to_numpy(dtype=dtype, **kwargs) # type: ignore[arg-type] + # error: Incompatible return value type (got "ExtensionArray", expected + # "ndarray") + return astype_nansafe(data, dtype, copy=False) # type: ignore[return-value] def _values_for_argsort(self) -> np.ndarray: return self._data diff --git a/pandas/core/arrays/integer.py b/pandas/core/arrays/integer.py index 61d63d2eed6e9..b2308233a6272 100644 --- a/pandas/core/arrays/integer.py +++ b/pandas/core/arrays/integer.py @@ -101,7 +101,17 @@ def _get_common_dtype(self, dtypes: List[DtypeObj]) -> Optional[DtypeObj]: ): return None np_dtype = np.find_common_type( - [t.numpy_dtype if isinstance(t, BaseMaskedDtype) else t for t in dtypes], [] + # error: List comprehension has incompatible type List[Union[Any, + # dtype, ExtensionDtype]]; expected List[Union[dtype, None, type, + # _SupportsDtype, str, Tuple[Any, Union[int, Sequence[int]]], + # List[Any], _DtypeDict, Tuple[Any, Any]]] + [ + t.numpy_dtype # type: ignore[misc] + if isinstance(t, BaseMaskedDtype) + else t + for t in dtypes + ], + [], ) if np.issubdtype(np_dtype, np.integer): return INT_STR_TO_DTYPE[str(np_dtype)] @@ -359,18 +369,26 @@ def astype(self, dtype, copy: bool = True) -> ArrayLike: dtype = pandas_dtype(dtype) if isinstance(dtype, ExtensionDtype): - return super().astype(dtype, copy=copy) + # error: Incompatible return value type (got "ExtensionArray", expected + # "ndarray") + return super().astype(dtype, copy=copy) # type: ignore[return-value] # coerce if is_float_dtype(dtype): # In astype, we consider dtype=float to also mean na_value=np.nan na_value = np.nan elif is_datetime64_dtype(dtype): - na_value = np.datetime64("NaT") + # error: Incompatible types in assignment (expression has type + # "datetime64", variable has type "float") + na_value = np.datetime64("NaT") # type: ignore[assignment] else: na_value = lib.no_default - return self.to_numpy(dtype=dtype, na_value=na_value, copy=False) + # error: Incompatible return value type (got "ndarray", expected + # "ExtensionArray") + return self.to_numpy( # type: ignore[return-value] + dtype=dtype, na_value=na_value, copy=False + ) def _values_for_argsort(self) -> np.ndarray: """ diff --git a/pandas/core/arrays/interval.py b/pandas/core/arrays/interval.py index f192a34514390..7ccdad11761ab 100644 --- a/pandas/core/arrays/interval.py +++ b/pandas/core/arrays/interval.py @@ -641,7 +641,11 @@ def __getitem__(self, key): if is_scalar(left) and isna(left): return self._fill_value return Interval(left, right, self.closed) - if np.ndim(left) > 1: + # error: Argument 1 to "ndim" has incompatible type "Union[ndarray, + # ExtensionArray]"; expected "Union[Union[int, float, complex, str, bytes, + # generic], Sequence[Union[int, float, complex, str, bytes, generic]], + # Sequence[Sequence[Any]], _SupportsArray]" + if np.ndim(left) > 1: # type: ignore[arg-type] # GH#30588 multi-dimensional indexer disallowed raise ValueError("multi-dimensional indexing not allowed") return self._shallow_copy(left, right) @@ -907,7 +911,9 @@ def copy(self: IntervalArrayT) -> IntervalArrayT: # TODO: Could skip verify_integrity here. return type(self).from_arrays(left, right, closed=closed) - def isna(self) -> np.ndarray: + # error: Return type "ndarray" of "isna" incompatible with return type + # "ArrayLike" in supertype "ExtensionArray" + def isna(self) -> np.ndarray: # type: ignore[override] return isna(self._left) def shift( @@ -1612,7 +1618,10 @@ def _maybe_convert_platform_interval(values) -> ArrayLike: # GH 19016 # empty lists/tuples get object dtype by default, but this is # prohibited for IntervalArray, so coerce to integer instead - return np.array([], dtype=np.int64) + + # error: Incompatible return value type (got "ndarray", expected + # "ExtensionArray") + return np.array([], dtype=np.int64) # type: ignore[return-value] elif not is_list_like(values) or isinstance(values, ABCDataFrame): # This will raise later, but we avoid passing to maybe_convert_platform return values @@ -1624,4 +1633,5 @@ def _maybe_convert_platform_interval(values) -> ArrayLike: else: values = extract_array(values, extract_numpy=True) - return maybe_convert_platform(values) + # error: Incompatible return value type (got "ExtensionArray", expected "ndarray") + return maybe_convert_platform(values) # type: ignore[return-value] diff --git a/pandas/core/arrays/masked.py b/pandas/core/arrays/masked.py index eff06a5c62894..ac0ac2bb21d62 100644 --- a/pandas/core/arrays/masked.py +++ b/pandas/core/arrays/masked.py @@ -212,7 +212,10 @@ def __len__(self) -> int: def __invert__(self: BaseMaskedArrayT) -> BaseMaskedArrayT: return type(self)(~self._data, self._mask.copy()) - def to_numpy( + # error: Argument 1 of "to_numpy" is incompatible with supertype "ExtensionArray"; + # supertype defines the argument type as "Union[ExtensionDtype, str, dtype[Any], + # Type[str], Type[float], Type[int], Type[complex], Type[bool], Type[object], None]" + def to_numpy( # type: ignore[override] self, dtype: Optional[NpDtype] = None, copy: bool = False, @@ -281,7 +284,9 @@ def to_numpy( if na_value is lib.no_default: na_value = libmissing.NA if dtype is None: - dtype = object + # error: Incompatible types in assignment (expression has type + # "Type[object]", variable has type "Union[str, dtype[Any], None]") + dtype = object # type: ignore[assignment] if self._hasna: if ( not is_object_dtype(dtype) @@ -305,8 +310,12 @@ def astype(self, dtype: Dtype, copy: bool = True) -> ArrayLike: if is_dtype_equal(dtype, self.dtype): if copy: - return self.copy() - return self + # error: Incompatible return value type (got "BaseMaskedArray", expected + # "ndarray") + return self.copy() # type: ignore[return-value] + # error: Incompatible return value type (got "BaseMaskedArray", expected + # "ndarray") + return self # type: ignore[return-value] # if we are astyping to another nullable masked dtype, we can fastpath if isinstance(dtype, BaseMaskedDtype): @@ -316,7 +325,9 @@ def astype(self, dtype: Dtype, copy: bool = True) -> ArrayLike: # not directly depending on the `copy` keyword mask = self._mask if data is self._data else self._mask.copy() cls = dtype.construct_array_type() - return cls(data, mask, copy=False) + # error: Incompatible return value type (got "BaseMaskedArray", expected + # "ndarray") + return cls(data, mask, copy=False) # type: ignore[return-value] if isinstance(dtype, ExtensionDtype): eacls = dtype.construct_array_type() @@ -346,9 +357,13 @@ def _hasna(self) -> bool: # Note: this is expensive right now! The hope is that we can # make this faster by having an optional mask, but not have to change # source code using it.. - return self._mask.any() - def isna(self) -> np.ndarray: + # error: Incompatible return value type (got "bool_", expected "bool") + return self._mask.any() # type: ignore[return-value] + + # error: Return type "ndarray" of "isna" incompatible with return type + # "ArrayLike" in supertype "ExtensionArray" + def isna(self) -> np.ndarray: # type: ignore[override] return self._mask @property @@ -394,7 +409,9 @@ def take( return type(self)(result, mask, copy=False) - def isin(self, values) -> BooleanArray: + # error: Return type "BooleanArray" of "isin" incompatible with return type + # "ndarray" in supertype "ExtensionArray" + def isin(self, values) -> BooleanArray: # type: ignore[override] from pandas.core.arrays import BooleanArray @@ -404,7 +421,9 @@ def isin(self, values) -> BooleanArray: result += self._mask else: result *= np.invert(self._mask) - mask = np.zeros_like(self, dtype=bool) + # error: No overload variant of "zeros_like" matches argument types + # "BaseMaskedArray", "Type[bool]" + mask = np.zeros_like(self, dtype=bool) # type: ignore[call-overload] return BooleanArray(result, mask, copy=False) def copy(self: BaseMaskedArrayT) -> BaseMaskedArrayT: @@ -422,8 +441,14 @@ def factorize(self, na_sentinel: int = -1) -> Tuple[np.ndarray, ExtensionArray]: # the hashtables don't handle all different types of bits uniques = uniques.astype(self.dtype.numpy_dtype, copy=False) - uniques = type(self)(uniques, np.zeros(len(uniques), dtype=bool)) - return codes, uniques + # error: Incompatible types in assignment (expression has type + # "BaseMaskedArray", variable has type "ndarray") + uniques = type(self)( # type: ignore[assignment] + uniques, np.zeros(len(uniques), dtype=bool) + ) + # error: Incompatible return value type (got "Tuple[ndarray, ndarray]", + # expected "Tuple[ndarray, ExtensionArray]") + return codes, uniques # type: ignore[return-value] def value_counts(self, dropna: bool = True) -> Series: """ diff --git a/pandas/core/arrays/numpy_.py b/pandas/core/arrays/numpy_.py index fd95ab987b18a..bef047c29413b 100644 --- a/pandas/core/arrays/numpy_.py +++ b/pandas/core/arrays/numpy_.py @@ -97,7 +97,12 @@ def _from_sequence( if isinstance(dtype, PandasDtype): dtype = dtype._dtype - result = np.asarray(scalars, dtype=dtype) + # error: Argument "dtype" to "asarray" has incompatible type + # "Union[ExtensionDtype, str, dtype[Any], dtype[floating[_64Bit]], Type[object], + # None]"; expected "Union[dtype[Any], None, type, _SupportsDType, str, + # Union[Tuple[Any, int], Tuple[Any, Union[int, Sequence[int]]], List[Any], + # _DTypeDict, Tuple[Any, Any]]]" + result = np.asarray(scalars, dtype=dtype) # type: ignore[arg-type] if ( result.ndim > 1 and not hasattr(scalars, "dtype") @@ -185,7 +190,9 @@ def __array_ufunc__(self, ufunc, method: str, *inputs, **kwargs): # ------------------------------------------------------------------------ # Pandas ExtensionArray Interface - def isna(self) -> np.ndarray: + # error: Return type "ndarray" of "isna" incompatible with return type + # "ArrayLike" in supertype "ExtensionArray" + def isna(self) -> np.ndarray: # type: ignore[override] return isna(self._ndarray) def _validate_fill_value(self, fill_value): @@ -341,7 +348,10 @@ def skew( # ------------------------------------------------------------------------ # Additional Methods - def to_numpy( + # error: Argument 1 of "to_numpy" is incompatible with supertype "ExtensionArray"; + # supertype defines the argument type as "Union[ExtensionDtype, str, dtype[Any], + # Type[str], Type[float], Type[int], Type[complex], Type[bool], Type[object], None]" + def to_numpy( # type: ignore[override] self, dtype: Optional[NpDtype] = None, copy: bool = False, diff --git a/pandas/core/arrays/period.py b/pandas/core/arrays/period.py index 7e9e13400e11f..d91522a9e1bb6 100644 --- a/pandas/core/arrays/period.py +++ b/pandas/core/arrays/period.py @@ -1125,9 +1125,12 @@ def _make_field_arrays(*fields): elif length is None: length = len(x) + # error: Argument 2 to "repeat" has incompatible type "Optional[int]"; expected + # "Union[Union[int, integer[Any]], Union[bool, bool_], ndarray, Sequence[Union[int, + # integer[Any]]], Sequence[Union[bool, bool_]], Sequence[Sequence[Any]]]" return [ np.asarray(x) if isinstance(x, (np.ndarray, list, ABCSeries)) - else np.repeat(x, length) + else np.repeat(x, length) # type: ignore[arg-type] for x in fields ] diff --git a/pandas/core/arrays/sparse/accessor.py b/pandas/core/arrays/sparse/accessor.py index c3d11793dbd8c..d4faea4fbc42c 100644 --- a/pandas/core/arrays/sparse/accessor.py +++ b/pandas/core/arrays/sparse/accessor.py @@ -354,7 +354,9 @@ def density(self) -> float: """ Ratio of non-sparse points to total (dense) data points. """ - return np.mean([column.array.density for _, column in self._parent.items()]) + # error: Incompatible return value type (got "number", expected "float") + tmp = np.mean([column.array.density for _, column in self._parent.items()]) + return tmp # type: ignore[return-value] @staticmethod def _prep_index(data, index, columns): diff --git a/pandas/core/arrays/sparse/array.py b/pandas/core/arrays/sparse/array.py index a209037f9a9a6..088a1165e4df0 100644 --- a/pandas/core/arrays/sparse/array.py +++ b/pandas/core/arrays/sparse/array.py @@ -365,7 +365,12 @@ def __init__( # dtype inference if data is None: # TODO: What should the empty dtype be? Object or float? - data = np.array([], dtype=dtype) + + # error: Argument "dtype" to "array" has incompatible type + # "Union[ExtensionDtype, dtype[Any], None]"; expected "Union[dtype[Any], + # None, type, _SupportsDType, str, Union[Tuple[Any, int], Tuple[Any, + # Union[int, Sequence[int]]], List[Any], _DTypeDict, Tuple[Any, Any]]]" + data = np.array([], dtype=dtype) # type: ignore[arg-type] if not is_array_like(data): try: @@ -394,7 +399,14 @@ def __init__( if isinstance(data, type(self)) and sparse_index is None: sparse_index = data._sparse_index - sparse_values = np.asarray(data.sp_values, dtype=dtype) + # error: Argument "dtype" to "asarray" has incompatible type + # "Union[ExtensionDtype, dtype[Any], Type[object], None]"; expected + # "Union[dtype[Any], None, type, _SupportsDType, str, Union[Tuple[Any, int], + # Tuple[Any, Union[int, Sequence[int]]], List[Any], _DTypeDict, Tuple[Any, + # Any]]]" + sparse_values = np.asarray( + data.sp_values, dtype=dtype # type: ignore[arg-type] + ) elif sparse_index is None: data = extract_array(data, extract_numpy=True) if not isinstance(data, np.ndarray): @@ -412,10 +424,21 @@ def __init__( fill_value = np.datetime64("NaT", "ns") data = np.asarray(data) sparse_values, sparse_index, fill_value = make_sparse( - data, kind=kind, fill_value=fill_value, dtype=dtype + # error: Argument "dtype" to "make_sparse" has incompatible type + # "Union[ExtensionDtype, dtype[Any], Type[object], None]"; expected + # "Union[str, dtype[Any], None]" + data, + kind=kind, + fill_value=fill_value, + dtype=dtype, # type: ignore[arg-type] ) else: - sparse_values = np.asarray(data, dtype=dtype) + # error: Argument "dtype" to "asarray" has incompatible type + # "Union[ExtensionDtype, dtype[Any], Type[object], None]"; expected + # "Union[dtype[Any], None, type, _SupportsDType, str, Union[Tuple[Any, int], + # Tuple[Any, Union[int, Sequence[int]]], List[Any], _DTypeDict, Tuple[Any, + # Any]]]" + sparse_values = np.asarray(data, dtype=dtype) # type: ignore[arg-type] if len(sparse_values) != sparse_index.npoints: raise AssertionError( f"Non array-like type {type(sparse_values)} must " @@ -503,7 +526,9 @@ def __array__(self, dtype: Optional[NpDtype] = None) -> np.ndarray: try: dtype = np.result_type(self.sp_values.dtype, type(fill_value)) except TypeError: - dtype = object + # error: Incompatible types in assignment (expression has type + # "Type[object]", variable has type "Union[str, dtype[Any], None]") + dtype = object # type: ignore[assignment] out = np.full(self.shape, fill_value, dtype=dtype) out[self.sp_index.to_int_index().indices] = self.sp_values @@ -748,7 +773,9 @@ def factorize(self, na_sentinel=-1): # Given that we have to return a dense array of codes, why bother # implementing an efficient factorize? codes, uniques = algos.factorize(np.asarray(self), na_sentinel=na_sentinel) - uniques = SparseArray(uniques, dtype=self.dtype) + # error: Incompatible types in assignment (expression has type "SparseArray", + # variable has type "Union[ndarray, Index]") + uniques = SparseArray(uniques, dtype=self.dtype) # type: ignore[assignment] return codes, uniques def value_counts(self, dropna: bool = True): @@ -857,7 +884,9 @@ def take(self, indices, *, allow_fill=False, fill_value=None) -> SparseArray: result = self._take_with_fill(indices, fill_value=fill_value) kwargs = {} else: - result = self._take_without_fill(indices) + # error: Incompatible types in assignment (expression has type + # "Union[ndarray, SparseArray]", variable has type "ndarray") + result = self._take_without_fill(indices) # type: ignore[assignment] kwargs = {"dtype": self.dtype} return type(self)(result, fill_value=self.fill_value, kind=self.kind, **kwargs) @@ -1094,14 +1123,38 @@ def astype(self, dtype: Optional[Dtype] = None, copy=True): else: return self.copy() dtype = self.dtype.update_dtype(dtype) - subtype = pandas_dtype(dtype._subtype_with_str) + # error: Item "ExtensionDtype" of "Union[ExtensionDtype, str, dtype[Any], + # Type[str], Type[float], Type[int], Type[complex], Type[bool], Type[object], + # None]" has no attribute "_subtype_with_str" + # error: Item "str" of "Union[ExtensionDtype, str, dtype[Any], Type[str], + # Type[float], Type[int], Type[complex], Type[bool], Type[object], None]" has no + # attribute "_subtype_with_str" + # error: Item "dtype[Any]" of "Union[ExtensionDtype, str, dtype[Any], Type[str], + # Type[float], Type[int], Type[complex], Type[bool], Type[object], None]" has no + # attribute "_subtype_with_str" + # error: Item "ABCMeta" of "Union[ExtensionDtype, str, dtype[Any], Type[str], + # Type[float], Type[int], Type[complex], Type[bool], Type[object], None]" has no + # attribute "_subtype_with_str" + # error: Item "type" of "Union[ExtensionDtype, str, dtype[Any], Type[str], + # Type[float], Type[int], Type[complex], Type[bool], Type[object], None]" has no + # attribute "_subtype_with_str" + # error: Item "None" of "Union[ExtensionDtype, str, dtype[Any], Type[str], + # Type[float], Type[int], Type[complex], Type[bool], Type[object], None]" has no + # attribute "_subtype_with_str" + subtype = pandas_dtype(dtype._subtype_with_str) # type: ignore[union-attr] # TODO copy=False is broken for astype_nansafe with int -> float, so cannot # passthrough copy keyword: https://github.com/pandas-dev/pandas/issues/34456 sp_values = astype_nansafe(self.sp_values, subtype, copy=True) - if sp_values is self.sp_values and copy: + # error: Non-overlapping identity check (left operand type: "ExtensionArray", + # right operand t...ype: "ndarray") + if sp_values is self.sp_values and copy: # type: ignore[comparison-overlap] sp_values = sp_values.copy() - return self._simple_new(sp_values, self.sp_index, dtype) + # error: Argument 1 to "_simple_new" of "SparseArray" has incompatible type + # "ExtensionArray"; expected "ndarray" + return self._simple_new( + sp_values, self.sp_index, dtype # type: ignore[arg-type] + ) def map(self, mapper): """ @@ -1396,7 +1449,11 @@ def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): return type(self)(result) def __abs__(self): - return np.abs(self) + # error: Argument 1 to "__call__" of "ufunc" has incompatible type + # "SparseArray"; expected "Union[Union[int, float, complex, str, bytes, + # generic], Sequence[Union[int, float, complex, str, bytes, generic]], + # Sequence[Sequence[Any]], _SupportsArray]" + return np.abs(self) # type: ignore[arg-type] # ------------------------------------------------------------------------ # Ops @@ -1545,7 +1602,11 @@ def make_sparse( index = make_sparse_index(length, indices, kind) sparsified_values = arr[mask] if dtype is not None: - sparsified_values = astype_nansafe(sparsified_values, dtype=dtype) + # error: Argument "dtype" to "astype_nansafe" has incompatible type "Union[str, + # dtype[Any]]"; expected "Union[dtype[Any], ExtensionDtype]" + sparsified_values = astype_nansafe( + sparsified_values, dtype=dtype # type: ignore[arg-type] + ) # TODO: copy return sparsified_values, index, fill_value diff --git a/pandas/core/arrays/sparse/dtype.py b/pandas/core/arrays/sparse/dtype.py index 948edcbd99e64..9e61675002e64 100644 --- a/pandas/core/arrays/sparse/dtype.py +++ b/pandas/core/arrays/sparse/dtype.py @@ -342,7 +342,10 @@ def update_dtype(self, dtype): if is_extension_array_dtype(dtype): raise TypeError("sparse arrays of extension dtypes not supported") - fill_value = astype_nansafe(np.array(self.fill_value), dtype).item() + # error: "ExtensionArray" has no attribute "item" + fill_value = astype_nansafe( + np.array(self.fill_value), dtype + ).item() # type: ignore[attr-defined] dtype = cls(dtype, fill_value=fill_value) return dtype diff --git a/pandas/core/arrays/string_.py b/pandas/core/arrays/string_.py index 6fd68050bc8dc..67cd6c63c1faa 100644 --- a/pandas/core/arrays/string_.py +++ b/pandas/core/arrays/string_.py @@ -320,7 +320,9 @@ def astype(self, dtype, copy=True): values = arr.astype(dtype.numpy_dtype) return IntegerArray(values, mask, copy=False) elif isinstance(dtype, FloatingDtype): - arr = self.copy() + # error: Incompatible types in assignment (expression has type + # "StringArray", variable has type "ndarray") + arr = self.copy() # type: ignore[assignment] mask = self.isna() arr[mask] = "0" values = arr.astype(dtype.numpy_dtype) @@ -434,7 +436,12 @@ def _str_map(self, f, na_value=None, dtype: Optional[Dtype] = None): mask.view("uint8"), convert=False, na_value=na_value, - dtype=np.dtype(dtype), + # error: Value of type variable "_DTypeScalar" of "dtype" cannot be + # "object" + # error: Argument 1 to "dtype" has incompatible type + # "Union[ExtensionDtype, str, dtype[Any], Type[object]]"; expected + # "Type[object]" + dtype=np.dtype(dtype), # type: ignore[type-var,arg-type] ) if not na_value_is_na: diff --git a/pandas/core/arrays/string_arrow.py b/pandas/core/arrays/string_arrow.py index e003efeabcb66..efdc18cd071b5 100644 --- a/pandas/core/arrays/string_arrow.py +++ b/pandas/core/arrays/string_arrow.py @@ -248,7 +248,10 @@ def __arrow_array__(self, type=None): """Convert myself to a pyarrow Array or ChunkedArray.""" return self._data - def to_numpy( + # error: Argument 1 of "to_numpy" is incompatible with supertype "ExtensionArray"; + # supertype defines the argument type as "Union[ExtensionDtype, str, dtype[Any], + # Type[str], Type[float], Type[int], Type[complex], Type[bool], Type[object], None]" + def to_numpy( # type: ignore[override] self, dtype: Optional[NpDtype] = None, copy: bool = False, @@ -341,7 +344,9 @@ def __getitem__(self, item: Any) -> Any: if not len(item): return type(self)(pa.chunked_array([], type=pa.string())) elif is_integer_dtype(item.dtype): - return self.take(item) + # error: Argument 1 to "take" of "ArrowStringArray" has incompatible + # type "ndarray"; expected "Sequence[int]" + return self.take(item) # type: ignore[arg-type] elif is_bool_dtype(item.dtype): return type(self)(self._data.filter(item)) else: @@ -400,7 +405,13 @@ def fillna(self, value=None, method=None, limit=None): if mask.any(): if method is not None: func = missing.get_fill_func(method) - new_values, _ = func(self.to_numpy(object), limit=limit, mask=mask) + # error: Argument 1 to "to_numpy" of "ArrowStringArray" has incompatible + # type "Type[object]"; expected "Union[str, dtype[Any], None]" + new_values, _ = func( + self.to_numpy(object), # type: ignore[arg-type] + limit=limit, + mask=mask, + ) new_values = self._from_sequence(new_values) else: # fill with value @@ -423,7 +434,9 @@ def nbytes(self) -> int: """ return self._data.nbytes - def isna(self) -> np.ndarray: + # error: Return type "ndarray" of "isna" incompatible with return type "ArrayLike" + # in supertype "ExtensionArray" + def isna(self) -> np.ndarray: # type: ignore[override] """ Boolean NumPy array indicating if each value is missing. @@ -498,7 +511,8 @@ def __setitem__(self, key: Union[int, np.ndarray], value: Any) -> None: # Slice data and insert in-between new_data = [ - *self._data[0:key].chunks, + # error: Slice index must be an integer or None + *self._data[0:key].chunks, # type: ignore[misc] pa.array([value], type=pa.string()), *self._data[(key + 1) :].chunks, ] @@ -589,7 +603,9 @@ def take( if not is_array_like(indices): indices_array = np.asanyarray(indices) else: - indices_array = indices + # error: Incompatible types in assignment (expression has type + # "Sequence[int]", variable has type "ndarray") + indices_array = indices # type: ignore[assignment] if len(self._data) == 0 and (indices_array >= 0).any(): raise IndexError("cannot do a non-empty take") diff --git a/pandas/core/arrays/timedeltas.py b/pandas/core/arrays/timedeltas.py index c371e27eeceac..5a45a8d105f6e 100644 --- a/pandas/core/arrays/timedeltas.py +++ b/pandas/core/arrays/timedeltas.py @@ -148,7 +148,9 @@ def _box_func(self, x) -> Union[Timedelta, NaTType]: return Timedelta(x, unit="ns") @property - def dtype(self) -> np.dtype: + # error: Return type "dtype" of "dtype" incompatible with return type + # "ExtensionDtype" in supertype "ExtensionArray" + def dtype(self) -> np.dtype: # type: ignore[override] """ The dtype for the TimedeltaArray. @@ -666,7 +668,11 @@ def __floordiv__(self, other): return result elif is_object_dtype(other.dtype): - result = [self[n] // other[n] for n in range(len(self))] + # error: Incompatible types in assignment (expression has type + # "List[Any]", variable has type "ndarray") + result = [ # type: ignore[assignment] + self[n] // other[n] for n in range(len(self)) + ] result = np.array(result) if lib.infer_dtype(result, skipna=False) == "timedelta": result, _ = sequence_to_td64ns(result) @@ -720,7 +726,11 @@ def __rfloordiv__(self, other): return result elif is_object_dtype(other.dtype): - result = [other[n] // self[n] for n in range(len(self))] + # error: Incompatible types in assignment (expression has type + # "List[Any]", variable has type "ndarray") + result = [ # type: ignore[assignment] + other[n] // self[n] for n in range(len(self)) + ] result = np.array(result) return result diff --git a/pandas/core/base.py b/pandas/core/base.py index c02f7bb2edf58..1943aafc7c760 100644 --- a/pandas/core/base.py +++ b/pandas/core/base.py @@ -617,7 +617,12 @@ def to_numpy( f"to_numpy() got an unexpected keyword argument '{bad_keys}'" ) - result = np.asarray(self._values, dtype=dtype) + # error: Argument "dtype" to "asarray" has incompatible type + # "Union[ExtensionDtype, str, dtype[Any], Type[str], Type[float], Type[int], + # Type[complex], Type[bool], Type[object], None]"; expected "Union[dtype[Any], + # None, type, _SupportsDType, str, Union[Tuple[Any, int], Tuple[Any, Union[int, + # Sequence[int]]], List[Any], _DTypeDict, Tuple[Any, Any]]]" + result = np.asarray(self._values, dtype=dtype) # type: ignore[arg-type] # TODO(GH-24345): Avoid potential double copy if copy or na_value is not lib.no_default: result = result.copy() @@ -730,12 +735,17 @@ def argmax(self, axis=None, skipna: bool = True, *args, **kwargs) -> int: skipna = nv.validate_argmax_with_skipna(skipna, args, kwargs) if isinstance(delegate, ExtensionArray): - if not skipna and delegate.isna().any(): + # error: "ExtensionArray" has no attribute "any" + if not skipna and delegate.isna().any(): # type: ignore[attr-defined] return -1 else: return delegate.argmax() else: - return nanops.nanargmax(delegate, skipna=skipna) + # error: Incompatible return value type (got "Union[int, ndarray]", expected + # "int") + return nanops.nanargmax( # type: ignore[return-value] + delegate, skipna=skipna + ) def min(self, axis=None, skipna: bool = True, *args, **kwargs): """ @@ -788,12 +798,17 @@ def argmin(self, axis=None, skipna=True, *args, **kwargs) -> int: skipna = nv.validate_argmin_with_skipna(skipna, args, kwargs) if isinstance(delegate, ExtensionArray): - if not skipna and delegate.isna().any(): + # error: "ExtensionArray" has no attribute "any" + if not skipna and delegate.isna().any(): # type: ignore[attr-defined] return -1 else: return delegate.argmin() else: - return nanops.nanargmin(delegate, skipna=skipna) + # error: Incompatible return value type (got "Union[int, ndarray]", expected + # "int") + return nanops.nanargmin( # type: ignore[return-value] + delegate, skipna=skipna + ) def tolist(self): """ @@ -1318,4 +1333,6 @@ def drop_duplicates(self, keep="first"): return self[~duplicated] # type: ignore[index] def duplicated(self, keep: Union[str, bool] = "first") -> np.ndarray: - return duplicated(self._values, keep=keep) + # error: Value of type variable "ArrayLike" of "duplicated" cannot be + # "Union[ExtensionArray, ndarray]" + return duplicated(self._values, keep=keep) # type: ignore[type-var] diff --git a/pandas/core/common.py b/pandas/core/common.py index 0b2dec371bf02..83848e0532253 100644 --- a/pandas/core/common.py +++ b/pandas/core/common.py @@ -228,9 +228,16 @@ def asarray_tuplesafe(values, dtype: Optional[NpDtype] = None) -> np.ndarray: if not (isinstance(values, (list, tuple)) or hasattr(values, "__array__")): values = list(values) elif isinstance(values, ABCIndex): - return values._values - - if isinstance(values, list) and dtype in [np.object_, object]: + # error: Incompatible return value type (got "Union[ExtensionArray, ndarray]", + # expected "ndarray") + return values._values # type: ignore[return-value] + + # error: Non-overlapping container check (element type: "Union[str, dtype[Any], + # None]", container item type: "type") + if isinstance(values, list) and dtype in [ # type: ignore[comparison-overlap] + np.object_, + object, + ]: return construct_1d_object_array_from_listlike(values) result = np.asarray(values, dtype=dtype) diff --git a/pandas/core/construction.py b/pandas/core/construction.py index 43900709ad11f..46f32ee401603 100644 --- a/pandas/core/construction.py +++ b/pandas/core/construction.py @@ -306,7 +306,17 @@ def array( # Note: we exclude np.ndarray here, will do type inference on it dtype = data.dtype - data = extract_array(data, extract_numpy=True) + # error: Value of type variable "AnyArrayLike" of "extract_array" cannot be + # "Union[Sequence[object], ExtensionArray]" + # error: Value of type variable "AnyArrayLike" of "extract_array" cannot be + # "Union[Sequence[object], Index]" + # error: Incompatible types in assignment (expression has type "ExtensionArray", + # variable has type "Union[Sequence[object], Index]") + # error: Incompatible types in assignment (expression has type "ExtensionArray", + # variable has type "Union[Sequence[object], Series]") + # error: Incompatible types in assignment (expression has type "ExtensionArray", + # variable has type "Union[Sequence[object], ndarray]") + data = extract_array(data, extract_numpy=True) # type: ignore[type-var,assignment] # this returns None for not-found dtypes. if isinstance(dtype, str): @@ -500,7 +510,9 @@ def sanitize_array( try: subarr = _try_cast(data, dtype, copy, True) except ValueError: - subarr = np.array(data, copy=copy) + # error: Incompatible types in assignment (expression has type + # "ndarray", variable has type "ExtensionArray") + subarr = np.array(data, copy=copy) # type: ignore[assignment] else: # we will try to copy by-definition here subarr = _try_cast(data, dtype, copy, raise_cast_failure) @@ -513,7 +525,9 @@ def sanitize_array( subarr = subarr.astype(dtype, copy=copy) elif copy: subarr = subarr.copy() - return subarr + # error: Incompatible return value type (got "ExtensionArray", expected + # "ndarray") + return subarr # type: ignore[return-value] elif isinstance(data, (list, tuple, abc.Set, abc.ValuesView)) and len(data) > 0: # TODO: deque, array.array @@ -526,7 +540,10 @@ def sanitize_array( subarr = _try_cast(data, dtype, copy, raise_cast_failure) else: subarr = maybe_convert_platform(data) - subarr = maybe_cast_to_datetime(subarr, dtype) + # error: Incompatible types in assignment (expression has type + # "Union[ExtensionArray, ndarray, List[Any]]", variable has type + # "ExtensionArray") + subarr = maybe_cast_to_datetime(subarr, dtype) # type: ignore[assignment] elif isinstance(data, range): # GH#16804 @@ -547,7 +564,13 @@ def sanitize_array( subarr = _sanitize_ndim(subarr, data, dtype, index) if not (is_extension_array_dtype(subarr.dtype) or is_extension_array_dtype(dtype)): - subarr = _sanitize_str_dtypes(subarr, data, dtype, copy) + # error: Incompatible types in assignment (expression has type "ndarray", + # variable has type "ExtensionArray") + # error: Argument 1 to "_sanitize_str_dtypes" has incompatible type + # "ExtensionArray"; expected "ndarray" + subarr = _sanitize_str_dtypes( # type: ignore[assignment] + subarr, data, dtype, copy # type: ignore[arg-type] + ) is_object_or_str_dtype = is_object_dtype(dtype) or is_string_dtype(dtype) if is_object_dtype(subarr.dtype) and not is_object_or_str_dtype: @@ -556,7 +579,8 @@ def sanitize_array( subarr = array(subarr) subarr = extract_array(subarr, extract_numpy=True) - return subarr + # error: Incompatible return value type (got "ExtensionArray", expected "ndarray") + return subarr # type: ignore[return-value] def _sanitize_ndim( @@ -577,11 +601,25 @@ def _sanitize_ndim( raise ValueError("Data must be 1-dimensional") if is_object_dtype(dtype) and isinstance(dtype, ExtensionDtype): # i.e. PandasDtype("O") - result = com.asarray_tuplesafe(data, dtype=object) + + # error: Incompatible types in assignment (expression has type "ndarray", + # variable has type "ExtensionArray") + # error: Argument "dtype" to "asarray_tuplesafe" has incompatible type + # "Type[object]"; expected "Union[str, dtype[Any], None]" + result = com.asarray_tuplesafe( # type: ignore[assignment] + data, dtype=object # type: ignore[arg-type] + ) cls = dtype.construct_array_type() result = cls._from_sequence(result, dtype=dtype) else: - result = com.asarray_tuplesafe(data, dtype=dtype) + # error: Incompatible types in assignment (expression has type "ndarray", + # variable has type "ExtensionArray") + # error: Argument "dtype" to "asarray_tuplesafe" has incompatible type + # "Union[dtype[Any], ExtensionDtype, None]"; expected "Union[str, + # dtype[Any], None]" + result = com.asarray_tuplesafe( # type: ignore[assignment] + data, dtype=dtype # type: ignore[arg-type] + ) return result @@ -600,7 +638,11 @@ def _sanitize_str_dtypes( # GH#19853: If data is a scalar, result has already the result if not lib.is_scalar(data): if not np.all(isna(data)): - data = np.array(data, dtype=dtype, copy=False) + # error: Argument "dtype" to "array" has incompatible type + # "Union[dtype[Any], ExtensionDtype, None]"; expected "Union[dtype[Any], + # None, type, _SupportsDType, str, Union[Tuple[Any, int], Tuple[Any, + # Union[int, Sequence[int]]], List[Any], _DTypeDict, Tuple[Any, Any]]]" + data = np.array(data, dtype=dtype, copy=False) # type: ignore[arg-type] result = np.array(data, dtype=object, copy=copy) return result @@ -647,7 +689,9 @@ def _try_cast( and not copy and dtype is None ): - return arr + # error: Incompatible return value type (got "ndarray", expected + # "ExtensionArray") + return arr # type: ignore[return-value] if isinstance(dtype, ExtensionDtype) and (dtype.kind != "M" or is_sparse(dtype)): # create an extension array from its dtype @@ -666,7 +710,12 @@ def _try_cast( # that we can convert the data to the requested dtype. if is_integer_dtype(dtype): # this will raise if we have e.g. floats - maybe_cast_to_integer_array(arr, dtype) + + # error: Argument 2 to "maybe_cast_to_integer_array" has incompatible type + # "Union[dtype, ExtensionDtype, None]"; expected "Union[ExtensionDtype, str, + # dtype, Type[str], Type[float], Type[int], Type[complex], Type[bool], + # Type[object]]" + maybe_cast_to_integer_array(arr, dtype) # type: ignore[arg-type] subarr = arr else: subarr = maybe_cast_to_datetime(arr, dtype) diff --git a/pandas/core/describe.py b/pandas/core/describe.py index 3a872c6202e04..57a33e7f90e51 100644 --- a/pandas/core/describe.py +++ b/pandas/core/describe.py @@ -192,7 +192,9 @@ def _select_data(self): # when some numerics are found, keep only numerics default_include = [np.number] if self.datetime_is_numeric: - default_include.append("datetime") + # error: Argument 1 to "append" of "list" has incompatible type "str"; + # expected "Type[number[Any]]" + default_include.append("datetime") # type: ignore[arg-type] data = self.obj.select_dtypes(include=default_include) if len(data.columns) == 0: data = self.obj @@ -232,7 +234,10 @@ def describe_numeric_1d(series: Series, percentiles: Sequence[float]) -> Series: """ from pandas import Series - formatted_percentiles = format_percentiles(percentiles) + # error: Argument 1 to "format_percentiles" has incompatible type "Sequence[float]"; + # expected "Union[ndarray, List[Union[int, float]], List[float], List[Union[str, + # float]]]" + formatted_percentiles = format_percentiles(percentiles) # type: ignore[arg-type] stat_index = ["count", "mean", "std", "min"] + formatted_percentiles + ["max"] d = ( @@ -336,7 +341,10 @@ def describe_timestamp_1d(data: Series, percentiles: Sequence[float]) -> Series: # GH-30164 from pandas import Series - formatted_percentiles = format_percentiles(percentiles) + # error: Argument 1 to "format_percentiles" has incompatible type "Sequence[float]"; + # expected "Union[ndarray, List[Union[int, float]], List[float], List[Union[str, + # float]]]" + formatted_percentiles = format_percentiles(percentiles) # type: ignore[arg-type] stat_index = ["count", "mean", "min"] + formatted_percentiles + ["max"] d = ( @@ -392,7 +400,9 @@ def refine_percentiles(percentiles: Optional[Sequence[float]]) -> Sequence[float The percentiles to include in the output. """ if percentiles is None: - return np.array([0.25, 0.5, 0.75]) + # error: Incompatible return value type (got "ndarray", expected + # "Sequence[float]") + return np.array([0.25, 0.5, 0.75]) # type: ignore[return-value] # explicit conversion of `percentiles` to list percentiles = list(percentiles) @@ -404,7 +414,9 @@ def refine_percentiles(percentiles: Optional[Sequence[float]]) -> Sequence[float if 0.5 not in percentiles: percentiles.append(0.5) - percentiles = np.asarray(percentiles) + # error: Incompatible types in assignment (expression has type "ndarray", variable + # has type "Optional[Sequence[float]]") + percentiles = np.asarray(percentiles) # type: ignore[assignment] # sort and check for duplicates unique_pcts = np.unique(percentiles) diff --git a/pandas/core/dtypes/cast.py b/pandas/core/dtypes/cast.py index 6eca89e1a8744..c5d672b207369 100644 --- a/pandas/core/dtypes/cast.py +++ b/pandas/core/dtypes/cast.py @@ -128,12 +128,16 @@ def maybe_convert_platform( else: # The caller is responsible for ensuring that we have np.ndarray # or ExtensionArray here. - arr = values + + # error: Incompatible types in assignment (expression has type "Union[ndarray, + # ExtensionArray]", variable has type "ndarray") + arr = values # type: ignore[assignment] if arr.dtype == object: arr = lib.maybe_convert_objects(arr) - return arr + # error: Incompatible return value type (got "ndarray", expected "ExtensionArray") + return arr # type: ignore[return-value] def is_nested_object(obj) -> bool: @@ -279,7 +283,9 @@ def maybe_downcast_to_dtype( with suppress(TypeError): # e.g. TypeError: int() argument must be a string, a # bytes-like object or a number, not 'Period - return PeriodArray(result, freq=dtype.freq) + + # error: "dtype[Any]" has no attribute "freq" + return PeriodArray(result, freq=dtype.freq) # type: ignore[attr-defined] converted = maybe_downcast_numeric(result, dtype, do_round) if converted is not result: @@ -406,11 +412,20 @@ def maybe_cast_result( ): # We have to special case categorical so as not to upcast # things like counts back to categorical - cls = dtype.construct_array_type() - result = maybe_cast_to_extension_array(cls, result, dtype=dtype) + + # error: Item "dtype[Any]" of "Union[dtype[Any], ExtensionDtype]" has no + # attribute "construct_array_type" + cls = dtype.construct_array_type() # type: ignore[union-attr] + # error: Argument "dtype" to "maybe_cast_to_extension_array" has incompatible + # type "Union[dtype[Any], ExtensionDtype]"; expected "Optional[ExtensionDtype]" + result = maybe_cast_to_extension_array( + cls, result, dtype=dtype # type: ignore[arg-type] + ) elif numeric_only and is_numeric_dtype(dtype) or not numeric_only: - result = maybe_downcast_to_dtype(result, dtype) + # error: Argument 2 to "maybe_downcast_to_dtype" has incompatible type + # "Union[dtype[Any], ExtensionDtype]"; expected "Union[str, dtype[Any]]" + result = maybe_downcast_to_dtype(result, dtype) # type: ignore[arg-type] return result @@ -532,7 +547,11 @@ def maybe_upcast_putmask(result: np.ndarray, mask: np.ndarray) -> np.ndarray: new_dtype = ensure_dtype_can_hold_na(result.dtype) if new_dtype != result.dtype: - result = result.astype(new_dtype, copy=True) + # error: Argument 1 to "astype" of "_ArrayOrScalarCommon" has incompatible + # type "Union[dtype[Any], ExtensionDtype]"; expected "Union[dtype[Any], + # None, type, _SupportsDType, str, Union[Tuple[Any, int], Tuple[Any, + # Union[int, Sequence[int]]], List[Any], _DTypeDict, Tuple[Any, Any]]]" + result = result.astype(new_dtype, copy=True) # type: ignore[arg-type] np.place(result, mask, np.nan) @@ -615,7 +634,9 @@ def _maybe_promote(dtype: np.dtype, fill_value=np.nan): kinds = ["i", "u", "f", "c", "m", "M"] if is_valid_na_for_dtype(fill_value, dtype) and dtype.kind in kinds: - dtype = ensure_dtype_can_hold_na(dtype) + # error: Incompatible types in assignment (expression has type + # "Union[dtype[Any], ExtensionDtype]", variable has type "dtype[Any]") + dtype = ensure_dtype_can_hold_na(dtype) # type: ignore[assignment] fv = na_value_for_dtype(dtype) return dtype, fv @@ -666,13 +687,15 @@ def _maybe_promote(dtype: np.dtype, fill_value=np.nan): if fv.tz is None: return dtype, fv.asm8 - return np.dtype(object), fill_value + # error: Value of type variable "_DTypeScalar" of "dtype" cannot be "object" + return np.dtype(object), fill_value # type: ignore[type-var] elif issubclass(dtype.type, np.timedelta64): inferred, fv = infer_dtype_from_scalar(fill_value, pandas_dtype=True) if inferred == dtype: return dtype, fv - return np.dtype(object), fill_value + # error: Value of type variable "_DTypeScalar" of "dtype" cannot be "object" + return np.dtype(object), fill_value # type: ignore[type-var] elif is_float(fill_value): if issubclass(dtype.type, np.bool_): @@ -916,7 +939,9 @@ def infer_dtype_from_array( (dtype('O'), [1, '1']) """ if isinstance(arr, np.ndarray): - return arr.dtype, arr + # error: Incompatible return value type (got "Tuple[dtype, ndarray]", expected + # "Tuple[Union[dtype, ExtensionDtype], ExtensionArray]") + return arr.dtype, arr # type: ignore[return-value] if not is_list_like(arr): raise TypeError("'arr' must be list-like") @@ -925,7 +950,9 @@ def infer_dtype_from_array( return arr.dtype, arr elif isinstance(arr, ABCSeries): - return arr.dtype, np.asarray(arr) + # error: Incompatible return value type (got "Tuple[Any, ndarray]", expected + # "Tuple[Union[dtype, ExtensionDtype], ExtensionArray]") + return arr.dtype, np.asarray(arr) # type: ignore[return-value] # don't force numpy coerce with nan's inferred = lib.infer_dtype(arr, skipna=False) @@ -1005,7 +1032,14 @@ def invalidate_string_dtypes(dtype_set: Set[DtypeObj]): Change string like dtypes to object for ``DataFrame.select_dtypes()``. """ - non_string_dtypes = dtype_set - {np.dtype("S").type, np.dtype(" has incompatible type "Type[generic]"; expected + # "Union[dtype[Any], ExtensionDtype, None]" + # error: Argument 2 to has incompatible type "Type[generic]"; expected + # "Union[dtype[Any], ExtensionDtype, None]" + non_string_dtypes = dtype_set - { + np.dtype("S").type, # type: ignore[arg-type] + np.dtype(" ArrayLike: @@ -1286,7 +1366,11 @@ def astype_array(values: ArrayLike, dtype: DtypeObj, copy: bool = False) -> Arra raise TypeError(msg) if is_datetime64tz_dtype(dtype) and is_datetime64_dtype(values.dtype): - return astype_dt64_to_dt64tz(values, dtype, copy, via_utc=True) + # error: Incompatible return value type (got "DatetimeArray", expected + # "ndarray") + return astype_dt64_to_dt64tz( # type: ignore[return-value] + values, dtype, copy, via_utc=True + ) if is_dtype_equal(values.dtype, dtype): if copy: @@ -1297,11 +1381,19 @@ def astype_array(values: ArrayLike, dtype: DtypeObj, copy: bool = False) -> Arra values = values.astype(dtype, copy=copy) else: - values = astype_nansafe(values, dtype, copy=copy) + # error: Incompatible types in assignment (expression has type "ExtensionArray", + # variable has type "ndarray") + # error: Argument 1 to "astype_nansafe" has incompatible type "ExtensionArray"; + # expected "ndarray" + values = astype_nansafe( # type: ignore[assignment] + values, dtype, copy=copy # type: ignore[arg-type] + ) # in pandas we don't store numpy str dtypes, so convert to object if isinstance(dtype, np.dtype) and issubclass(values.dtype.type, str): - values = np.array(values, dtype=object) + # error: Incompatible types in assignment (expression has type "ndarray", + # variable has type "ExtensionArray") + values = np.array(values, dtype=object) # type: ignore[assignment] return values @@ -1402,7 +1494,9 @@ def soft_convert_objects( values, convert_datetime=datetime, convert_timedelta=timedelta ) except (OutOfBoundsDatetime, ValueError): - return values + # error: Incompatible return value type (got "ndarray", expected + # "ExtensionArray") + return values # type: ignore[return-value] if numeric and is_object_dtype(values.dtype): converted = lib.maybe_convert_numeric(values, set(), coerce_numeric=True) @@ -1411,7 +1505,8 @@ def soft_convert_objects( values = converted if not isna(converted).all() else values values = values.copy() if copy else values - return values + # error: Incompatible return value type (got "ndarray", expected "ExtensionArray") + return values # type: ignore[return-value] def convert_dtypes( @@ -1562,12 +1657,20 @@ def try_datetime(v: np.ndarray) -> ArrayLike: dta = sequence_to_datetimes(v, require_iso8601=True, allow_object=True) except (ValueError, TypeError): # e.g. is not convertible to datetime - return v.reshape(shape) + + # error: Incompatible return value type (got "ndarray", expected + # "ExtensionArray") + return v.reshape(shape) # type: ignore[return-value] else: # GH#19761 we may have mixed timezones, in which cast 'dta' is # an ndarray[object]. Only 1 test # relies on this behavior, see GH#40111 - return dta.reshape(shape) + + # error: Incompatible return value type (got "Union[ndarray, + # DatetimeArray]", expected "ExtensionArray") + # error: Incompatible return value type (got "Union[ndarray, + # DatetimeArray]", expected "ndarray") + return dta.reshape(shape) # type: ignore[return-value] def try_timedelta(v: np.ndarray) -> np.ndarray: # safe coerce to timedelta64 @@ -1586,14 +1689,18 @@ def try_timedelta(v: np.ndarray) -> np.ndarray: inferred_type = lib.infer_datetimelike_array(ensure_object(v)) if inferred_type == "datetime": - value = try_datetime(v) + # error: Incompatible types in assignment (expression has type "ExtensionArray", + # variable has type "Union[ndarray, List[Any]]") + value = try_datetime(v) # type: ignore[assignment] elif inferred_type == "timedelta": value = try_timedelta(v) elif inferred_type == "nat": # if all NaT, return as datetime if isna(v).all(): - value = try_datetime(v) + # error: Incompatible types in assignment (expression has type + # "ExtensionArray", variable has type "Union[ndarray, List[Any]]") + value = try_datetime(v) # type: ignore[assignment] else: # We have at least a NaT and a string @@ -1603,7 +1710,10 @@ def try_timedelta(v: np.ndarray) -> np.ndarray: if lib.infer_dtype(value, skipna=False) in ["mixed"]: # cannot skip missing values, as NaT implies that the string # is actually a datetime - value = try_datetime(v) + + # error: Incompatible types in assignment (expression has type + # "ExtensionArray", variable has type "Union[ndarray, List[Any]]") + value = try_datetime(v) # type: ignore[assignment] return value @@ -1643,10 +1753,16 @@ def maybe_cast_to_datetime( dta = sequence_to_datetimes(value, allow_object=False) # GH 25843: Remove tz information since the dtype # didn't specify one - if dta.tz is not None: + + # error: Item "ndarray" of "Union[ndarray, DatetimeArray]" + # has no attribute "tz" + if dta.tz is not None: # type: ignore[union-attr] # equiv: dta.view(dtype) # Note: NOT equivalent to dta.astype(dtype) - dta = dta.tz_localize(None) + + # error: Item "ndarray" of "Union[ndarray, + # DatetimeArray]" has no attribute "tz_localize" + dta = dta.tz_localize(None) # type: ignore[union-attr] value = dta elif is_datetime64tz: dtype = cast(DatetimeTZDtype, dtype) @@ -1656,17 +1772,38 @@ def maybe_cast_to_datetime( # be localized to the timezone. is_dt_string = is_string_dtype(value.dtype) dta = sequence_to_datetimes(value, allow_object=False) - if dta.tz is not None: - value = dta.astype(dtype, copy=False) + # error: Item "ndarray" of "Union[ndarray, DatetimeArray]" + # has no attribute "tz" + if dta.tz is not None: # type: ignore[union-attr] + # error: Argument 1 to "astype" of + # "_ArrayOrScalarCommon" has incompatible type + # "Union[dtype[Any], ExtensionDtype, None]"; expected + # "Union[dtype[Any], None, type, _SupportsDType, str, + # Union[Tuple[Any, int], Tuple[Any, Union[int, + # Sequence[int]]], List[Any], _DTypeDict, Tuple[Any, + # Any]]]" + value = dta.astype( + dtype, copy=False # type: ignore[arg-type] + ) elif is_dt_string: # Strings here are naive, so directly localize # equiv: dta.astype(dtype) # though deprecated - value = dta.tz_localize(dtype.tz) + + # error: Item "ndarray" of "Union[ndarray, + # DatetimeArray]" has no attribute "tz_localize" + value = dta.tz_localize( # type: ignore[union-attr] + dtype.tz + ) else: # Numeric values are UTC at this point, # so localize and convert # equiv: Series(dta).astype(dtype) # though deprecated - value = dta.tz_localize("UTC").tz_convert(dtype.tz) + + # error: Item "ndarray" of "Union[ndarray, + # DatetimeArray]" has no attribute "tz_localize" + value = dta.tz_localize( # type: ignore[union-attr] + "UTC" + ).tz_convert(dtype.tz) elif is_timedelta64: # if successful, we get a ndarray[td64ns] value, _ = sequence_to_td64ns(value) @@ -1703,7 +1840,10 @@ def maybe_cast_to_datetime( # only do this if we have an array and the dtype of the array is not # setup already we are not an integer/object, so don't bother with this # conversion - value = maybe_infer_to_datetimelike(value) + + # error: Argument 1 to "maybe_infer_to_datetimelike" has incompatible type + # "Union[ExtensionArray, List[Any]]"; expected "Union[ndarray, List[Any]]" + value = maybe_infer_to_datetimelike(value) # type: ignore[arg-type] return value @@ -1820,7 +1960,11 @@ def find_common_type(types: List[DtypeObj]) -> DtypeObj: if is_integer_dtype(t) or is_float_dtype(t) or is_complex_dtype(t): return np.dtype("object") - return np.find_common_type(types, []) + # error: Argument 1 to "find_common_type" has incompatible type + # "List[Union[dtype, ExtensionDtype]]"; expected "Sequence[Union[dtype, + # None, type, _SupportsDtype, str, Tuple[Any, int], Tuple[Any, Union[int, + # Sequence[int]]], List[Any], _DtypeDict, Tuple[Any, Any]]]" + return np.find_common_type(types, []) # type: ignore[arg-type] def construct_2d_arraylike_from_scalar( @@ -1878,7 +2022,9 @@ def construct_1d_arraylike_from_scalar( dtype = np.dtype(object) if is_extension_array_dtype(dtype): - cls = dtype.construct_array_type() + # error: Item "dtype" of "Union[dtype, ExtensionDtype]" has no + # attribute "construct_array_type" + cls = dtype.construct_array_type() # type: ignore[union-attr] subarr = cls._from_sequence([value] * length, dtype=dtype) else: @@ -1895,7 +2041,11 @@ def construct_1d_arraylike_from_scalar( elif dtype.kind in ["M", "m"]: value = maybe_unbox_datetimelike(value, dtype) - subarr = np.empty(length, dtype=dtype) + # error: Argument "dtype" to "empty" has incompatible type + # "Union[dtype, ExtensionDtype]"; expected "Union[dtype, None, type, + # _SupportsDtype, str, Tuple[Any, int], Tuple[Any, Union[int, + # Sequence[int]]], List[Any], _DtypeDict, Tuple[Any, Any]]" + subarr = np.empty(length, dtype=dtype) # type: ignore[arg-type] subarr.fill(value) return subarr @@ -1967,7 +2117,11 @@ def construct_1d_ndarray_preserving_na( # TODO(numpy#12550): special-case can be removed subarr = construct_1d_object_array_from_listlike(list(values)) else: - subarr = np.array(values, dtype=dtype, copy=copy) + # error: Argument "dtype" to "array" has incompatible type + # "Union[dtype[Any], ExtensionDtype, None]"; expected "Union[dtype[Any], + # None, type, _SupportsDType, str, Union[Tuple[Any, int], Tuple[Any, + # Union[int, Sequence[int]]], List[Any], _DTypeDict, Tuple[Any, Any]]]" + subarr = np.array(values, dtype=dtype, copy=copy) # type: ignore[arg-type] return subarr diff --git a/pandas/core/dtypes/common.py b/pandas/core/dtypes/common.py index 0966d0b93cc25..68c8d35810b7e 100644 --- a/pandas/core/dtypes/common.py +++ b/pandas/core/dtypes/common.py @@ -165,7 +165,10 @@ def ensure_int_or_float(arr: ArrayLike, copy: bool = False) -> np.ndarray: return arr.astype("uint64", copy=copy, casting="safe") # type: ignore[call-arg] except TypeError: if is_extension_array_dtype(arr.dtype): - return arr.to_numpy(dtype="float64", na_value=np.nan) + # error: "ndarray" has no attribute "to_numpy" + return arr.to_numpy( # type: ignore[attr-defined] + dtype="float64", na_value=np.nan + ) return arr.astype("float64", copy=copy) @@ -1718,7 +1721,10 @@ def infer_dtype_from_object(dtype) -> DtypeObj: """ if isinstance(dtype, type) and issubclass(dtype, np.generic): # Type object from a dtype - return dtype + + # error: Incompatible return value type (got "Type[generic]", expected + # "Union[dtype[Any], ExtensionDtype]") + return dtype # type: ignore[return-value] elif isinstance(dtype, (np.dtype, ExtensionDtype)): # dtype object try: @@ -1726,7 +1732,9 @@ def infer_dtype_from_object(dtype) -> DtypeObj: except TypeError: # Should still pass if we don't have a date-like pass - return dtype.type + # error: Incompatible return value type (got "Union[Type[generic], Type[Any]]", + # expected "Union[dtype[Any], ExtensionDtype]") + return dtype.type # type: ignore[return-value] try: dtype = pandas_dtype(dtype) @@ -1740,7 +1748,9 @@ def infer_dtype_from_object(dtype) -> DtypeObj: # TODO(jreback) # should deprecate these if dtype in ["datetimetz", "datetime64tz"]: - return DatetimeTZDtype.type + # error: Incompatible return value type (got "Type[Any]", expected + # "Union[dtype[Any], ExtensionDtype]") + return DatetimeTZDtype.type # type: ignore[return-value] elif dtype in ["period"]: raise NotImplementedError @@ -1837,7 +1847,9 @@ def pandas_dtype(dtype) -> DtypeObj: # registered extension types result = registry.find(dtype) if result is not None: - return result + # error: Incompatible return value type (got "Type[ExtensionDtype]", + # expected "Union[dtype, ExtensionDtype]") + return result # type: ignore[return-value] # try a numpy dtype # raise a consistent TypeError if failed diff --git a/pandas/core/dtypes/concat.py b/pandas/core/dtypes/concat.py index 1545b5b106803..06fc1918b5ecf 100644 --- a/pandas/core/dtypes/concat.py +++ b/pandas/core/dtypes/concat.py @@ -51,8 +51,12 @@ def _cast_to_common_type(arr: ArrayLike, dtype: DtypeObj) -> ArrayLike: # problem case: SparseArray.astype(dtype) doesn't follow the specified # dtype exactly, but converts this to Sparse[dtype] -> first manually # convert to dense array - arr = cast(SparseArray, arr) - return arr.to_dense().astype(dtype, copy=False) + + # error: Incompatible types in assignment (expression has type + # "SparseArray", variable has type "ndarray") + arr = cast(SparseArray, arr) # type: ignore[assignment] + # error: "ndarray" has no attribute "to_dense" + return arr.to_dense().astype(dtype, copy=False) # type: ignore[attr-defined] if ( isinstance(arr, np.ndarray) @@ -67,7 +71,11 @@ def _cast_to_common_type(arr: ArrayLike, dtype: DtypeObj) -> ArrayLike: if is_extension_array_dtype(dtype) and isinstance(arr, np.ndarray): # numpy's astype cannot handle ExtensionDtypes return pd_array(arr, dtype=dtype, copy=False) - return arr.astype(dtype, copy=False) + # error: Argument 1 to "astype" of "_ArrayOrScalarCommon" has incompatible type + # "Union[dtype[Any], ExtensionDtype]"; expected "Union[dtype[Any], None, type, + # _SupportsDType, str, Union[Tuple[Any, int], Tuple[Any, Union[int, Sequence[int]]], + # List[Any], _DTypeDict, Tuple[Any, Any]]]" + return arr.astype(dtype, copy=False) # type: ignore[arg-type] def concat_compat(to_concat, axis: int = 0, ea_compat_axis: bool = False): diff --git a/pandas/core/dtypes/dtypes.py b/pandas/core/dtypes/dtypes.py index da3a9269cf2c4..d44d2a564fb78 100644 --- a/pandas/core/dtypes/dtypes.py +++ b/pandas/core/dtypes/dtypes.py @@ -180,7 +180,9 @@ class CategoricalDtype(PandasExtensionDtype, ExtensionDtype): type: Type[CategoricalDtypeType] = CategoricalDtypeType kind: str_type = "O" str = "|O08" - base = np.dtype("O") + # error: Incompatible types in assignment (expression has type "dtype", + # base class "PandasExtensionDtype" defined the type as "None") + base = np.dtype("O") # type: ignore[assignment] _metadata = ("categories", "ordered") _cache: Dict[str_type, PandasExtensionDtype] = {} @@ -467,8 +469,14 @@ def _hash_categories(categories, ordered: Ordered = True) -> int: [cat_array, np.arange(len(cat_array), dtype=cat_array.dtype)] ) else: - cat_array = [cat_array] - hashed = combine_hash_arrays(iter(cat_array), num_items=len(cat_array)) + # error: Incompatible types in assignment (expression has type + # "List[ndarray]", variable has type "ndarray") + cat_array = [cat_array] # type: ignore[assignment] + # error: Incompatible types in assignment (expression has type "ndarray", + # variable has type "int") + hashed = combine_hash_arrays( # type: ignore[assignment] + iter(cat_array), num_items=len(cat_array) + ) return np.bitwise_xor.reduce(hashed) @classmethod @@ -668,7 +676,9 @@ class DatetimeTZDtype(PandasExtensionDtype): kind: str_type = "M" str = "|M8[ns]" num = 101 - base = np.dtype("M8[ns]") + # error: Incompatible types in assignment (expression has type "dtype", + # base class "PandasExtensionDtype" defined the type as "None") + base = np.dtype("M8[ns]") # type: ignore[assignment] na_value = NaT _metadata = ("unit", "tz") _match = re.compile(r"(datetime64|M8)\[(?P.+), (?P.+)\]") @@ -834,7 +844,9 @@ class PeriodDtype(dtypes.PeriodDtypeBase, PandasExtensionDtype): type: Type[Period] = Period kind: str_type = "O" str = "|O08" - base = np.dtype("O") + # error: Incompatible types in assignment (expression has type "dtype", + # base class "PandasExtensionDtype" defined the type as "None") + base = np.dtype("O") # type: ignore[assignment] num = 102 _metadata = ("freq",) _match = re.compile(r"(P|p)eriod\[(?P.+)\]") @@ -1034,7 +1046,9 @@ class IntervalDtype(PandasExtensionDtype): name = "interval" kind: str_type = "O" str = "|O08" - base = np.dtype("O") + # error: Incompatible types in assignment (expression has type "dtype", + # base class "PandasExtensionDtype" defined the type as "None") + base = np.dtype("O") # type: ignore[assignment] num = 103 _metadata = ( "subtype", diff --git a/pandas/core/dtypes/missing.py b/pandas/core/dtypes/missing.py index b4a77337ce9f2..286272b165fb9 100644 --- a/pandas/core/dtypes/missing.py +++ b/pandas/core/dtypes/missing.py @@ -164,9 +164,13 @@ def _isna(obj, inf_as_na: bool = False): elif isinstance(obj, type): return False elif isinstance(obj, (np.ndarray, ABCExtensionArray)): - return _isna_array(obj, inf_as_na=inf_as_na) + # error: Value of type variable "ArrayLike" of "_isna_array" cannot be + # "Union[ndarray, ExtensionArray]" + return _isna_array(obj, inf_as_na=inf_as_na) # type: ignore[type-var] elif isinstance(obj, (ABCSeries, ABCIndex)): - result = _isna_array(obj._values, inf_as_na=inf_as_na) + # error: Value of type variable "ArrayLike" of "_isna_array" cannot be + # "Union[Any, ExtensionArray, ndarray]" + result = _isna_array(obj._values, inf_as_na=inf_as_na) # type: ignore[type-var] # box if isinstance(obj, ABCSeries): result = obj._constructor( @@ -234,19 +238,37 @@ def _isna_array(values: ArrayLike, inf_as_na: bool = False): if is_extension_array_dtype(dtype): if inf_as_na and is_categorical_dtype(dtype): - result = libmissing.isnaobj_old(values.to_numpy()) + # error: "ndarray" has no attribute "to_numpy" + result = libmissing.isnaobj_old( + values.to_numpy() # type: ignore[attr-defined] + ) else: - result = values.isna() + # error: "ndarray" has no attribute "isna" + result = values.isna() # type: ignore[attr-defined] elif is_string_dtype(dtype): - result = _isna_string_dtype(values, dtype, inf_as_na=inf_as_na) + # error: Argument 1 to "_isna_string_dtype" has incompatible type + # "ExtensionArray"; expected "ndarray" + # error: Argument 2 to "_isna_string_dtype" has incompatible type + # "ExtensionDtype"; expected "dtype[Any]" + result = _isna_string_dtype( + values, dtype, inf_as_na=inf_as_na # type: ignore[arg-type] + ) elif needs_i8_conversion(dtype): # this is the NaT pattern result = values.view("i8") == iNaT else: if inf_as_na: - result = ~np.isfinite(values) + # error: Argument 1 to "__call__" of "ufunc" has incompatible type + # "ExtensionArray"; expected "Union[Union[int, float, complex, str, bytes, + # generic], Sequence[Union[int, float, complex, str, bytes, generic]], + # Sequence[Sequence[Any]], _SupportsArray]" + result = ~np.isfinite(values) # type: ignore[arg-type] else: - result = np.isnan(values) + # error: Argument 1 to "__call__" of "ufunc" has incompatible type + # "ExtensionArray"; expected "Union[Union[int, float, complex, str, bytes, + # generic], Sequence[Union[int, float, complex, str, bytes, generic]], + # Sequence[Sequence[Any]], _SupportsArray]" + result = np.isnan(values) # type: ignore[arg-type] return result @@ -573,7 +595,9 @@ def na_value_for_dtype(dtype: DtypeObj, compat: bool = True): """ if is_extension_array_dtype(dtype): - return dtype.na_value + # error: Item "dtype[Any]" of "Union[dtype[Any], ExtensionDtype]" has no + # attribute "na_value" + return dtype.na_value # type: ignore[union-attr] elif needs_i8_conversion(dtype): return dtype.type("NaT", "ns") elif is_float_dtype(dtype): @@ -626,7 +650,8 @@ def is_valid_na_for_dtype(obj, dtype: DtypeObj) -> bool: # Numeric return obj is not NaT and not isinstance(obj, (np.datetime64, np.timedelta64)) - elif dtype == np.dtype(object): + # error: Value of type variable "_DTypeScalar" of "dtype" cannot be "object" + elif dtype == np.dtype(object): # type: ignore[type-var] # This is needed for Categorical, but is kind of weird return True @@ -650,11 +675,22 @@ def isna_all(arr: ArrayLike) -> bool: checker = nan_checker elif dtype.kind in ["m", "M"] or dtype.type is Period: - checker = lambda x: np.asarray(x.view("i8")) == iNaT + # error: Incompatible types in assignment (expression has type + # "Callable[[Any], Any]", variable has type "ufunc") + checker = lambda x: np.asarray(x.view("i8")) == iNaT # type: ignore[assignment] else: - checker = lambda x: _isna_array(x, inf_as_na=INF_AS_NA) + # error: Incompatible types in assignment (expression has type "Callable[[Any], + # Any]", variable has type "ufunc") + checker = lambda x: _isna_array( # type: ignore[assignment] + x, inf_as_na=INF_AS_NA + ) return all( - checker(arr[i : i + chunk_len]).all() for i in range(0, total_len, chunk_len) + # error: Argument 1 to "__call__" of "ufunc" has incompatible type + # "Union[ExtensionArray, Any]"; expected "Union[Union[int, float, complex, str, + # bytes, generic], Sequence[Union[int, float, complex, str, bytes, generic]], + # Sequence[Sequence[Any]], _SupportsArray]" + checker(arr[i : i + chunk_len]).all() # type: ignore[arg-type] + for i in range(0, total_len, chunk_len) ) diff --git a/pandas/core/frame.py b/pandas/core/frame.py index a0c97b0cdd268..de28c04ca0793 100644 --- a/pandas/core/frame.py +++ b/pandas/core/frame.py @@ -584,33 +584,84 @@ def __init__( ) elif isinstance(data, dict): - mgr = dict_to_mgr(data, index, columns, dtype=dtype, typ=manager) + # error: Argument "dtype" to "dict_to_mgr" has incompatible type + # "Union[ExtensionDtype, str, dtype[Any], Type[object], None]"; expected + # "Union[dtype[Any], ExtensionDtype, None]" + mgr = dict_to_mgr( + data, index, columns, dtype=dtype, typ=manager # type: ignore[arg-type] + ) elif isinstance(data, ma.MaskedArray): import numpy.ma.mrecords as mrecords # masked recarray if isinstance(data, mrecords.MaskedRecords): - mgr = rec_array_to_mgr(data, index, columns, dtype, copy, typ=manager) + # error: Argument 4 to "rec_array_to_mgr" has incompatible type + # "Union[ExtensionDtype, str, dtype[Any], Type[object], None]"; expected + # "Union[dtype[Any], ExtensionDtype, None]" + mgr = rec_array_to_mgr( + data, + index, + columns, + dtype, # type: ignore[arg-type] + copy, + typ=manager, + ) # a masked array else: data = sanitize_masked_array(data) mgr = ndarray_to_mgr( - data, index, columns, dtype=dtype, copy=copy, typ=manager + # error: Argument "dtype" to "ndarray_to_mgr" has incompatible type + # "Union[ExtensionDtype, str, dtype[Any], Type[object], None]"; + # expected "Union[dtype[Any], ExtensionDtype, None]" + data, + index, + columns, + dtype=dtype, # type: ignore[arg-type] + copy=copy, + typ=manager, ) elif isinstance(data, (np.ndarray, Series, Index)): if data.dtype.names: # i.e. numpy structured array - mgr = rec_array_to_mgr(data, index, columns, dtype, copy, typ=manager) + + # error: Argument 4 to "rec_array_to_mgr" has incompatible type + # "Union[ExtensionDtype, str, dtype[Any], Type[object], None]"; expected + # "Union[dtype[Any], ExtensionDtype, None]" + mgr = rec_array_to_mgr( + data, + index, + columns, + dtype, # type: ignore[arg-type] + copy, + typ=manager, + ) elif getattr(data, "name", None) is not None: # i.e. Series/Index with non-None name mgr = dict_to_mgr( - {data.name: data}, index, columns, dtype=dtype, typ=manager + # error: Item "ndarray" of "Union[ndarray, Series, Index]" has no + # attribute "name" + # error: Argument "dtype" to "dict_to_mgr" has incompatible type + # "Union[ExtensionDtype, str, dtype[Any], Type[object], None]"; + # expected "Union[dtype[Any], ExtensionDtype, None]" + {data.name: data}, # type: ignore[union-attr] + index, + columns, + dtype=dtype, # type: ignore[arg-type] + typ=manager, ) else: mgr = ndarray_to_mgr( - data, index, columns, dtype=dtype, copy=copy, typ=manager + # error: Argument "dtype" to "ndarray_to_mgr" has incompatible type + # "Union[ExtensionDtype, str, dtype[Any], Type[object], None]"; + # expected "Union[dtype[Any], ExtensionDtype, None]" + data, + index, + columns, + dtype=dtype, # type: ignore[arg-type] + copy=copy, + typ=manager, ) # For data is list-like, or Iterable (will consume into list) @@ -622,19 +673,54 @@ def __init__( data = dataclasses_to_dicts(data) if treat_as_nested(data): if columns is not None: - columns = ensure_index(columns) + # error: Value of type variable "AnyArrayLike" of "ensure_index" + # cannot be "Collection[Any]" + columns = ensure_index(columns) # type: ignore[type-var] arrays, columns, index = nested_data_to_arrays( - data, columns, index, dtype + # error: Argument 3 to "nested_data_to_arrays" has incompatible + # type "Optional[Collection[Any]]"; expected "Optional[Index]" + # error: Argument 4 to "nested_data_to_arrays" has incompatible + # type "Union[ExtensionDtype, str, dtype[Any], Type[object], + # None]"; expected "Union[dtype[Any], ExtensionDtype, None]" + data, + columns, + index, # type: ignore[arg-type] + dtype, # type: ignore[arg-type] ) mgr = arrays_to_mgr( - arrays, columns, index, columns, dtype=dtype, typ=manager + # error: Argument "dtype" to "arrays_to_mgr" has incompatible + # type "Union[ExtensionDtype, str, dtype[Any], Type[object], + # None]"; expected "Union[dtype[Any], ExtensionDtype, None]" + arrays, + columns, + index, + columns, + dtype=dtype, # type: ignore[arg-type] + typ=manager, ) else: mgr = ndarray_to_mgr( - data, index, columns, dtype=dtype, copy=copy, typ=manager + # error: Argument "dtype" to "ndarray_to_mgr" has incompatible + # type "Union[ExtensionDtype, str, dtype[Any], Type[object], + # None]"; expected "Union[dtype[Any], ExtensionDtype, None]" + data, + index, + columns, + dtype=dtype, # type: ignore[arg-type] + copy=copy, + typ=manager, ) else: - mgr = dict_to_mgr({}, index, columns, dtype=dtype, typ=manager) + # error: Argument "dtype" to "dict_to_mgr" has incompatible type + # "Union[ExtensionDtype, str, dtype[Any], Type[object], None]"; expected + # "Union[dtype[Any], ExtensionDtype, None]" + mgr = dict_to_mgr( + {}, + index, + columns, + dtype=dtype, # type: ignore[arg-type] + typ=manager, + ) # For data is scalar else: if index is None or columns is None: @@ -648,19 +734,39 @@ def __init__( # TODO(EA2D): special case not needed with 2D EAs values = [ - construct_1d_arraylike_from_scalar(data, len(index), dtype) + # error: Argument 3 to "construct_1d_arraylike_from_scalar" + # has incompatible type "Union[ExtensionDtype, str, dtype, + # Type[object]]"; expected "Union[dtype, ExtensionDtype]" + construct_1d_arraylike_from_scalar( + data, len(index), dtype # type: ignore[arg-type] + ) for _ in range(len(columns)) ] mgr = arrays_to_mgr( values, columns, index, columns, dtype=None, typ=manager ) else: - values = construct_2d_arraylike_from_scalar( - data, len(index), len(columns), dtype, copy + # error: Incompatible types in assignment (expression has type + # "ndarray", variable has type "List[ExtensionArray]") + values = construct_2d_arraylike_from_scalar( # type: ignore[assignment] + # error: Argument 4 to "construct_2d_arraylike_from_scalar" has + # incompatible type "Union[ExtensionDtype, str, dtype[Any], + # Type[object]]"; expected "dtype[Any]" + data, + len(index), + len(columns), + dtype, # type: ignore[arg-type] + copy, ) mgr = ndarray_to_mgr( - values, index, columns, dtype=values.dtype, copy=False, typ=manager + # error: "List[ExtensionArray]" has no attribute "dtype" + values, + index, + columns, + dtype=values.dtype, # type: ignore[attr-defined] + copy=False, + typ=manager, ) # ensure correct Manager type according to settings @@ -1230,17 +1336,19 @@ def __len__(self) -> int: """ return len(self.index) - # error: Overloaded function signatures 1 and 2 overlap with incompatible return - # types @overload - def dot(self, other: Series) -> Series: # type: ignore[misc] + def dot(self, other: Series) -> Series: ... @overload def dot(self, other: Union[DataFrame, Index, ArrayLike]) -> DataFrame: ... - def dot(self, other: Union[AnyArrayLike, FrameOrSeriesUnion]) -> FrameOrSeriesUnion: + # error: Overloaded function implementation cannot satisfy signature 2 due to + # inconsistencies in how they use type variables + def dot( # type: ignore[misc] + self, other: Union[AnyArrayLike, FrameOrSeriesUnion] + ) -> FrameOrSeriesUnion: """ Compute the matrix multiplication between the DataFrame and other. @@ -2085,7 +2193,9 @@ def to_records( # array of tuples to numpy cols. copy copy copy ix_vals = list(map(np.array, zip(*self.index._values))) else: - ix_vals = [self.index.values] + # error: List item 0 has incompatible type "ArrayLike"; expected + # "ndarray" + ix_vals = [self.index.values] # type: ignore[list-item] arrays = ix_vals + [ np.asarray(self.iloc[:, i]) for i in range(len(self.columns)) @@ -2152,7 +2262,9 @@ def to_records( if dtype_mapping is None: formats.append(v.dtype) elif isinstance(dtype_mapping, (type, np.dtype, str)): - formats.append(dtype_mapping) + # error: Argument 1 to "append" of "list" has incompatible type + # "Union[type, dtype, str]"; expected "dtype" + formats.append(dtype_mapping) # type: ignore[arg-type] else: element = "row" if i < index_len else "column" msg = f"Invalid dtype {dtype_mapping} specified for {element} {name}" @@ -3217,7 +3329,9 @@ def transpose(self, *args, copy: bool = False) -> DataFrame: ) else: - new_values = self.values.T + # error: Incompatible types in assignment (expression has type + # "ndarray", variable has type "List[Any]") + new_values = self.values.T # type: ignore[assignment] if copy: new_values = new_values.copy() result = self._constructor( @@ -3276,7 +3390,9 @@ def _get_column_array(self, i: int) -> ArrayLike: Get the values of the i'th column (ndarray or ExtensionArray, as stored in the Block) """ - return self._mgr.iget_values(i) + # error: Incompatible return value type (got "ExtensionArray", expected + # "ndarray") + return self._mgr.iget_values(i) # type: ignore[return-value] def _iter_column_arrays(self) -> Iterator[ArrayLike]: """ @@ -3284,7 +3400,9 @@ def _iter_column_arrays(self) -> Iterator[ArrayLike]: This returns the values as stored in the Block (ndarray or ExtensionArray). """ for i in range(len(self.columns)): - yield self._get_column_array(i) + # error: Incompatible types in "yield" (actual type + # "ExtensionArray", expected type "ndarray") + yield self._get_column_array(i) # type: ignore[misc] def __getitem__(self, key): key = lib.item_from_zerodim(key) @@ -3543,7 +3661,10 @@ def _set_item_frame_value(self, key, value: DataFrame) -> None: value = value.reindex(cols, axis=1) # now align rows - value = _reindex_for_setitem(value, self.index) + + # error: Incompatible types in assignment (expression has type "ExtensionArray", + # variable has type "DataFrame") + value = _reindex_for_setitem(value, self.index) # type: ignore[assignment] self._set_item_mgr(key, value) def _iset_item_mgr(self, loc: int, value) -> None: @@ -4052,9 +4173,16 @@ def check_int_infer_dtype(dtypes): # see https://github.com/numpy/numpy/issues/9464 if (isinstance(dtype, str) and dtype == "int") or (dtype is int): converted_dtypes.append(np.int32) - converted_dtypes.append(np.int64) + # error: Argument 1 to "append" of "list" has incompatible type + # "Type[signedinteger[Any]]"; expected "Type[signedinteger[Any]]" + converted_dtypes.append(np.int64) # type: ignore[arg-type] else: - converted_dtypes.append(infer_dtype_from_object(dtype)) + # error: Argument 1 to "append" of "list" has incompatible type + # "Union[dtype[Any], ExtensionDtype]"; expected + # "Type[signedinteger[Any]]" + converted_dtypes.append( + infer_dtype_from_object(dtype) # type: ignore[arg-type] + ) return frozenset(converted_dtypes) include = check_int_infer_dtype(include) @@ -4109,7 +4237,8 @@ def extract_unique_dtypes_from_dtypes_set( ) keep_these &= ~self.dtypes.isin(excluded_dtypes) - return self.iloc[:, keep_these.values] + # error: "ndarray" has no attribute "values" + return self.iloc[:, keep_these.values] # type: ignore[attr-defined] def insert(self, loc, column, value, allow_duplicates: bool = False) -> None: """ @@ -4418,7 +4547,11 @@ def _reindex_multi(self, axes, copy: bool, fill_value) -> DataFrame: if row_indexer is not None and col_indexer is not None: indexer = row_indexer, col_indexer - new_values = take_2d_multi(self.values, indexer, fill_value=fill_value) + # error: Argument 2 to "take_2d_multi" has incompatible type "Tuple[Any, + # Any]"; expected "ndarray" + new_values = take_2d_multi( + self.values, indexer, fill_value=fill_value # type: ignore[arg-type] + ) return self._constructor(new_values, index=new_index, columns=new_columns) else: return self._reindex_with_indexers( @@ -5106,10 +5239,14 @@ def set_index( arrays.append(col) # type:ignore[arg-type] names.append(col.name) elif isinstance(col, (list, np.ndarray)): - arrays.append(col) + # error: Argument 1 to "append" of "list" has incompatible type + # "Union[List[Any], ndarray]"; expected "Index" + arrays.append(col) # type: ignore[arg-type] names.append(None) elif isinstance(col, abc.Iterator): - arrays.append(list(col)) + # error: Argument 1 to "append" of "list" has incompatible type + # "List[Any]"; expected "Index" + arrays.append(list(col)) # type: ignore[arg-type] names.append(None) # from here, col can only be a column label else: @@ -5853,7 +5990,12 @@ def sort_values( # type: ignore[override] # need to rewrap columns in Series to apply key function if key is not None: - keys = [Series(k, name=name) for (k, name) in zip(keys, by)] + # error: List comprehension has incompatible type List[Series]; + # expected List[ndarray] + keys = [ + Series(k, name=name) # type: ignore[misc] + for (k, name) in zip(keys, by) + ] indexer = lexsort_indexer( keys, orders=ascending, na_position=na_position, key=key @@ -5866,7 +6008,9 @@ def sort_values( # type: ignore[override] # need to rewrap column in Series to apply key function if key is not None: - k = Series(k, name=by) + # error: Incompatible types in assignment (expression has type + # "Series", variable has type "ndarray") + k = Series(k, name=by) # type: ignore[assignment] if isinstance(ascending, (tuple, list)): ascending = ascending[0] @@ -10024,7 +10168,9 @@ def _reindex_for_setitem(value: FrameOrSeriesUnion, index: Index) -> ArrayLike: # reindex if necessary if value.index.equals(index) or not len(index): - return value._values.copy() + # error: Incompatible return value type (got "Union[ndarray, Any]", expected + # "ExtensionArray") + return value._values.copy() # type: ignore[return-value] # GH#4107 try: diff --git a/pandas/core/generic.py b/pandas/core/generic.py index cd5c0159e93cb..d2b63c42d777b 100644 --- a/pandas/core/generic.py +++ b/pandas/core/generic.py @@ -666,7 +666,8 @@ def size(self) -> int: >>> df.size 4 """ - return np.prod(self.shape) + # error: Incompatible return value type (got "number", expected "int") + return np.prod(self.shape) # type: ignore[return-value] @final @property @@ -752,11 +753,13 @@ def swapaxes(self: FrameOrSeries, axis1, axis2, copy=True) -> FrameOrSeries: # ignore needed because of NDFrame constructor is different than # DataFrame/Series constructors. return self._constructor( + # error: Argument 1 to "NDFrame" has incompatible type "ndarray"; expected + # "Union[ArrayManager, BlockManager]" # error: Argument 2 to "NDFrame" has incompatible type "*Generator[Index, # None, None]"; expected "bool" [arg-type] # error: Argument 2 to "NDFrame" has incompatible type "*Generator[Index, # None, None]"; expected "Optional[Mapping[Optional[Hashable], Any]]" - new_values, + new_values, # type: ignore[arg-type] *new_axes, # type: ignore[arg-type] ).__finalize__(self, method="swapaxes") @@ -1985,14 +1988,20 @@ def __array_wrap__( # ptp also requires the item_from_zerodim return result d = self._construct_axes_dict(self._AXIS_ORDERS, copy=False) - return self._constructor(result, **d).__finalize__( + # error: Argument 1 to "NDFrame" has incompatible type "ndarray"; + # expected "BlockManager" + return self._constructor(result, **d).__finalize__( # type: ignore[arg-type] self, method="__array_wrap__" ) def __array_ufunc__( self, ufunc: Callable, method: str, *inputs: Any, **kwargs: Any ): - return arraylike.array_ufunc(self, ufunc, method, *inputs, **kwargs) + # error: Argument 2 to "array_ufunc" has incompatible type "Callable[..., Any]"; + # expected "ufunc" + return arraylike.array_ufunc( + self, ufunc, method, *inputs, **kwargs # type: ignore[arg-type] + ) # ideally we would define this to avoid the getattr checks, but # is slower @@ -6989,7 +6998,10 @@ def interpolate( f"`limit_direction` must be 'backward' for method `{method}`" ) - if obj.ndim == 2 and np.all(obj.dtypes == np.dtype(object)): + # error: Value of type variable "_DTypeScalar" of "dtype" cannot be "object" + if obj.ndim == 2 and np.all( + obj.dtypes == np.dtype(object) # type: ignore[type-var] + ): raise TypeError( "Cannot interpolate with all object-dtype columns " "in the DataFrame. Try setting at least one " @@ -8367,7 +8379,8 @@ def last(self: FrameOrSeries, offset) -> FrameOrSeries: start_date = self.index[-1] - offset start = self.index.searchsorted(start_date, side="right") - return self.iloc[start:] + # error: Slice index must be an integer or None + return self.iloc[start:] # type: ignore[misc] @final def rank( @@ -8475,8 +8488,15 @@ def ranker(data): na_option=na_option, pct=pct, ) - ranks = self._constructor(ranks, **data._construct_axes_dict()) - return ranks.__finalize__(self, method="rank") + # error: Incompatible types in assignment (expression has type + # "FrameOrSeries", variable has type "ndarray") + # error: Argument 1 to "NDFrame" has incompatible type "ndarray"; expected + # "Union[ArrayManager, BlockManager]" + ranks = self._constructor( # type: ignore[assignment] + ranks, **data._construct_axes_dict() # type: ignore[arg-type] + ) + # error: "ndarray" has no attribute "__finalize__" + return ranks.__finalize__(self, method="rank") # type: ignore[attr-defined] # if numeric_only is None, and we can't get anything, we try with # numeric_only=True @@ -8958,7 +8978,11 @@ def _where( # we are the same shape, so create an actual object for alignment else: - other = self._constructor(other, **self._construct_axes_dict()) + # error: Argument 1 to "NDFrame" has incompatible type "ndarray"; + # expected "BlockManager" + other = self._constructor( + other, **self._construct_axes_dict() # type: ignore[arg-type] + ) if axis is None: axis = 0 @@ -9885,7 +9909,11 @@ def abs(self: FrameOrSeries) -> FrameOrSeries: 2 6 30 -30 3 7 40 -50 """ - return np.abs(self) + # error: Argument 1 to "__call__" of "ufunc" has incompatible type + # "FrameOrSeries"; expected "Union[Union[int, float, complex, str, bytes, + # generic], Sequence[Union[int, float, complex, str, bytes, generic]], + # Sequence[Sequence[Any]], _SupportsArray]" + return np.abs(self) # type: ignore[arg-type] @final def describe( diff --git a/pandas/core/groupby/generic.py b/pandas/core/groupby/generic.py index af5c92ce82a66..50d04135c9300 100644 --- a/pandas/core/groupby/generic.py +++ b/pandas/core/groupby/generic.py @@ -344,7 +344,13 @@ def _aggregate_multiple_funcs(self, arg): # let higher level handle return results - output = self._wrap_aggregated_output(results, index=None) + # Argument 1 to "_wrap_aggregated_output" of "SeriesGroupBy" has + # incompatible type "Dict[OutputKey, Union[DataFrame, + # Series]]"; + # expected "Mapping[OutputKey, Union[Series, ndarray]]" + output = self._wrap_aggregated_output( + results, index=None # type: ignore[arg-type] + ) return self.obj._constructor_expanddim(output, columns=columns) # TODO: index should not be Optional - see GH 35490 @@ -759,13 +765,28 @@ def apply_series_value_counts(): # lab is a Categorical with categories an IntervalIndex lab = cut(Series(val), bins, include_lowest=True) - lev = lab.cat.categories - lab = lev.take(lab.cat.codes, allow_fill=True, fill_value=lev._na_value) + # error: "ndarray" has no attribute "cat" + lev = lab.cat.categories # type: ignore[attr-defined] + # error: No overload variant of "take" of "_ArrayOrScalarCommon" matches + # argument types "Any", "bool", "Union[Any, float]" + lab = lev.take( # type: ignore[call-overload] + # error: "ndarray" has no attribute "cat" + lab.cat.codes, # type: ignore[attr-defined] + allow_fill=True, + # error: Item "ndarray" of "Union[ndarray, Index]" has no attribute + # "_na_value" + fill_value=lev._na_value, # type: ignore[union-attr] + ) llab = lambda lab, inc: lab[inc]._multiindex.codes[-1] if is_interval_dtype(lab.dtype): # TODO: should we do this inside II? - sorter = np.lexsort((lab.left, lab.right, ids)) + + # error: "ndarray" has no attribute "left" + # error: "ndarray" has no attribute "right" + sorter = np.lexsort( + (lab.left, lab.right, ids) # type: ignore[attr-defined] + ) else: sorter = np.lexsort((lab, ids)) @@ -791,7 +812,11 @@ def apply_series_value_counts(): # multi-index components codes = self.grouper.reconstructed_codes codes = [rep(level_codes) for level_codes in codes] + [llab(lab, inc)] - levels = [ping.group_index for ping in self.grouper.groupings] + [lev] + # error: List item 0 has incompatible type "Union[ndarray, Any]"; + # expected "Index" + levels = [ping.group_index for ping in self.grouper.groupings] + [ + lev # type: ignore[list-item] + ] names = self.grouper.names + [self._selection_name] if dropna: @@ -1149,11 +1174,20 @@ def py_fallback(values: ArrayLike) -> ArrayLike: # We've split an object block! Everything we've assumed # about a single block input returning a single block output # is a lie. See eg GH-39329 - return mgr.as_array() + + # error: Incompatible return value type (got "ndarray", expected + # "ExtensionArray") + return mgr.as_array() # type: ignore[return-value] else: # We are a single block from a BlockManager # or one array from SingleArrayManager - return arrays[0] + + # error: Incompatible return value type (got "Union[ndarray, + # ExtensionArray, ArrayLike]", expected "ExtensionArray") + # error: Incompatible return value type (got "Union[ndarray, + # ExtensionArray, ArrayLike]", expected + # "ndarray") + return arrays[0] # type: ignore[return-value] def array_func(values: ArrayLike) -> ArrayLike: @@ -1172,7 +1206,9 @@ def array_func(values: ArrayLike) -> ArrayLike: assert how == "ohlc" raise - result = py_fallback(values) + # error: Incompatible types in assignment (expression has type + # "ExtensionArray", variable has type "ndarray") + result = py_fallback(values) # type: ignore[assignment] return cast_agg_result(result, values, how) diff --git a/pandas/core/groupby/groupby.py b/pandas/core/groupby/groupby.py index e11c296783476..e5010da5ccac6 100644 --- a/pandas/core/groupby/groupby.py +++ b/pandas/core/groupby/groupby.py @@ -1131,7 +1131,12 @@ def _cython_agg_general( if not output: raise DataError("No numeric types to aggregate") - return self._wrap_aggregated_output(output, index=self.grouper.result_index) + # error: Argument 1 to "_wrap_aggregated_output" of "BaseGroupBy" has + # incompatible type "Dict[OutputKey, Union[ndarray, DatetimeArray]]"; + # expected "Mapping[OutputKey, ndarray]" + return self._wrap_aggregated_output( + output, index=self.grouper.result_index # type: ignore[arg-type] + ) @final def _transform_with_numba(self, data, func, *args, engine_kwargs=None, **kwargs): @@ -2269,15 +2274,25 @@ def pre_processor(vals: np.ndarray) -> Tuple[np.ndarray, Optional[Type]]: inference = None if is_integer_dtype(vals.dtype): if is_extension_array_dtype(vals.dtype): - vals = vals.to_numpy(dtype=float, na_value=np.nan) + # error: "ndarray" has no attribute "to_numpy" + vals = vals.to_numpy( # type: ignore[attr-defined] + dtype=float, na_value=np.nan + ) inference = np.int64 elif is_bool_dtype(vals.dtype) and is_extension_array_dtype(vals.dtype): - vals = vals.to_numpy(dtype=float, na_value=np.nan) + # error: "ndarray" has no attribute "to_numpy" + vals = vals.to_numpy( # type: ignore[attr-defined] + dtype=float, na_value=np.nan + ) elif is_datetime64_dtype(vals.dtype): - inference = "datetime64[ns]" + # error: Incompatible types in assignment (expression has type + # "str", variable has type "Optional[Type[int64]]") + inference = "datetime64[ns]" # type: ignore[assignment] vals = np.asarray(vals).astype(float) elif is_timedelta64_dtype(vals.dtype): - inference = "timedelta64[ns]" + # error: Incompatible types in assignment (expression has type "str", + # variable has type "Optional[Type[signedinteger[Any]]]") + inference = "timedelta64[ns]" # type: ignore[assignment] vals = np.asarray(vals).astype(float) return vals, inference diff --git a/pandas/core/groupby/grouper.py b/pandas/core/groupby/grouper.py index 89becb880c519..51f7b44f6d69d 100644 --- a/pandas/core/groupby/grouper.py +++ b/pandas/core/groupby/grouper.py @@ -583,7 +583,9 @@ def indices(self): def codes(self) -> np.ndarray: if self._codes is None: self._make_codes() - return self._codes + # error: Incompatible return value type (got "Optional[ndarray]", + # expected "ndarray") + return self._codes # type: ignore[return-value] @cache_readonly def result_index(self) -> Index: diff --git a/pandas/core/groupby/ops.py b/pandas/core/groupby/ops.py index 008ee4dff4f7b..2d7547ff75ca4 100644 --- a/pandas/core/groupby/ops.py +++ b/pandas/core/groupby/ops.py @@ -539,7 +539,10 @@ def _ea_wrap_cython_operation( ) if how in ["rank"]: # preserve float64 dtype - return res_values + + # error: Incompatible return value type (got "ndarray", expected + # "Tuple[ndarray, Optional[List[str]]]") + return res_values # type: ignore[return-value] res_values = res_values.astype("i8", copy=False) result = type(orig_values)(res_values, dtype=orig_values.dtype) @@ -553,9 +556,13 @@ def _ea_wrap_cython_operation( ) dtype = maybe_cast_result_dtype(orig_values.dtype, how) if is_extension_array_dtype(dtype): - cls = dtype.construct_array_type() + # error: Item "dtype[Any]" of "Union[dtype[Any], ExtensionDtype]" has no + # attribute "construct_array_type" + cls = dtype.construct_array_type() # type: ignore[union-attr] return cls._from_sequence(res_values, dtype=dtype) - return res_values + # error: Incompatible return value type (got "ndarray", expected + # "Tuple[ndarray, Optional[List[str]]]") + return res_values # type: ignore[return-value] elif is_float_dtype(values.dtype): # FloatingArray @@ -592,7 +599,9 @@ def _cython_operation( self._disallow_invalid_ops(values, how) if is_extension_array_dtype(values.dtype): - return self._ea_wrap_cython_operation( + # error: Incompatible return value type (got "Tuple[ndarray, + # Optional[List[str]]]", expected "ndarray") + return self._ea_wrap_cython_operation( # type: ignore[return-value] kind, values, how, axis, min_count, **kwargs ) @@ -680,7 +689,9 @@ def _cython_operation( # e.g. if we are int64 and need to restore to datetime64/timedelta64 # "rank" is the only member of cython_cast_blocklist we get here dtype = maybe_cast_result_dtype(orig_values.dtype, how) - result = maybe_downcast_to_dtype(result, dtype) + # error: Argument 2 to "maybe_downcast_to_dtype" has incompatible type + # "Union[dtype[Any], ExtensionDtype]"; expected "Union[str, dtype[Any]]" + result = maybe_downcast_to_dtype(result, dtype) # type: ignore[arg-type] return result diff --git a/pandas/core/indexes/base.py b/pandas/core/indexes/base.py index e3f9f6dbb0025..9543b11ad4de1 100644 --- a/pandas/core/indexes/base.py +++ b/pandas/core/indexes/base.py @@ -191,7 +191,8 @@ str_t = str -_o_dtype = np.dtype(object) +# error: Value of type variable "_DTypeScalar" of "dtype" cannot be "object" +_o_dtype = np.dtype(object) # type: ignore[type-var] _Identity = NewType("_Identity", object) @@ -404,14 +405,23 @@ def __new__( # they are actually ints, e.g. '0' and 0.0 # should not be coerced # GH 11836 - data = _maybe_cast_with_dtype(data, dtype, copy) + + # error: Argument 1 to "_maybe_cast_with_dtype" has incompatible type + # "Union[ndarray, Index, Series]"; expected "ndarray" + data = _maybe_cast_with_dtype( + data, dtype, copy # type: ignore[arg-type] + ) dtype = data.dtype if data.dtype.kind in ["i", "u", "f"]: # maybe coerce to a sub-class arr = data else: - arr = com.asarray_tuplesafe(data, dtype=object) + # error: Argument "dtype" to "asarray_tuplesafe" has incompatible type + # "Type[object]"; expected "Union[str, dtype[Any], None]" + arr = com.asarray_tuplesafe( + data, dtype=object # type: ignore[arg-type] + ) if dtype is None: arr = _maybe_cast_data_without_dtype(arr) @@ -445,7 +455,10 @@ def __new__( data, names=name or kwargs.get("names") ) # other iterable of some kind - subarr = com.asarray_tuplesafe(data, dtype=object) + + # error: Argument "dtype" to "asarray_tuplesafe" has incompatible type + # "Type[object]"; expected "Union[str, dtype[Any], None]" + subarr = com.asarray_tuplesafe(data, dtype=object) # type: ignore[arg-type] return Index(subarr, dtype=dtype, copy=copy, name=name, **kwargs) @classmethod @@ -2889,10 +2902,16 @@ def union(self, other, sort=None): # | -> T # | -> object if not (is_integer_dtype(self.dtype) and is_integer_dtype(other.dtype)): - dtype = "float64" + # error: Incompatible types in assignment (expression has type + # "str", variable has type "Union[dtype[Any], ExtensionDtype]") + dtype = "float64" # type: ignore[assignment] else: # one is int64 other is uint64 - dtype = object + + # error: Incompatible types in assignment (expression has type + # "Type[object]", variable has type "Union[dtype[Any], + # ExtensionDtype]") + dtype = object # type: ignore[assignment] left = self.astype(dtype, copy=False) right = other.astype(dtype, copy=False) @@ -2941,7 +2960,11 @@ def _union(self, other: Index, sort): ): # Both are unique and monotonic, so can use outer join try: - return self._outer_indexer(lvals, rvals)[0] + # error: Argument 1 to "_outer_indexer" of "Index" has incompatible type + # "Union[ExtensionArray, ndarray]"; expected "ndarray" + # error: Argument 2 to "_outer_indexer" of "Index" has incompatible type + # "Union[ExtensionArray, ndarray]"; expected "ndarray" + return self._outer_indexer(lvals, rvals)[0] # type: ignore[arg-type] except (TypeError, IncompatibleFrequency): # incomparable objects value_list = list(lvals) @@ -2953,7 +2976,12 @@ def _union(self, other: Index, sort): elif not other.is_unique and not self.is_unique: # self and other both have duplicates - result = algos.union_with_duplicates(lvals, rvals) + + # error: Argument 1 to "union_with_duplicates" has incompatible type + # "Union[ExtensionArray, ndarray]"; expected "ndarray" + # error: Argument 2 to "union_with_duplicates" has incompatible type + # "Union[ExtensionArray, ndarray]"; expected "ndarray" + result = algos.union_with_duplicates(lvals, rvals) # type: ignore[arg-type] return _maybe_try_sort(result, sort) # Either other or self is not unique @@ -2965,10 +2993,16 @@ def _union(self, other: Index, sort): missing = algos.unique1d(self.get_indexer_non_unique(other)[1]) if len(missing) > 0: - other_diff = algos.take_nd(rvals, missing, allow_fill=False) + # error: Value of type variable "ArrayLike" of "take_nd" cannot be + # "Union[ExtensionArray, ndarray]" + other_diff = algos.take_nd( + rvals, missing, allow_fill=False # type: ignore[type-var] + ) result = concat_compat((lvals, other_diff)) else: - result = lvals + # error: Incompatible types in assignment (expression has type + # "Union[ExtensionArray, ndarray]", variable has type "ndarray") + result = lvals # type: ignore[assignment] if not self.is_monotonic or not other.is_monotonic: result = _maybe_try_sort(result, sort) @@ -3058,7 +3092,9 @@ def _intersection(self, other: Index, sort=False): if self.is_monotonic and other.is_monotonic: try: - result = self._inner_indexer(lvals, rvals)[0] + # error: Argument 1 to "_inner_indexer" of "Index" has incompatible type + # "Union[ExtensionArray, ndarray]"; expected "ndarray" + result = self._inner_indexer(lvals, rvals)[0] # type: ignore[arg-type] except TypeError: pass else: @@ -3964,11 +4000,15 @@ def join(self, other, how="left", level=None, return_indexers=False, sort=False) if return_indexers: if join_index is self: - lindexer = None + # error: Incompatible types in assignment (expression has type "None", + # variable has type "ndarray") + lindexer = None # type: ignore[assignment] else: lindexer = self.get_indexer(join_index) if join_index is other: - rindexer = None + # error: Incompatible types in assignment (expression has type "None", + # variable has type "ndarray") + rindexer = None # type: ignore[assignment] else: rindexer = other.get_indexer(join_index) return join_index, lindexer, rindexer @@ -4075,7 +4115,11 @@ def _join_non_unique(self, other, how="left", return_indexers=False): mask = left_idx == -1 np.putmask(join_index, mask, rvalues.take(right_idx)) - join_index = self._wrap_joined_index(join_index, other) + # error: Incompatible types in assignment (expression has type "Index", variable + # has type "ndarray") + join_index = self._wrap_joined_index( + join_index, other # type: ignore[assignment] + ) if return_indexers: return join_index, left_idx, right_idx @@ -4248,23 +4292,61 @@ def _join_monotonic(self, other, how="left", return_indexers=False): elif how == "right": join_index = other lidx = self._left_indexer_unique(ov, sv) - ridx = None + # error: Incompatible types in assignment (expression has type "None", + # variable has type "ndarray") + ridx = None # type: ignore[assignment] elif how == "inner": - join_index, lidx, ridx = self._inner_indexer(sv, ov) - join_index = self._wrap_joined_index(join_index, other) + # error: Incompatible types in assignment (expression has type + # "ndarray", variable has type "Index") + join_index, lidx, ridx = self._inner_indexer( # type:ignore[assignment] + sv, ov + ) + # error: Argument 1 to "_wrap_joined_index" of "Index" has incompatible + # type "Index"; expected "ndarray" + join_index = self._wrap_joined_index( + join_index, other # type: ignore[arg-type] + ) elif how == "outer": - join_index, lidx, ridx = self._outer_indexer(sv, ov) - join_index = self._wrap_joined_index(join_index, other) + # error: Incompatible types in assignment (expression has type + # "ndarray", variable has type "Index") + join_index, lidx, ridx = self._outer_indexer( # type:ignore[assignment] + sv, ov + ) + # error: Argument 1 to "_wrap_joined_index" of "Index" has incompatible + # type "Index"; expected "ndarray" + join_index = self._wrap_joined_index( + join_index, other # type: ignore[arg-type] + ) else: if how == "left": - join_index, lidx, ridx = self._left_indexer(sv, ov) + # error: Incompatible types in assignment (expression has type + # "ndarray", variable has type "Index") + join_index, lidx, ridx = self._left_indexer( # type: ignore[assignment] + sv, ov + ) elif how == "right": - join_index, ridx, lidx = self._left_indexer(ov, sv) + # error: Incompatible types in assignment (expression has type + # "ndarray", variable has type "Index") + join_index, ridx, lidx = self._left_indexer( # type: ignore[assignment] + ov, sv + ) elif how == "inner": - join_index, lidx, ridx = self._inner_indexer(sv, ov) + # error: Incompatible types in assignment (expression has type + # "ndarray", variable has type "Index") + join_index, lidx, ridx = self._inner_indexer( # type:ignore[assignment] + sv, ov + ) elif how == "outer": - join_index, lidx, ridx = self._outer_indexer(sv, ov) - join_index = self._wrap_joined_index(join_index, other) + # error: Incompatible types in assignment (expression has type + # "ndarray", variable has type "Index") + join_index, lidx, ridx = self._outer_indexer( # type:ignore[assignment] + sv, ov + ) + # error: Argument 1 to "_wrap_joined_index" of "Index" has incompatible type + # "Index"; expected "ndarray" + join_index = self._wrap_joined_index( + join_index, other # type: ignore[arg-type] + ) if return_indexers: lidx = None if lidx is None else ensure_platform_int(lidx) @@ -4307,7 +4389,11 @@ def values(self) -> ArrayLike: Index.array : Reference to the underlying data. Index.to_numpy : A NumPy array representing the underlying data. """ - return self._data + # error: Incompatible return value type (got "Union[ExtensionArray, ndarray]", + # expected "ExtensionArray") + # error: Incompatible return value type (got "Union[ExtensionArray, ndarray]", + # expected "ndarray") + return self._data # type: ignore[return-value] @cache_readonly @doc(IndexOpsMixin.array) @@ -4349,7 +4435,9 @@ def _get_engine_target(self) -> np.ndarray: """ Get the ndarray that we can pass to the IndexEngine constructor. """ - return self._values + # error: Incompatible return value type (got "Union[ExtensionArray, + # ndarray]", expected "ndarray") + return self._values # type: ignore[return-value] @doc(IndexOpsMixin.memory_usage) def memory_usage(self, deep: bool = False) -> int: @@ -4542,7 +4630,11 @@ def __getitem__(self, key): result = getitem(key) if not is_scalar(result): - if np.ndim(result) > 1: + # error: Argument 1 to "ndim" has incompatible type "Union[ExtensionArray, + # Any]"; expected "Union[Union[int, float, complex, str, bytes, generic], + # Sequence[Union[int, float, complex, str, bytes, generic]], + # Sequence[Sequence[Any]], _SupportsArray]" + if np.ndim(result) > 1: # type: ignore[arg-type] deprecate_ndim_indexing(result) return result # NB: Using _constructor._simple_new would break if MultiIndex @@ -4622,7 +4714,9 @@ def putmask(self, mask, value): numpy.ndarray.putmask : Changes elements of an array based on conditional and input values. """ - mask, noop = validate_putmask(self._values, mask) + # error: Value of type variable "ArrayLike" of "validate_putmask" cannot be + # "Union[ExtensionArray, ndarray]" + mask, noop = validate_putmask(self._values, mask) # type: ignore[type-var] if noop: return self.copy() @@ -4638,7 +4732,11 @@ def putmask(self, mask, value): return self.astype(dtype).putmask(mask, value) values = self._values.copy() - converted = setitem_datetimelike_compat(values, mask.sum(), converted) + # error: Argument 1 to "setitem_datetimelike_compat" has incompatible type + # "Union[ExtensionArray, ndarray]"; expected "ndarray" + converted = setitem_datetimelike_compat( + values, mask.sum(), converted # type: ignore[arg-type] + ) np.putmask(values, mask, converted) return type(self)._simple_new(values, name=self.name) @@ -5502,7 +5600,9 @@ def isin(self, values, level=None): """ if level is not None: self._validate_index_level(level) - return algos.isin(self._values, values) + # error: Value of type variable "AnyArrayLike" of "isin" cannot be + # "Union[ExtensionArray, ndarray]" + return algos.isin(self._values, values) # type: ignore[type-var] def _get_string_slice(self, key: str_t): # this is for partial string indexing, @@ -5923,7 +6023,11 @@ def _cmp_method(self, other, op): else: with np.errstate(all="ignore"): - result = ops.comparison_op(self._values, other, op) + # error: Value of type variable "ArrayLike" of "comparison_op" cannot be + # "Union[ExtensionArray, ndarray]" + result = ops.comparison_op( + self._values, other, op # type: ignore[type-var] + ) return result @@ -5996,7 +6100,11 @@ def any(self, *args, **kwargs): """ nv.validate_any(args, kwargs) self._maybe_disable_logical_methods("any") - return np.any(self.values) + # error: Argument 1 to "any" has incompatible type "ArrayLike"; expected + # "Union[Union[int, float, complex, str, bytes, generic], Sequence[Union[int, + # float, complex, str, bytes, generic]], Sequence[Sequence[Any]], + # _SupportsArray]" + return np.any(self.values) # type: ignore[arg-type] def all(self, *args, **kwargs): """ @@ -6053,7 +6161,11 @@ def all(self, *args, **kwargs): """ nv.validate_all(args, kwargs) self._maybe_disable_logical_methods("all") - return np.all(self.values) + # error: Argument 1 to "all" has incompatible type "ArrayLike"; expected + # "Union[Union[int, float, complex, str, bytes, generic], Sequence[Union[int, + # float, complex, str, bytes, generic]], Sequence[Sequence[Any]], + # _SupportsArray]" + return np.all(self.values) # type: ignore[arg-type] @final def _maybe_disable_logical_methods(self, opname: str_t): @@ -6340,7 +6452,11 @@ def _maybe_cast_data_without_dtype(subarr): if inferred == "integer": try: - data = _try_convert_to_int_array(subarr, False, None) + # error: Argument 3 to "_try_convert_to_int_array" has incompatible type + # "None"; expected "dtype[Any]" + data = _try_convert_to_int_array( + subarr, False, None # type: ignore[arg-type] + ) return data except ValueError: pass @@ -6374,7 +6490,11 @@ def _maybe_cast_data_without_dtype(subarr): pass elif inferred.startswith("timedelta"): - data = TimedeltaArray._from_sequence(subarr, copy=False) + # error: Incompatible types in assignment (expression has type + # "TimedeltaArray", variable has type "ndarray") + data = TimedeltaArray._from_sequence( # type: ignore[assignment] + subarr, copy=False + ) return data elif inferred == "period": try: diff --git a/pandas/core/indexes/category.py b/pandas/core/indexes/category.py index 869836a3da70c..a38ef55614638 100644 --- a/pandas/core/indexes/category.py +++ b/pandas/core/indexes/category.py @@ -193,12 +193,17 @@ def _can_hold_strings(self): def _engine_type(self): # self.codes can have dtype int8, int16, int32 or int64, so we need # to return the corresponding engine type (libindex.Int8Engine, etc.). + + # error: Invalid index type "Type[generic]" for "Dict[Type[signedinteger[Any]], + # Any]"; expected type "Type[signedinteger[Any]]" return { np.int8: libindex.Int8Engine, np.int16: libindex.Int16Engine, np.int32: libindex.Int32Engine, np.int64: libindex.Int64Engine, - }[self.codes.dtype.type] + }[ + self.codes.dtype.type # type: ignore[index] + ] _attributes = ["name"] @@ -484,7 +489,9 @@ def _get_indexer( if self.equals(target): return np.arange(len(self), dtype="intp") - return self._get_indexer_non_unique(target._values)[0] + # error: Value of type variable "ArrayLike" of "_get_indexer_non_unique" of + # "CategoricalIndex" cannot be "Union[ExtensionArray, ndarray]" + return self._get_indexer_non_unique(target._values)[0] # type: ignore[type-var] @Appender(_index_shared_docs["get_indexer_non_unique"] % _index_doc_kwargs) def get_indexer_non_unique(self, target): diff --git a/pandas/core/indexes/datetimelike.py b/pandas/core/indexes/datetimelike.py index 1dd5b40f7102f..793dd041fbf6f 100644 --- a/pandas/core/indexes/datetimelike.py +++ b/pandas/core/indexes/datetimelike.py @@ -136,7 +136,9 @@ def _is_all_dates(self) -> bool: # Abstract data attributes @property - def values(self) -> np.ndarray: + # error: Return type "ndarray" of "values" incompatible with return type "ArrayLike" + # in supertype "Index" + def values(self) -> np.ndarray: # type: ignore[override] # Note: PeriodArray overrides this to return an ndarray of objects. return self._data._ndarray @@ -528,8 +530,10 @@ def shift(self: _T, periods: int = 1, freq=None) -> _T: PeriodIndex.shift : Shift values of PeriodIndex. """ arr = self._data.view() - arr._freq = self.freq - result = arr._time_shift(periods, freq=freq) + # error: "ExtensionArray" has no attribute "_freq" + arr._freq = self.freq # type: ignore[attr-defined] + # error: "ExtensionArray" has no attribute "_time_shift" + result = arr._time_shift(periods, freq=freq) # type: ignore[attr-defined] return type(self)(result, name=self.name) # -------------------------------------------------------------------- @@ -772,7 +776,8 @@ def _fast_union(self: _T, other: _T, sort=None) -> _T: left, right = self, other left_start = left[0] loc = right.searchsorted(left_start, side="left") - right_chunk = right._values[:loc] + # error: Slice index must be an integer or None + right_chunk = right._values[:loc] # type: ignore[misc] dates = concat_compat((left._values, right_chunk)) # With sort being False, we can't infer that result.freq == self.freq # TODO: no tests rely on the _with_freq("infer"); needed? @@ -788,7 +793,8 @@ def _fast_union(self: _T, other: _T, sort=None) -> _T: # concatenate if left_end < right_end: loc = right.searchsorted(left_end, side="right") - right_chunk = right._values[loc:] + # error: Slice index must be an integer or None + right_chunk = right._values[loc:] # type: ignore[misc] dates = concat_compat([left._values, right_chunk]) # The can_fast_union check ensures that the result.freq # should match self.freq diff --git a/pandas/core/indexes/datetimes.py b/pandas/core/indexes/datetimes.py index 9ea43d083f5b3..ed0856f3d30a3 100644 --- a/pandas/core/indexes/datetimes.py +++ b/pandas/core/indexes/datetimes.py @@ -365,7 +365,10 @@ def _is_dates_only(self) -> bool: """ from pandas.io.formats.format import is_dates_only - return self.tz is None and is_dates_only(self._values) + # error: Argument 1 to "is_dates_only" has incompatible type + # "Union[ExtensionArray, ndarray]"; expected "Union[ndarray, + # DatetimeArray, Index, DatetimeIndex]" + return self.tz is None and is_dates_only(self._values) # type: ignore[arg-type] def __reduce__(self): @@ -533,7 +536,9 @@ def to_series(self, keep_tz=lib.no_default, index=None, name=None): # preserve the tz & copy values = self.copy(deep=True) else: - values = self._values.view("M8[ns]").copy() + # error: Incompatible types in assignment (expression has type + # "Union[ExtensionArray, ndarray]", variable has type "DatetimeIndex") + values = self._values.view("M8[ns]").copy() # type: ignore[assignment] return Series(values, index=index, name=name) diff --git a/pandas/core/indexes/extension.py b/pandas/core/indexes/extension.py index a5899f83dd238..4c15e9df534ba 100644 --- a/pandas/core/indexes/extension.py +++ b/pandas/core/indexes/extension.py @@ -339,7 +339,9 @@ def astype(self, dtype, copy=True): @cache_readonly def _isnan(self) -> np.ndarray: - return self._data.isna() + # error: Incompatible return value type (got "ExtensionArray", expected + # "ndarray") + return self._data.isna() # type: ignore[return-value] @doc(Index.equals) def equals(self, other) -> bool: diff --git a/pandas/core/indexes/interval.py b/pandas/core/indexes/interval.py index ad512b8393166..58c5b23d12a35 100644 --- a/pandas/core/indexes/interval.py +++ b/pandas/core/indexes/interval.py @@ -1227,8 +1227,16 @@ def interval_range( else: # delegate to the appropriate range function if isinstance(endpoint, Timestamp): - breaks = date_range(start=start, end=end, periods=periods, freq=freq) + # error: Incompatible types in assignment (expression has type + # "DatetimeIndex", variable has type "ndarray") + breaks = date_range( # type: ignore[assignment] + start=start, end=end, periods=periods, freq=freq + ) else: - breaks = timedelta_range(start=start, end=end, periods=periods, freq=freq) + # error: Incompatible types in assignment (expression has type + # "TimedeltaIndex", variable has type "ndarray") + breaks = timedelta_range( # type: ignore[assignment] + start=start, end=end, periods=periods, freq=freq + ) return IntervalIndex.from_breaks(breaks, name=name, closed=closed) diff --git a/pandas/core/indexes/multi.py b/pandas/core/indexes/multi.py index fc3e404998b43..3b538b948ae81 100644 --- a/pandas/core/indexes/multi.py +++ b/pandas/core/indexes/multi.py @@ -711,14 +711,18 @@ def _values(self) -> np.ndarray: vals, (ABCDatetimeIndex, ABCTimedeltaIndex) ): vals = vals.astype(object) - vals = np.array(vals, copy=False) + # error: Incompatible types in assignment (expression has type "ndarray", + # variable has type "Index") + vals = np.array(vals, copy=False) # type: ignore[assignment] values.append(vals) arr = lib.fast_zip(values) return arr @property - def values(self) -> np.ndarray: + # error: Return type "ndarray" of "values" incompatible with return type "ArrayLike" + # in supertype "Index" + def values(self) -> np.ndarray: # type: ignore[override] return self._values @property @@ -2218,7 +2222,11 @@ def drop(self, codes, level=None, errors="raise"): if not isinstance(codes, (np.ndarray, Index)): try: - codes = com.index_labels_to_array(codes, dtype=object) + # error: Argument "dtype" to "index_labels_to_array" has incompatible + # type "Type[object]"; expected "Union[str, dtype[Any], None]" + codes = com.index_labels_to_array( + codes, dtype=object # type: ignore[arg-type] + ) except ValueError: pass @@ -3162,10 +3170,14 @@ def convert_indexer(start, stop, step, indexer=indexer, codes=level_codes): indexer = codes.take(ensure_platform_int(indexer)) result = Series(Index(indexer).isin(r).nonzero()[0]) m = result.map(mapper) - m = np.asarray(m) + # error: Incompatible types in assignment (expression has type + # "ndarray", variable has type "Series") + m = np.asarray(m) # type: ignore[assignment] else: - m = np.zeros(len(codes), dtype=bool) + # error: Incompatible types in assignment (expression has type + # "ndarray", variable has type "Series") + m = np.zeros(len(codes), dtype=bool) # type: ignore[assignment] m[np.in1d(codes, r, assume_unique=Index(codes).is_unique)] = True return m diff --git a/pandas/core/indexes/numeric.py b/pandas/core/indexes/numeric.py index a581516f23feb..b6f476d864011 100644 --- a/pandas/core/indexes/numeric.py +++ b/pandas/core/indexes/numeric.py @@ -253,7 +253,9 @@ def asi8(self) -> np.ndarray: FutureWarning, stacklevel=2, ) - return self._values.view(self._default_dtype) + # error: Incompatible return value type (got "Union[ExtensionArray, ndarray]", + # expected "ndarray") + return self._values.view(self._default_dtype) # type: ignore[return-value] class Int64Index(IntegerIndex): @@ -292,7 +294,10 @@ def _convert_arr_indexer(self, keyarr): ): dtype = np.uint64 - return com.asarray_tuplesafe(keyarr, dtype=dtype) + # error: Argument "dtype" to "asarray_tuplesafe" has incompatible type + # "Optional[Type[unsignedinteger[Any]]]"; expected "Union[str, dtype[Any], + # None]" + return com.asarray_tuplesafe(keyarr, dtype=dtype) # type: ignore[arg-type] _float64_descr_args = { @@ -328,7 +333,10 @@ def astype(self, dtype, copy=True): elif is_integer_dtype(dtype) and not is_extension_array_dtype(dtype): # TODO(jreback); this can change once we have an EA Index type # GH 13149 - arr = astype_nansafe(self._values, dtype=dtype) + + # error: Argument 1 to "astype_nansafe" has incompatible type + # "Union[ExtensionArray, ndarray]"; expected "ndarray" + arr = astype_nansafe(self._values, dtype=dtype) # type: ignore[arg-type] return Int64Index(arr, name=self.name) return super().astype(dtype, copy=copy) diff --git a/pandas/core/indexes/period.py b/pandas/core/indexes/period.py index 0c5dbec2094e5..b15912e4c477b 100644 --- a/pandas/core/indexes/period.py +++ b/pandas/core/indexes/period.py @@ -275,7 +275,9 @@ def __new__( # Data @property - def values(self) -> np.ndarray: + # error: Return type "ndarray" of "values" incompatible with return type "ArrayLike" + # in supertype "Index" + def values(self) -> np.ndarray: # type: ignore[override] return np.asarray(self, dtype=object) def _maybe_convert_timedelta(self, other): diff --git a/pandas/core/indexes/range.py b/pandas/core/indexes/range.py index 56093c2a399c2..05bb32dad6cab 100644 --- a/pandas/core/indexes/range.py +++ b/pandas/core/indexes/range.py @@ -111,7 +111,12 @@ def __new__( name=None, ): - cls._validate_dtype(dtype) + # error: Argument 1 to "_validate_dtype" of "NumericIndex" has incompatible type + # "Union[ExtensionDtype, str, dtype[Any], Type[str], Type[float], Type[int], + # Type[complex], Type[bool], Type[object], None]"; expected + # "Union[ExtensionDtype, Union[str, dtype[Any]], Type[str], Type[float], + # Type[int], Type[complex], Type[bool], Type[object]]" + cls._validate_dtype(dtype) # type: ignore[arg-type] name = maybe_extract_name(name, start, cls) # RangeIndex @@ -155,7 +160,12 @@ def from_range( f"range, {repr(data)} was passed" ) - cls._validate_dtype(dtype) + # error: Argument 1 to "_validate_dtype" of "NumericIndex" has incompatible type + # "Union[ExtensionDtype, str, dtype[Any], Type[str], Type[float], Type[int], + # Type[complex], Type[bool], Type[object], None]"; expected + # "Union[ExtensionDtype, Union[str, dtype[Any]], Type[str], Type[float], + # Type[int], Type[complex], Type[bool], Type[object]]" + cls._validate_dtype(dtype) # type: ignore[arg-type] return cls._simple_new(data, name=name) @classmethod @@ -901,7 +911,8 @@ def _arith_method(self, other, op): # apply if we have an override if step: with np.errstate(all="ignore"): - rstep = step(left.step, right) + # error: "bool" not callable + rstep = step(left.step, right) # type: ignore[operator] # we don't have a representable op # so return a base index diff --git a/pandas/core/internals/array_manager.py b/pandas/core/internals/array_manager.py index bbe71c4977e77..0ab4bc991f468 100644 --- a/pandas/core/internals/array_manager.py +++ b/pandas/core/internals/array_manager.py @@ -267,7 +267,11 @@ def reduce( if res is NaT and is_timedelta64_ns_dtype(arr.dtype): result_arrays.append(np.array(["NaT"], dtype="timedelta64[ns]")) else: - result_arrays.append(sanitize_array([res], None)) + # error: Argument 1 to "append" of "list" has incompatible type + # "ExtensionArray"; expected "ndarray" + result_arrays.append( + sanitize_array([res], None) # type: ignore[arg-type] + ) result_indices.append(i) index = Index._simple_new(np.array([None], dtype=object)) # placeholder @@ -278,7 +282,9 @@ def reduce( indexer = np.arange(self.shape[0]) columns = self.items - new_mgr = type(self)(result_arrays, [index, columns]) + # error: Argument 1 to "ArrayManager" has incompatible type "List[ndarray]"; + # expected "List[Union[ndarray, ExtensionArray]]" + new_mgr = type(self)(result_arrays, [index, columns]) # type: ignore[arg-type] return new_mgr, indexer def grouped_reduce(self: T, func: Callable, ignore_failures: bool = False) -> T: @@ -318,7 +324,9 @@ def grouped_reduce(self: T, func: Callable, ignore_failures: bool = False) -> T: else: columns = self.items - return type(self)(result_arrays, [index, columns]) + # error: Argument 1 to "ArrayManager" has incompatible type "List[ndarray]"; + # expected "List[Union[ndarray, ExtensionArray]]" + return type(self)(result_arrays, [index, columns]) # type: ignore[arg-type] def operate_blockwise(self, other: ArrayManager, array_op) -> ArrayManager: """ @@ -408,7 +416,9 @@ def apply( if len(result_arrays) == 0: return self.make_empty(new_axes) - return type(self)(result_arrays, new_axes) + # error: Argument 1 to "ArrayManager" has incompatible type "List[ndarray]"; + # expected "List[Union[ndarray, ExtensionArray]]" + return type(self)(result_arrays, new_axes) # type: ignore[arg-type] def apply_2d(self: T, f, ignore_failures: bool = False, **kwargs) -> T: """ @@ -469,9 +479,8 @@ def apply_with_block(self: T, f, align_keys=None, swap_axis=True, **kwargs) -> T elif arr.dtype.kind == "m" and not isinstance(arr, np.ndarray): # TimedeltaArray needs to be converted to ndarray for TimedeltaBlock - # error: Item "ExtensionArray" of "Union[Any, ExtensionArray]" has no - # attribute "_data" - arr = arr._data # type: ignore[union-attr] + # error: "ExtensionArray" has no attribute "_data" + arr = arr._data # type: ignore[attr-defined] if self.ndim == 2: if isinstance(arr, np.ndarray): @@ -500,9 +509,16 @@ def quantile( interpolation="linear", ) -> ArrayManager: - arrs = [ensure_block_shape(x, 2) for x in self.arrays] + # error: Value of type variable "ArrayLike" of "ensure_block_shape" cannot be + # "Union[ndarray, ExtensionArray]" + arrs = [ensure_block_shape(x, 2) for x in self.arrays] # type: ignore[type-var] assert axis == 1 - new_arrs = [quantile_compat(x, qs, interpolation, axis=axis) for x in arrs] + # error: Value of type variable "ArrayLike" of "quantile_compat" cannot be + # "object" + new_arrs = [ + quantile_compat(x, qs, interpolation, axis=axis) # type: ignore[type-var] + for x in arrs + ] for i, arr in enumerate(new_arrs): if arr.ndim == 2: assert arr.shape[0] == 1, arr.shape @@ -765,7 +781,9 @@ def as_array( result = np.empty(self.shape_proper, dtype=dtype) - for i, arr in enumerate(self.arrays): + # error: Incompatible types in assignment (expression has type "Union[ndarray, + # ExtensionArray]", variable has type "ndarray") + for i, arr in enumerate(self.arrays): # type: ignore[assignment] arr = arr.astype(dtype, copy=copy) result[:, i] = arr @@ -827,7 +845,11 @@ def iget_values(self, i: int) -> ArrayLike: """ Return the data for column i as the values (ndarray or ExtensionArray). """ - return self.arrays[i] + # error: Incompatible return value type (got "Union[ndarray, ExtensionArray]", + # expected "ExtensionArray") + # error: Incompatible return value type (got "Union[ndarray, ExtensionArray]", + # expected "ndarray") + return self.arrays[i] # type: ignore[return-value] def idelete(self, indexer): """ @@ -870,7 +892,9 @@ def iset(self, loc: Union[int, slice, np.ndarray], value): assert isinstance(value, (np.ndarray, ExtensionArray)) assert value.ndim == 1 assert len(value) == len(self._axes[0]) - self.arrays[loc] = value + # error: Invalid index type "Union[int, slice, ndarray]" for + # "List[Union[ndarray, ExtensionArray]]"; expected type "int" + self.arrays[loc] = value # type: ignore[index] return # multiple columns -> convert slice or array to integer indices @@ -883,7 +907,9 @@ def iset(self, loc: Union[int, slice, np.ndarray], value): else: assert isinstance(loc, np.ndarray) assert loc.dtype == "bool" - indices = np.nonzero(loc)[0] + # error: Incompatible types in assignment (expression has type "ndarray", + # variable has type "range") + indices = np.nonzero(loc)[0] # type: ignore[assignment] assert value.ndim == 2 assert value.shape[0] == len(self._axes[0]) @@ -1002,7 +1028,9 @@ def _reindex_indexer( else: validate_indices(indexer, len(self._axes[0])) new_arrays = [ - take_1d( + # error: Value of type variable "ArrayLike" of "take_1d" cannot be + # "Union[ndarray, ExtensionArray]" [type-var] + take_1d( # type: ignore[type-var] arr, indexer, allow_fill=True, @@ -1047,7 +1075,11 @@ def _make_na_array(self, fill_value=None): fill_value = np.nan dtype, fill_value = infer_dtype_from_scalar(fill_value) - values = np.empty(self.shape_proper[0], dtype=dtype) + # error: Argument "dtype" to "empty" has incompatible type "Union[dtype[Any], + # ExtensionDtype]"; expected "Union[dtype[Any], None, type, _SupportsDType, str, + # Union[Tuple[Any, int], Tuple[Any, Union[int, Sequence[int]]], List[Any], + # _DTypeDict, Tuple[Any, Any]]]" + values = np.empty(self.shape_proper[0], dtype=dtype) # type: ignore[arg-type] values.fill(fill_value) return values @@ -1057,7 +1089,9 @@ def _equal_values(self, other) -> bool: assuming shape and indexes have already been checked. """ for left, right in zip(self.arrays, other.arrays): - if not array_equals(left, right): + # error: Value of type variable "ArrayLike" of "array_equals" cannot be + # "Union[Any, ndarray, ExtensionArray]" + if not array_equals(left, right): # type: ignore[type-var] return False else: return True @@ -1084,7 +1118,9 @@ def unstack(self, unstacker, fill_value) -> ArrayManager: new_arrays = [] for arr in self.arrays: for i in range(unstacker.full_shape[1]): - new_arr = take_1d( + # error: Value of type variable "ArrayLike" of "take_1d" cannot be + # "Union[ndarray, ExtensionArray]" [type-var] + new_arr = take_1d( # type: ignore[type-var] arr, new_indexer2D[:, i], allow_fill=True, fill_value=fill_value ) new_arrays.append(new_arr) diff --git a/pandas/core/internals/blocks.py b/pandas/core/internals/blocks.py index f0d7d7e441527..1767b56962db1 100644 --- a/pandas/core/internals/blocks.py +++ b/pandas/core/internals/blocks.py @@ -117,8 +117,10 @@ ) from pandas.core.arrays._mixins import NDArrayBackedExtensionArray +# comparison is faster than is_object_dtype -_dtype_obj = np.dtype(object) # comparison is faster than is_object_dtype +# error: Value of type variable "_DTypeScalar" of "dtype" cannot be "object" +_dtype_obj = np.dtype(object) # type: ignore[type-var] class Block(PandasObject): @@ -277,7 +279,9 @@ def array_values(self) -> ExtensionArray: """ The array that Series.array returns. Always an ExtensionArray. """ - return PandasArray(self.values) + # error: Argument 1 to "PandasArray" has incompatible type "Union[ndarray, + # ExtensionArray]"; expected "Union[ndarray, PandasArray]" + return PandasArray(self.values) # type: ignore[arg-type] def get_values(self, dtype: Optional[DtypeObj] = None) -> np.ndarray: """ @@ -286,7 +290,9 @@ def get_values(self, dtype: Optional[DtypeObj] = None) -> np.ndarray: """ if dtype == _dtype_obj: return self.values.astype(_dtype_obj) - return self.values + # error: Incompatible return value type (got "Union[ndarray, ExtensionArray]", + # expected "ndarray") + return self.values # type: ignore[return-value] @final def get_block_values_for_json(self) -> np.ndarray: @@ -474,7 +480,9 @@ def fillna( inplace = validate_bool_kwarg(inplace, "inplace") mask = isna(self.values) - mask, noop = validate_putmask(self.values, mask) + # error: Value of type variable "ArrayLike" of "validate_putmask" cannot be + # "Union[ndarray, ExtensionArray]" + mask, noop = validate_putmask(self.values, mask) # type: ignore[type-var] if limit is not None: limit = libalgos.validate_limit(None, limit=limit) @@ -617,7 +625,9 @@ def downcast(self, dtypes=None) -> List[Block]: if dtypes is None: dtypes = "infer" - nv = maybe_downcast_to_dtype(values, dtypes) + # error: Value of type variable "ArrayLike" of "maybe_downcast_to_dtype" + # cannot be "Union[ndarray, ExtensionArray]" + nv = maybe_downcast_to_dtype(values, dtypes) # type: ignore[type-var] return [self.make_block(nv)] # ndim > 1 @@ -661,7 +671,11 @@ def astype(self, dtype, copy: bool = False, errors: str = "raise"): if values.dtype.kind in ["m", "M"]: values = self.array_values() - new_values = astype_array_safe(values, dtype, copy=copy, errors=errors) + # error: Value of type variable "ArrayLike" of "astype_array_safe" cannot be + # "Union[ndarray, ExtensionArray]" + new_values = astype_array_safe( + values, dtype, copy=copy, errors=errors # type: ignore[type-var] + ) newb = self.make_block(new_values) if newb.shape != self.shape: @@ -758,7 +772,9 @@ def replace( values = self.values - mask = missing.mask_missing(values, to_replace) + # error: Value of type variable "ArrayLike" of "mask_missing" cannot be + # "Union[ndarray, ExtensionArray]" + mask = missing.mask_missing(values, to_replace) # type: ignore[type-var] if not mask.any(): # Note: we get here with test_replace_extension_other incorrectly # bc _can_hold_element is incorrect. @@ -785,7 +801,9 @@ def replace( ) blk = self if inplace else self.copy() - putmask_inplace(blk.values, mask, value) + # error: Value of type variable "ArrayLike" of "putmask_inplace" cannot be + # "Union[ndarray, ExtensionArray]" + putmask_inplace(blk.values, mask, value) # type: ignore[type-var] blocks = blk.convert(numeric=False, copy=False) return blocks @@ -826,7 +844,9 @@ def _replace_regex( rx = re.compile(to_replace) new_values = self.values if inplace else self.values.copy() - replace_regex(new_values, rx, value, mask) + # error: Value of type variable "ArrayLike" of "replace_regex" cannot be + # "Union[ndarray, ExtensionArray]" + replace_regex(new_values, rx, value, mask) # type: ignore[type-var] block = self.make_block(new_values) return [block] @@ -863,14 +883,26 @@ def _replace_list( # in order to avoid repeating the same computations mask = ~isna(self.values) masks = [ - compare_or_regex_search(self.values, s[0], regex=regex, mask=mask) + # error: Value of type variable "ArrayLike" of "compare_or_regex_search" + # cannot be "Union[ndarray, ExtensionArray]" + compare_or_regex_search( # type: ignore[type-var] + self.values, s[0], regex=regex, mask=mask + ) for s in pairs ] else: # GH#38086 faster if we know we dont need to check for regex - masks = [missing.mask_missing(self.values, s[0]) for s in pairs] - masks = [extract_bool_array(x) for x in masks] + # error: Value of type variable "ArrayLike" of "mask_missing" cannot be + # "Union[ndarray, ExtensionArray]" + masks = [ + missing.mask_missing(self.values, s[0]) # type: ignore[type-var] + for s in pairs + ] + + # error: Value of type variable "ArrayLike" of "extract_bool_array" cannot be + # "Union[ndarray, ExtensionArray, bool]" + masks = [extract_bool_array(x) for x in masks] # type: ignore[type-var] rb = [self if inplace else self.copy()] for i, (src, dest) in enumerate(pairs): @@ -928,7 +960,9 @@ def _replace_coerce( nb = self.coerce_to_target_dtype(value) if nb is self and not inplace: nb = nb.copy() - putmask_inplace(nb.values, mask, value) + # error: Value of type variable "ArrayLike" of "putmask_inplace" cannot + # be "Union[ndarray, ExtensionArray]" + putmask_inplace(nb.values, mask, value) # type: ignore[type-var] return [nb] else: regex = should_use_regex(regex, to_replace) @@ -1001,7 +1035,9 @@ def setitem(self, indexer, value): # length checking check_setitem_lengths(indexer, value, values) - exact_match = is_exact_shape_match(values, arr_value) + # error: Value of type variable "ArrayLike" of "is_exact_shape_match" cannot be + # "Union[Any, ndarray, ExtensionArray]" + exact_match = is_exact_shape_match(values, arr_value) # type: ignore[type-var] if is_empty_indexer(indexer, arr_value): # GH#8669 empty indexers @@ -1040,7 +1076,11 @@ def setitem(self, indexer, value): values[indexer] = value.to_numpy(values.dtype).reshape(-1, 1) else: - value = setitem_datetimelike_compat(values, len(values[indexer]), value) + # error: Argument 1 to "setitem_datetimelike_compat" has incompatible type + # "Union[ndarray, ExtensionArray]"; expected "ndarray" + value = setitem_datetimelike_compat( + values, len(values[indexer]), value # type: ignore[arg-type] + ) values[indexer] = value if transpose: @@ -1065,7 +1105,9 @@ def putmask(self, mask, new) -> List[Block]: List[Block] """ orig_mask = mask - mask, noop = validate_putmask(self.values.T, mask) + # error: Value of type variable "ArrayLike" of "validate_putmask" cannot be + # "Union[ndarray, ExtensionArray]" + mask, noop = validate_putmask(self.values.T, mask) # type: ignore[type-var] assert not isinstance(new, (ABCIndex, ABCSeries, ABCDataFrame)) # if we are passed a scalar None, convert it here @@ -1074,7 +1116,9 @@ def putmask(self, mask, new) -> List[Block]: if self._can_hold_element(new): - putmask_without_repeat(self.values.T, mask, new) + # error: Argument 1 to "putmask_without_repeat" has incompatible type + # "Union[ndarray, ExtensionArray]"; expected "ndarray" + putmask_without_repeat(self.values.T, mask, new) # type: ignore[arg-type] return [self] elif noop: @@ -1089,7 +1133,10 @@ def putmask(self, mask, new) -> List[Block]: elif self.ndim == 1 or self.shape[0] == 1: # no need to split columns - nv = putmask_smart(self.values.T, mask, new).T + + # error: Argument 1 to "putmask_smart" has incompatible type "Union[ndarray, + # ExtensionArray]"; expected "ndarray" + nv = putmask_smart(self.values.T, mask, new).T # type: ignore[arg-type] return [self.make_block(nv)] else: @@ -1285,7 +1332,9 @@ def take_nd( else: allow_fill = True - new_values = algos.take_nd( + # error: Value of type variable "ArrayLike" of "take_nd" cannot be + # "Union[ndarray, ExtensionArray]" + new_values = algos.take_nd( # type: ignore[type-var] values, indexer, axis=axis, allow_fill=allow_fill, fill_value=fill_value ) @@ -1309,7 +1358,12 @@ def shift(self, periods: int, axis: int = 0, fill_value: Any = None) -> List[Blo """ shift the block by periods, possibly upcast """ # convert integer to float if necessary. need to do a lot more than # that, handle boolean etc also - new_values, fill_value = maybe_upcast(self.values, fill_value) + + # error: Argument 1 to "maybe_upcast" has incompatible type "Union[ndarray, + # ExtensionArray]"; expected "ndarray" + new_values, fill_value = maybe_upcast( + self.values, fill_value # type: ignore[arg-type] + ) new_values = shift(new_values, periods, axis, fill_value) @@ -1344,7 +1398,9 @@ def where(self, other, cond, errors="raise", axis: int = 0) -> List[Block]: if transpose: values = values.T - icond, noop = validate_putmask(values, ~cond) + # error: Value of type variable "ArrayLike" of "validate_putmask" cannot be + # "Union[ndarray, ExtensionArray]" + icond, noop = validate_putmask(values, ~cond) # type: ignore[type-var] if is_valid_na_for_dtype(other, self.dtype) and not self.is_object: other = self.fill_value @@ -1362,7 +1418,13 @@ def where(self, other, cond, errors="raise", axis: int = 0) -> List[Block]: blocks = block.where(orig_other, cond, errors=errors, axis=axis) return self._maybe_downcast(blocks, "infer") - alt = setitem_datetimelike_compat(values, icond.sum(), other) + # error: Argument 1 to "setitem_datetimelike_compat" has incompatible type + # "Union[ndarray, ExtensionArray]"; expected "ndarray" + # error: Argument 2 to "setitem_datetimelike_compat" has incompatible type + # "number[Any]"; expected "int" + alt = setitem_datetimelike_compat( + values, icond.sum(), other # type: ignore[arg-type] + ) if alt is not other: result = values.copy() np.putmask(result, icond, alt) @@ -1449,7 +1511,11 @@ def quantile( assert axis == 1 # only ever called this way assert is_list_like(qs) # caller is responsible for this - result = quantile_compat(self.values, qs, interpolation, axis) + # error: Value of type variable "ArrayLike" of "quantile_compat" cannot be + # "Union[ndarray, ExtensionArray]" + result = quantile_compat( # type: ignore[type-var] + self.values, qs, interpolation, axis + ) return new_block(result, placement=self.mgr_locs, ndim=2) @@ -1489,7 +1555,9 @@ def iget(self, col): elif isinstance(col, slice): if col != slice(None): raise NotImplementedError(col) - return self.values[[loc]] + # error: Invalid index type "List[Any]" for "ExtensionArray"; expected + # type "Union[int, slice, ndarray]" + return self.values[[loc]] # type: ignore[index] return self.values[loc] else: if col != 0: @@ -1615,7 +1683,9 @@ def to_native_types(self, na_rep="nan", quoting=None, **kwargs): values = self.values mask = isna(values) - values = np.asarray(values.astype(object)) + # error: Incompatible types in assignment (expression has type "ndarray", + # variable has type "ExtensionArray") + values = np.asarray(values.astype(object)) # type: ignore[assignment] values[mask] = na_rep # TODO(EA2D): reshape not needed with 2D EAs @@ -1742,7 +1812,10 @@ def where(self, other, cond, errors="raise", axis: int = 0) -> List[Block]: # The default `other` for Series / Frame is np.nan # we want to replace that with the correct NA value # for the type - other = self.dtype.na_value + + # error: Item "dtype[Any]" of "Union[dtype[Any], ExtensionDtype]" has no + # attribute "na_value" + other = self.dtype.na_value # type: ignore[union-attr] if is_sparse(self.values): # TODO(SparseArray.__setitem__): remove this if condition @@ -1832,7 +1905,9 @@ def _can_hold_element(self, element: Any) -> bool: if isinstance(element, (IntegerArray, FloatingArray)): if element._mask.any(): return False - return can_hold_element(self.dtype, element) + # error: Argument 1 to "can_hold_element" has incompatible type + # "Union[dtype[Any], ExtensionDtype]"; expected "dtype[Any]" + return can_hold_element(self.dtype, element) # type: ignore[arg-type] @property def _can_hold_na(self): @@ -2317,5 +2392,7 @@ def ensure_block_shape(values: ArrayLike, ndim: int = 1) -> ArrayLike: # block.shape is incorrect for "2D" ExtensionArrays # We can't, and don't need to, reshape. - values = np.asarray(values).reshape(1, -1) + # error: Incompatible types in assignment (expression has type "ndarray", + # variable has type "ExtensionArray") + values = np.asarray(values).reshape(1, -1) # type: ignore[assignment] return values diff --git a/pandas/core/internals/concat.py b/pandas/core/internals/concat.py index 924d2a77e5da5..64777ef31ac6e 100644 --- a/pandas/core/internals/concat.py +++ b/pandas/core/internals/concat.py @@ -187,7 +187,9 @@ def _get_mgr_concatenation_plan(mgr: BlockManager, indexers: Dict[int, np.ndarra blk = mgr.blocks[0] return [(blk.mgr_locs, JoinUnit(blk, mgr_shape, indexers))] - ax0_indexer = None + # error: Incompatible types in assignment (expression has type "None", variable + # has type "ndarray") + ax0_indexer = None # type: ignore[assignment] blknos = mgr.blknos blklocs = mgr.blklocs @@ -329,7 +331,9 @@ def get_reindexed_values(self, empty_dtype: DtypeObj, upcasted_na) -> ArrayLike: if self.is_valid_na_for(empty_dtype): blk_dtype = getattr(self.block, "dtype", None) - if blk_dtype == np.dtype(object): + # error: Value of type variable "_DTypeScalar" of "dtype" cannot be + # "object" + if blk_dtype == np.dtype(object): # type: ignore[type-var] # we want to avoid filling with np.nan if we are # using None; we already know that we are all # nulls @@ -340,11 +344,17 @@ def get_reindexed_values(self, empty_dtype: DtypeObj, upcasted_na) -> ArrayLike: if is_datetime64tz_dtype(empty_dtype): # TODO(EA2D): special case unneeded with 2D EAs i8values = np.full(self.shape[1], fill_value.value) - return DatetimeArray(i8values, dtype=empty_dtype) + # error: Incompatible return value type (got "DatetimeArray", + # expected "ndarray") + return DatetimeArray( # type: ignore[return-value] + i8values, dtype=empty_dtype + ) elif is_extension_array_dtype(blk_dtype): pass elif is_extension_array_dtype(empty_dtype): - cls = empty_dtype.construct_array_type() + # error: Item "dtype[Any]" of "Union[dtype[Any], ExtensionDtype]" + # has no attribute "construct_array_type" + cls = empty_dtype.construct_array_type() # type: ignore[union-attr] missing_arr = cls._from_sequence([], dtype=empty_dtype) ncols, nrows = self.shape assert ncols == 1, ncols @@ -355,7 +365,15 @@ def get_reindexed_values(self, empty_dtype: DtypeObj, upcasted_na) -> ArrayLike: else: # NB: we should never get here with empty_dtype integer or bool; # if we did, the missing_arr.fill would cast to gibberish - missing_arr = np.empty(self.shape, dtype=empty_dtype) + + # error: Argument "dtype" to "empty" has incompatible type + # "Union[dtype[Any], ExtensionDtype]"; expected "Union[dtype[Any], + # None, type, _SupportsDType, str, Union[Tuple[Any, int], Tuple[Any, + # Union[int, Sequence[int]]], List[Any], _DTypeDict, Tuple[Any, + # Any]]]" + missing_arr = np.empty( + self.shape, dtype=empty_dtype # type: ignore[arg-type] + ) missing_arr.fill(fill_value) return missing_arr @@ -421,14 +439,21 @@ def _concatenate_join_units( elif any(isinstance(t, ExtensionArray) for t in to_concat): # concatting with at least one EA means we are concatting a single column # the non-EA values are 2D arrays with shape (1, n) - to_concat = [t if isinstance(t, ExtensionArray) else t[0, :] for t in to_concat] + + # error: Invalid index type "Tuple[int, slice]" for "ExtensionArray"; expected + # type "Union[int, slice, ndarray]" + to_concat = [ + t if isinstance(t, ExtensionArray) else t[0, :] # type: ignore[index] + for t in to_concat + ] concat_values = concat_compat(to_concat, axis=0, ea_compat_axis=True) concat_values = ensure_block_shape(concat_values, 2) else: concat_values = concat_compat(to_concat, axis=concat_axis) - return concat_values + # error: Incompatible return value type (got "ExtensionArray", expected "ndarray") + return concat_values # type: ignore[return-value] def _dtype_to_na_value(dtype: DtypeObj, has_none_blocks: bool): @@ -436,7 +461,9 @@ def _dtype_to_na_value(dtype: DtypeObj, has_none_blocks: bool): Find the NA value to go with this dtype. """ if is_extension_array_dtype(dtype): - return dtype.na_value + # error: Item "dtype[Any]" of "Union[dtype[Any], ExtensionDtype]" has no + # attribute "na_value" + return dtype.na_value # type: ignore[union-attr] elif dtype.kind in ["m", "M"]: return dtype.type("NaT") elif dtype.kind in ["f", "c"]: diff --git a/pandas/core/internals/construction.py b/pandas/core/internals/construction.py index 0b712267ccf11..0ea8c3eb994a3 100644 --- a/pandas/core/internals/construction.py +++ b/pandas/core/internals/construction.py @@ -162,10 +162,17 @@ def rec_array_to_mgr( if isinstance(data, np.ma.MaskedArray): new_arrays = fill_masked_arrays(data, arr_columns) else: - new_arrays = arrays + # error: Incompatible types in assignment (expression has type + # "List[ExtensionArray]", variable has type "List[ndarray]") + new_arrays = arrays # type: ignore[assignment] # create the manager - arrays, arr_columns = reorder_arrays(new_arrays, arr_columns, columns) + + # error: Argument 1 to "reorder_arrays" has incompatible type "List[ndarray]"; + # expected "List[ExtensionArray]" + arrays, arr_columns = reorder_arrays( + new_arrays, arr_columns, columns # type: ignore[arg-type] + ) if columns is None: columns = arr_columns @@ -357,12 +364,22 @@ def dict_to_mgr( if missing.any() and not is_integer_dtype(dtype): if dtype is None or ( not is_extension_array_dtype(dtype) - and np.issubdtype(dtype, np.flexible) + # error: Argument 1 to "issubdtype" has incompatible type + # "Union[dtype, ExtensionDtype]"; expected "Union[dtype, None, + # type, _SupportsDtype, str, Tuple[Any, int], Tuple[Any, + # Union[int, Sequence[int]]], List[Any], _DtypeDict, Tuple[Any, + # Any]]" + and np.issubdtype(dtype, np.flexible) # type: ignore[arg-type] ): # GH#1783 - nan_dtype = np.dtype(object) + + # error: Value of type variable "_DTypeScalar" of "dtype" cannot be + # "object" + nan_dtype = np.dtype(object) # type: ignore[type-var] else: - nan_dtype = dtype + # error: Incompatible types in assignment (expression has type + # "Union[dtype, ExtensionDtype]", variable has type "dtype") + nan_dtype = dtype # type: ignore[assignment] val = construct_1d_arraylike_from_scalar(np.nan, len(index), nan_dtype) arrays.loc[missing] = [val] * missing.sum() @@ -557,7 +574,9 @@ def extract_index(data) -> Index: else: index = ibase.default_index(lengths[0]) - return ensure_index(index) + # error: Value of type variable "AnyArrayLike" of "ensure_index" cannot be + # "Optional[Index]" + return ensure_index(index) # type: ignore[type-var] def reorder_arrays( @@ -660,7 +679,9 @@ def to_arrays( if not len(data): if isinstance(data, np.ndarray): - columns = data.dtype.names + # error: Incompatible types in assignment (expression has type + # "Optional[Tuple[str, ...]]", variable has type "Optional[Index]") + columns = data.dtype.names # type: ignore[assignment] if columns is not None: # i.e. numpy structured array arrays = [data[name] for name in columns] @@ -689,8 +710,17 @@ def to_arrays( data = [tuple(x) for x in data] content = _list_to_arrays(data) - content, columns = _finalize_columns_and_data(content, columns, dtype) - return content, columns + # error: Incompatible types in assignment (expression has type "List[ndarray]", + # variable has type "List[Union[Union[str, int, float, bool], Union[Any, Any, Any, + # Any]]]") + content, columns = _finalize_columns_and_data( # type: ignore[assignment] + content, columns, dtype + ) + # error: Incompatible return value type (got "Tuple[ndarray, Index]", expected + # "Tuple[List[ExtensionArray], Index]") + # error: Incompatible return value type (got "Tuple[ndarray, Index]", expected + # "Tuple[List[ndarray], Index]") + return content, columns # type: ignore[return-value] def _list_to_arrays(data: List[Union[Tuple, List]]) -> np.ndarray: @@ -731,7 +761,11 @@ def _list_of_series_to_arrays( values = extract_array(s, extract_numpy=True) aligned_values.append(algorithms.take_nd(values, indexer)) - content = np.vstack(aligned_values) + # error: Argument 1 to "vstack" has incompatible type "List[ExtensionArray]"; + # expected "Sequence[Union[Union[int, float, complex, str, bytes, generic], + # Sequence[Union[int, float, complex, str, bytes, generic]], + # Sequence[Sequence[Any]], _SupportsArray]]" + content = np.vstack(aligned_values) # type: ignore[arg-type] return content, columns @@ -781,17 +815,34 @@ def _finalize_columns_and_data( """ Ensure we have valid columns, cast object dtypes if possible. """ - content = list(content.T) + # error: Incompatible types in assignment (expression has type "List[Any]", variable + # has type "ndarray") + content = list(content.T) # type: ignore[assignment] try: - columns = _validate_or_indexify_columns(content, columns) + # error: Argument 1 to "_validate_or_indexify_columns" has incompatible type + # "ndarray"; expected "List[Any]" + columns = _validate_or_indexify_columns( + content, columns # type: ignore[arg-type] + ) except AssertionError as err: # GH#26429 do not raise user-facing AssertionError raise ValueError(err) from err if len(content) and content[0].dtype == np.object_: - content = _convert_object_array(content, dtype=dtype) - return content, columns + # error: Incompatible types in assignment (expression has type + # "List[Union[Union[str, int, float, bool], Union[Any, Any, Any, Any]]]", + # variable has type "ndarray") + # error: Argument 1 to "_convert_object_array" has incompatible type "ndarray"; + # expected "List[Union[Union[str, int, float, bool], Union[Any, Any, Any, + # Any]]]" + content = _convert_object_array( # type: ignore[assignment] + content, dtype=dtype # type: ignore[arg-type] + ) + # error: Incompatible return value type (got "Tuple[ndarray, Union[Index, + # List[Union[str, int]]]]", expected "Tuple[List[ndarray], Union[Index, + # List[Union[str, int]]]]") + return content, columns # type: ignore[return-value] def _validate_or_indexify_columns( diff --git a/pandas/core/internals/managers.py b/pandas/core/internals/managers.py index 2daa1ce8dc9a4..476bd836bf216 100644 --- a/pandas/core/internals/managers.py +++ b/pandas/core/internals/managers.py @@ -173,8 +173,12 @@ def __init__( # Populate known_consolidate, blknos, and blklocs lazily self._known_consolidated = False - self._blknos = None - self._blklocs = None + # error: Incompatible types in assignment (expression has type "None", + # variable has type "ndarray") + self._blknos = None # type: ignore[assignment] + # error: Incompatible types in assignment (expression has type "None", + # variable has type "ndarray") + self._blklocs = None # type: ignore[assignment] @classmethod def _simple_new(cls, blocks: Tuple[Block, ...], axes: List[Index]): @@ -316,7 +320,11 @@ def arrays(self) -> List[ArrayLike]: Not to be used in actual code, and return value is not the same as the ArrayManager method (list of 1D arrays vs iterator of 2D ndarrays / 1D EAs). """ - return [blk.values for blk in self.blocks] + # error: List comprehension has incompatible type List[Union[ndarray, + # ExtensionArray]]; expected List[ExtensionArray] + # error: List comprehension has incompatible type List[Union[ndarray, + # ExtensionArray]]; expected List[ndarray] + return [blk.values for blk in self.blocks] # type: ignore[misc] def __getstate__(self): block_values = [b.values for b in self.blocks] @@ -889,13 +897,21 @@ def as_array( blk = self.blocks[0] if blk.is_extension: # Avoid implicit conversion of extension blocks to object - arr = blk.values.to_numpy(dtype=dtype, na_value=na_value).reshape( - blk.shape - ) + + # error: Item "ndarray" of "Union[ndarray, ExtensionArray]" has no + # attribute "to_numpy" + arr = blk.values.to_numpy( # type: ignore[union-attr] + dtype=dtype, na_value=na_value + ).reshape(blk.shape) else: arr = np.asarray(blk.get_values()) if dtype: - arr = arr.astype(dtype, copy=False) + # error: Argument 1 to "astype" of "_ArrayOrScalarCommon" has + # incompatible type "Union[ExtensionDtype, str, dtype[Any], + # Type[object]]"; expected "Union[dtype[Any], None, type, + # _SupportsDType, str, Union[Tuple[Any, int], Tuple[Any, Union[int, + # Sequence[int]]], List[Any], _DTypeDict, Tuple[Any, Any]]]" + arr = arr.astype(dtype, copy=False) # type: ignore[arg-type] else: arr = self._interleave(dtype=dtype, na_value=na_value) # The underlying data was copied within _interleave @@ -928,7 +944,12 @@ def _interleave( elif is_dtype_equal(dtype, str): dtype = "object" - result = np.empty(self.shape, dtype=dtype) + # error: Argument "dtype" to "empty" has incompatible type + # "Union[ExtensionDtype, str, dtype[Any], Type[object], None]"; expected + # "Union[dtype[Any], None, type, _SupportsDType, str, Union[Tuple[Any, int], + # Tuple[Any, Union[int, Sequence[int]]], List[Any], _DTypeDict, Tuple[Any, + # Any]]]" + result = np.empty(self.shape, dtype=dtype) # type: ignore[arg-type] itemmask = np.zeros(self.shape[0]) @@ -936,9 +957,17 @@ def _interleave( rl = blk.mgr_locs if blk.is_extension: # Avoid implicit conversion of extension blocks to object - arr = blk.values.to_numpy(dtype=dtype, na_value=na_value) + + # error: Item "ndarray" of "Union[ndarray, ExtensionArray]" has no + # attribute "to_numpy" + arr = blk.values.to_numpy( # type: ignore[union-attr] + dtype=dtype, na_value=na_value + ) else: - arr = blk.get_values(dtype) + # error: Argument 1 to "get_values" of "Block" has incompatible type + # "Union[ExtensionDtype, str, dtype[Any], Type[object], None]"; expected + # "Union[dtype[Any], ExtensionDtype, None]" + arr = blk.get_values(dtype) # type: ignore[arg-type] result[rl.indexer] = arr itemmask[rl.indexer] = 1 @@ -989,7 +1018,12 @@ def fast_xs(self, loc: int) -> ArrayLike: # we'll eventually construct an ExtensionArray. result = np.empty(n, dtype=object) else: - result = np.empty(n, dtype=dtype) + # error: Argument "dtype" to "empty" has incompatible type + # "Union[dtype, ExtensionDtype, None]"; expected "Union[dtype, + # None, type, _SupportsDtype, str, Tuple[Any, int], Tuple[Any, + # Union[int, Sequence[int]]], List[Any], _DtypeDict, Tuple[Any, + # Any]]" + result = np.empty(n, dtype=dtype) # type: ignore[arg-type] for blk in self.blocks: # Such assignment may incorrectly coerce NaT to None @@ -1000,7 +1034,9 @@ def fast_xs(self, loc: int) -> ArrayLike: if isinstance(dtype, ExtensionDtype): result = dtype.construct_array_type()._from_sequence(result, dtype=dtype) - return result + # error: Incompatible return value type (got "ndarray", expected + # "ExtensionArray") + return result # type: ignore[return-value] def consolidate(self) -> BlockManager: """ @@ -1123,7 +1159,11 @@ def value_getitem(placement): # We have 6 tests where loc is _not_ an int. # In this case, get_blkno_placements will yield only one tuple, # containing (self._blknos[loc], BlockPlacement(slice(0, 1, 1))) - loc = [loc] + + # error: Incompatible types in assignment (expression has type + # "List[Union[int, slice, ndarray]]", variable has type "Union[int, + # slice, ndarray]") + loc = [loc] # type: ignore[assignment] # Accessing public blknos ensures the public versions are initialized blknos = self.blknos[loc] @@ -1461,7 +1501,11 @@ def _make_na_block(self, placement, fill_value=None): block_shape[0] = len(placement) dtype, fill_value = infer_dtype_from_scalar(fill_value) - block_values = np.empty(block_shape, dtype=dtype) + # error: Argument "dtype" to "empty" has incompatible type "Union[dtype, + # ExtensionDtype]"; expected "Union[dtype, None, type, _SupportsDtype, str, + # Tuple[Any, int], Tuple[Any, Union[int, Sequence[int]]], List[Any], _DtypeDict, + # Tuple[Any, Any]]" + block_values = np.empty(block_shape, dtype=dtype) # type: ignore[arg-type] block_values.fill(fill_value) return new_block(block_values, placement=placement, ndim=block_values.ndim) @@ -1503,7 +1547,9 @@ def _equal_values(self: T, other: T) -> bool: return False left = self.blocks[0].values right = other.blocks[0].values - return array_equals(left, right) + # error: Value of type variable "ArrayLike" of "array_equals" cannot be + # "Union[ndarray, ExtensionArray]" + return array_equals(left, right) # type: ignore[type-var] return blockwise_all(self, other, array_equals) @@ -1884,7 +1930,12 @@ def _multi_blockify(tuples, dtype: Optional[Dtype] = None): new_blocks = [] for dtype, tup_block in grouper: - values, placement = _stack_arrays(list(tup_block), dtype) + # error: Argument 2 to "_stack_arrays" has incompatible type + # "Union[ExtensionDtype, str, dtype[Any], Type[str], Type[float], Type[int], + # Type[complex], Type[bool], Type[object], None]"; expected "dtype[Any]" + values, placement = _stack_arrays( + list(tup_block), dtype # type: ignore[arg-type] + ) block = new_block(values, placement=placement, ndim=2) new_blocks.append(block) @@ -1958,7 +2009,11 @@ def _merge_blocks( # TODO: optimization potential in case all mgrs contain slices and # combination of those slices is a slice, too. new_mgr_locs = np.concatenate([b.mgr_locs.as_array for b in blocks]) - new_values = np.vstack([b.values for b in blocks]) + # error: List comprehension has incompatible type List[Union[ndarray, + # ExtensionArray]]; expected List[Union[complex, generic, Sequence[Union[int, + # float, complex, str, bytes, generic]], Sequence[Sequence[Any]], + # _SupportsArray]] + new_values = np.vstack([b.values for b in blocks]) # type: ignore[misc] argsort = np.argsort(new_mgr_locs) new_values = new_values[argsort] diff --git a/pandas/core/internals/ops.py b/pandas/core/internals/ops.py index dbd309f0836a5..103092ba37b70 100644 --- a/pandas/core/internals/ops.py +++ b/pandas/core/internals/ops.py @@ -108,21 +108,35 @@ def _get_same_shape_values( # TODO(EA2D): with 2D EAs only this first clause would be needed if not (left_ea or right_ea): - lvals = lvals[rblk.mgr_locs.indexer, :] + # error: Invalid index type "Tuple[Any, slice]" for "Union[ndarray, + # ExtensionArray]"; expected type "Union[int, slice, ndarray]" + lvals = lvals[rblk.mgr_locs.indexer, :] # type: ignore[index] assert lvals.shape == rvals.shape, (lvals.shape, rvals.shape) elif left_ea and right_ea: assert lvals.shape == rvals.shape, (lvals.shape, rvals.shape) elif right_ea: # lvals are 2D, rvals are 1D - lvals = lvals[rblk.mgr_locs.indexer, :] + + # error: Invalid index type "Tuple[Any, slice]" for "Union[ndarray, + # ExtensionArray]"; expected type "Union[int, slice, ndarray]" + lvals = lvals[rblk.mgr_locs.indexer, :] # type: ignore[index] assert lvals.shape[0] == 1, lvals.shape - lvals = lvals[0, :] + # error: Invalid index type "Tuple[int, slice]" for "Union[Any, + # ExtensionArray]"; expected type "Union[int, slice, ndarray]" + lvals = lvals[0, :] # type: ignore[index] else: # lvals are 1D, rvals are 2D assert rvals.shape[0] == 1, rvals.shape - rvals = rvals[0, :] - - return lvals, rvals + # error: Invalid index type "Tuple[int, slice]" for "Union[ndarray, + # ExtensionArray]"; expected type "Union[int, slice, ndarray]" + rvals = rvals[0, :] # type: ignore[index] + + # error: Incompatible return value type (got "Tuple[Union[ndarray, ExtensionArray], + # Union[ndarray, ExtensionArray]]", expected "Tuple[ExtensionArray, + # ExtensionArray]") + # error: Incompatible return value type (got "Tuple[Union[ndarray, ExtensionArray], + # Union[ndarray, ExtensionArray]]", expected "Tuple[ndarray, ndarray]") + return lvals, rvals # type: ignore[return-value] def blockwise_all(left: BlockManager, right: BlockManager, op) -> bool: diff --git a/pandas/core/missing.py b/pandas/core/missing.py index dc42a175409c2..48b2084319292 100644 --- a/pandas/core/missing.py +++ b/pandas/core/missing.py @@ -75,7 +75,11 @@ def mask_missing(arr: ArrayLike, values_to_mask) -> np.ndarray: # known to be holdable by arr. # When called from Series._single_replace, values_to_mask is tuple or list dtype, values_to_mask = infer_dtype_from(values_to_mask) - values_to_mask = np.array(values_to_mask, dtype=dtype) + # error: Argument "dtype" to "array" has incompatible type "Union[dtype[Any], + # ExtensionDtype]"; expected "Union[dtype[Any], None, type, _SupportsDType, str, + # Union[Tuple[Any, int], Tuple[Any, Union[int, Sequence[int]]], List[Any], + # _DTypeDict, Tuple[Any, Any]]]" + values_to_mask = np.array(values_to_mask, dtype=dtype) # type: ignore[arg-type] na_mask = isna(values_to_mask) nonna = values_to_mask[~na_mask] @@ -305,7 +309,12 @@ def interpolate_1d( if method in NP_METHODS: # np.interp requires sorted X values, #21037 - indexer = np.argsort(inds[valid]) + + # error: Argument 1 to "argsort" has incompatible type "Union[ExtensionArray, + # Any]"; expected "Union[Union[int, float, complex, str, bytes, generic], + # Sequence[Union[int, float, complex, str, bytes, generic]], + # Sequence[Sequence[Any]], _SupportsArray]" + indexer = np.argsort(inds[valid]) # type: ignore[arg-type] result[invalid] = np.interp( inds[invalid], inds[valid][indexer], yvalues[valid][indexer] ) @@ -708,7 +717,9 @@ def _pad_1d( ) -> tuple[np.ndarray, np.ndarray]: mask = _fillna_prep(values, mask) algos.pad_inplace(values, mask, limit=limit) - return values, mask + # error: Incompatible return value type (got "Tuple[ndarray, Optional[ndarray]]", + # expected "Tuple[ndarray, ndarray]") + return values, mask # type: ignore[return-value] @_datetimelike_compat @@ -719,7 +730,9 @@ def _backfill_1d( ) -> tuple[np.ndarray, np.ndarray]: mask = _fillna_prep(values, mask) algos.backfill_inplace(values, mask, limit=limit) - return values, mask + # error: Incompatible return value type (got "Tuple[ndarray, Optional[ndarray]]", + # expected "Tuple[ndarray, ndarray]") + return values, mask # type: ignore[return-value] @_datetimelike_compat @@ -839,4 +852,7 @@ def _rolling_window(a: np.ndarray, window: int): # https://stackoverflow.com/a/6811241 shape = a.shape[:-1] + (a.shape[-1] - window + 1, window) strides = a.strides + (a.strides[-1],) - return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides) + # error: Module has no attribute "stride_tricks" + return np.lib.stride_tricks.as_strided( # type: ignore[attr-defined] + a, shape=shape, strides=strides + ) diff --git a/pandas/core/nanops.py b/pandas/core/nanops.py index 2592492f1c14c..f17569d114389 100644 --- a/pandas/core/nanops.py +++ b/pandas/core/nanops.py @@ -411,7 +411,11 @@ def new_func( if datetimelike: result = _wrap_results(result, orig_values.dtype, fill_value=iNaT) if not skipna: - result = _mask_datetimelike_result(result, axis, mask, orig_values) + # error: Argument 3 to "_mask_datetimelike_result" has incompatible type + # "Optional[ndarray]"; expected "ndarray" + result = _mask_datetimelike_result( + result, axis, mask, orig_values # type: ignore[arg-type] + ) return result @@ -486,7 +490,9 @@ def nanany( False """ values, _, _, _, _ = _get_values(values, skipna, fill_value=False, mask=mask) - return values.any(axis) + # error: Incompatible return value type (got "Union[bool_, ndarray]", expected + # "bool") + return values.any(axis) # type: ignore[return-value] def nanall( @@ -524,7 +530,9 @@ def nanall( False """ values, _, _, _, _ = _get_values(values, skipna, fill_value=True, mask=mask) - return values.all(axis) + # error: Incompatible return value type (got "Union[bool_, ndarray]", expected + # "bool") + return values.all(axis) # type: ignore[return-value] @disallow("M8") @@ -567,12 +575,22 @@ def nansum( if is_float_dtype(dtype): dtype_sum = dtype elif is_timedelta64_dtype(dtype): - dtype_sum = np.float64 + # error: Incompatible types in assignment (expression has type + # "Type[float64]", variable has type "dtype") + dtype_sum = np.float64 # type: ignore[assignment] the_sum = values.sum(axis, dtype=dtype_sum) - the_sum = _maybe_null_out(the_sum, axis, mask, values.shape, min_count=min_count) + # error: Incompatible types in assignment (expression has type "float", variable has + # type "Union[number, ndarray]") + # error: Argument 1 to "_maybe_null_out" has incompatible type "Union[number, + # ndarray]"; expected "ndarray" + the_sum = _maybe_null_out( # type: ignore[assignment] + the_sum, axis, mask, values.shape, min_count=min_count # type: ignore[arg-type] + ) - return the_sum + # error: Incompatible return value type (got "Union[number, ndarray]", expected + # "float") + return the_sum # type: ignore[return-value] def _mask_datetimelike_result( @@ -634,12 +652,18 @@ def nanmean( # not using needs_i8_conversion because that includes period if dtype.kind in ["m", "M"]: - dtype_sum = np.float64 + # error: Incompatible types in assignment (expression has type "Type[float64]", + # variable has type "dtype[Any]") + dtype_sum = np.float64 # type: ignore[assignment] elif is_integer_dtype(dtype): - dtype_sum = np.float64 + # error: Incompatible types in assignment (expression has type "Type[float64]", + # variable has type "dtype[Any]") + dtype_sum = np.float64 # type: ignore[assignment] elif is_float_dtype(dtype): dtype_sum = dtype - dtype_count = dtype + # error: Incompatible types in assignment (expression has type "dtype[Any]", + # variable has type "Type[float64]") + dtype_count = dtype # type: ignore[assignment] count = _get_counts(values.shape, mask, axis, dtype=dtype_count) the_sum = _ensure_numeric(values.sum(axis, dtype=dtype_sum)) @@ -791,7 +815,9 @@ def _get_counts_nanvar( """ dtype = get_dtype(dtype) count = _get_counts(value_counts, mask, axis, dtype=dtype) - d = count - dtype.type(ddof) + # error: Unsupported operand types for - ("int" and "generic") + # error: Unsupported operand types for - ("float" and "generic") + d = count - dtype.type(ddof) # type: ignore[operator] # always return NaN, never inf if is_scalar(count): @@ -799,11 +825,16 @@ def _get_counts_nanvar( count = np.nan d = np.nan else: - mask2: np.ndarray = count <= ddof + # error: Incompatible types in assignment (expression has type + # "Union[bool, Any]", variable has type "ndarray") + mask2: np.ndarray = count <= ddof # type: ignore[assignment] if mask2.any(): np.putmask(d, mask2, np.nan) np.putmask(count, mask2, np.nan) - return count, d + # error: Incompatible return value type (got "Tuple[Union[int, float, + # ndarray], Any]", expected "Tuple[Union[int, ndarray], Union[int, + # ndarray]]") + return count, d # type: ignore[return-value] @bottleneck_switch(ddof=1) @@ -958,7 +989,11 @@ def nansem( if not is_float_dtype(values.dtype): values = values.astype("f8") - count, _ = _get_counts_nanvar(values.shape, mask, axis, ddof, values.dtype) + # error: Argument 1 to "_get_counts_nanvar" has incompatible type + # "Tuple[int, ...]"; expected "Tuple[int]" + count, _ = _get_counts_nanvar( + values.shape, mask, axis, ddof, values.dtype # type: ignore[arg-type] + ) var = nanvar(values, axis=axis, skipna=skipna, ddof=ddof) return np.sqrt(var) / np.sqrt(count) @@ -1038,7 +1073,8 @@ def nanargmax( array([2, 2, 1, 1], dtype=int64) """ values, mask, _, _, _ = _get_values(values, True, fill_value_typ="-inf", mask=mask) - result = values.argmax(axis) + # error: Need type annotation for 'result' + result = values.argmax(axis) # type: ignore[var-annotated] result = _maybe_arg_null_out(result, axis, mask, skipna) return result @@ -1083,7 +1119,8 @@ def nanargmin( array([0, 0, 1, 1], dtype=int64) """ values, mask, _, _, _ = _get_values(values, True, fill_value_typ="+inf", mask=mask) - result = values.argmin(axis) + # error: Need type annotation for 'result' + result = values.argmin(axis) # type: ignore[var-annotated] result = _maybe_arg_null_out(result, axis, mask, skipna) return result @@ -1304,7 +1341,13 @@ def nanprod( values = values.copy() values[mask] = 1 result = values.prod(axis) - return _maybe_null_out(result, axis, mask, values.shape, min_count=min_count) + # error: Argument 1 to "_maybe_null_out" has incompatible type "Union[number, + # ndarray]"; expected "ndarray" + # error: Incompatible return value type (got "Union[ndarray, float]", expected + # "float") + return _maybe_null_out( # type: ignore[return-value] + result, axis, mask, values.shape, min_count=min_count # type: ignore[arg-type] + ) def _maybe_arg_null_out( @@ -1317,10 +1360,14 @@ def _maybe_arg_null_out( if axis is None or not getattr(result, "ndim", False): if skipna: if mask.all(): - result = -1 + # error: Incompatible types in assignment (expression has type + # "int", variable has type "ndarray") + result = -1 # type: ignore[assignment] else: if mask.any(): - result = -1 + # error: Incompatible types in assignment (expression has type + # "int", variable has type "ndarray") + result = -1 # type: ignore[assignment] else: if skipna: na_mask = mask.all(axis) @@ -1361,7 +1408,9 @@ def _get_counts( n = mask.size - mask.sum() else: n = np.prod(values_shape) - return dtype.type(n) + # error: Incompatible return value type (got "Union[Any, generic]", + # expected "Union[int, float, ndarray]") + return dtype.type(n) # type: ignore[return-value] if mask is not None: count = mask.shape[axis] - mask.sum(axis) @@ -1369,11 +1418,23 @@ def _get_counts( count = values_shape[axis] if is_scalar(count): - return dtype.type(count) + # error: Incompatible return value type (got "Union[Any, generic]", + # expected "Union[int, float, ndarray]") + return dtype.type(count) # type: ignore[return-value] try: - return count.astype(dtype) + # error: Incompatible return value type (got "Union[ndarray, generic]", expected + # "Union[int, float, ndarray]") + # error: Argument 1 to "astype" of "_ArrayOrScalarCommon" has incompatible type + # "Union[ExtensionDtype, dtype]"; expected "Union[dtype, None, type, + # _SupportsDtype, str, Tuple[Any, int], Tuple[Any, Union[int, Sequence[int]]], + # List[Any], _DtypeDict, Tuple[Any, Any]]" + return count.astype(dtype) # type: ignore[return-value,arg-type] except AttributeError: - return np.array(count, dtype=dtype) + # error: Argument "dtype" to "array" has incompatible type + # "Union[ExtensionDtype, dtype]"; expected "Union[dtype, None, type, + # _SupportsDtype, str, Tuple[Any, int], Tuple[Any, Union[int, + # Sequence[int]]], List[Any], _DtypeDict, Tuple[Any, Any]]" + return np.array(count, dtype=dtype) # type: ignore[arg-type] def _maybe_null_out( @@ -1403,7 +1464,9 @@ def _maybe_null_out( result[null_mask] = None elif result is not NaT: if check_below_min_count(shape, mask, min_count): - result = np.nan + # error: Incompatible types in assignment (expression has type + # "float", variable has type "ndarray") + result = np.nan # type: ignore[assignment] return result diff --git a/pandas/core/ops/array_ops.py b/pandas/core/ops/array_ops.py index 10807dffb026b..9153eb25032e7 100644 --- a/pandas/core/ops/array_ops.py +++ b/pandas/core/ops/array_ops.py @@ -88,7 +88,11 @@ def _masked_arith_op(x: np.ndarray, y, op): assert isinstance(x, np.ndarray), type(x) if isinstance(y, np.ndarray): dtype = find_common_type([x.dtype, y.dtype]) - result = np.empty(x.size, dtype=dtype) + # error: Argument "dtype" to "empty" has incompatible type + # "Union[dtype, ExtensionDtype]"; expected "Union[dtype, None, type, + # _SupportsDtype, str, Tuple[Any, int], Tuple[Any, Union[int, + # Sequence[int]]], List[Any], _DtypeDict, Tuple[Any, Any]]" + result = np.empty(x.size, dtype=dtype) # type: ignore[arg-type] if len(x) != len(y): raise ValueError(x.shape, y.shape) diff --git a/pandas/core/ops/mask_ops.py b/pandas/core/ops/mask_ops.py index 501bc0159e641..968833cd1ae44 100644 --- a/pandas/core/ops/mask_ops.py +++ b/pandas/core/ops/mask_ops.py @@ -109,7 +109,9 @@ def kleene_xor( if right is libmissing.NA: result = np.zeros_like(left) else: - result = left ^ right + # error: Incompatible types in assignment (expression has type + # "Union[bool, Any]", variable has type "ndarray") + result = left ^ right # type: ignore[assignment] if right_mask is None: if right is libmissing.NA: diff --git a/pandas/core/reshape/melt.py b/pandas/core/reshape/melt.py index 80a44e8fda39b..09249eba9c3f5 100644 --- a/pandas/core/reshape/melt.py +++ b/pandas/core/reshape/melt.py @@ -143,10 +143,17 @@ def melt( mcolumns = id_vars + var_name + [value_name] - mdata[value_name] = frame._values.ravel("F") + # error: Incompatible types in assignment (expression has type "ndarray", + # target has type "Series") + mdata[value_name] = frame._values.ravel("F") # type: ignore[assignment] for i, col in enumerate(var_name): # asanyarray will keep the columns as an Index - mdata[col] = np.asanyarray(frame.columns._get_level_values(i)).repeat(N) + + # error: Incompatible types in assignment (expression has type "ndarray", target + # has type "Series") + mdata[col] = np.asanyarray( # type: ignore[assignment] + frame.columns._get_level_values(i) + ).repeat(N) result = frame._constructor(mdata, columns=mcolumns) diff --git a/pandas/core/reshape/merge.py b/pandas/core/reshape/merge.py index 9291dcf552786..a048217d6b1f0 100644 --- a/pandas/core/reshape/merge.py +++ b/pandas/core/reshape/merge.py @@ -2064,8 +2064,13 @@ def _factorize_keys( if is_datetime64tz_dtype(lk.dtype) and is_datetime64tz_dtype(rk.dtype): # Extract the ndarray (UTC-localized) values # Note: we dont need the dtypes to match, as these can still be compared - lk = cast("DatetimeArray", lk)._ndarray - rk = cast("DatetimeArray", rk)._ndarray + + # error: Incompatible types in assignment (expression has type "ndarray", + # variable has type "ExtensionArray") + lk = cast("DatetimeArray", lk)._ndarray # type: ignore[assignment] + # error: Incompatible types in assignment (expression has type "ndarray", + # variable has type "ExtensionArray") + rk = cast("DatetimeArray", rk)._ndarray # type: ignore[assignment] elif ( is_categorical_dtype(lk.dtype) @@ -2075,14 +2080,27 @@ def _factorize_keys( assert isinstance(lk, Categorical) assert isinstance(rk, Categorical) # Cast rk to encoding so we can compare codes with lk - rk = lk._encode_with_my_categories(rk) - lk = ensure_int64(lk.codes) - rk = ensure_int64(rk.codes) + # error: has no attribute "_encode_with_my_categories" + rk = lk._encode_with_my_categories(rk) # type: ignore[attr-defined] + + # error: has no attribute "codes" + lk = ensure_int64(lk.codes) # type: ignore[attr-defined] + # error: "ndarray" has no attribute "codes" + rk = ensure_int64(rk.codes) # type: ignore[attr-defined] elif is_extension_array_dtype(lk.dtype) and is_dtype_equal(lk.dtype, rk.dtype): - lk, _ = lk._values_for_factorize() - rk, _ = rk._values_for_factorize() + # error: Incompatible types in assignment (expression has type "ndarray", + # variable has type "ExtensionArray") + # error: Item "ndarray" of "Union[Any, ndarray]" has no attribute + # "_values_for_factorize" + lk, _ = lk._values_for_factorize() # type: ignore[union-attr,assignment] + + # error: Incompatible types in assignment (expression has type + # "ndarray", variable has type "ExtensionArray") + # error: Item "ndarray" of "Union[Any, ndarray]" has no attribute + # "_values_for_factorize" + rk, _ = rk._values_for_factorize() # type: ignore[union-attr,assignment] if is_integer_dtype(lk.dtype) and is_integer_dtype(rk.dtype): # GH#23917 TODO: needs tests for case where lk is integer-dtype diff --git a/pandas/core/reshape/pivot.py b/pandas/core/reshape/pivot.py index d0026d7acbe65..0c0b37791f883 100644 --- a/pandas/core/reshape/pivot.py +++ b/pandas/core/reshape/pivot.py @@ -486,7 +486,11 @@ def pivot( cols = [] append = index is None - indexed = data.set_index(cols + columns, append=append) + # error: Unsupported operand types for + ("List[Any]" and "ExtensionArray") + # error: Unsupported left operand type for + ("ExtensionArray") + indexed = data.set_index( + cols + columns, append=append # type: ignore[operator] + ) else: if index is None: index = [Series(data.index, name=data.index.name)] diff --git a/pandas/core/reshape/reshape.py b/pandas/core/reshape/reshape.py index f0a2ef0cb1869..13119b9997002 100644 --- a/pandas/core/reshape/reshape.py +++ b/pandas/core/reshape/reshape.py @@ -169,7 +169,9 @@ def _make_selectors(self): self.full_shape = ngroups, stride selector = self.sorted_labels[-1] + stride * comp_index + self.lift - mask = np.zeros(np.prod(self.full_shape), dtype=bool) + # error: Argument 1 to "zeros" has incompatible type "number"; expected + # "Union[int, Sequence[int]]" + mask = np.zeros(np.prod(self.full_shape), dtype=bool) # type: ignore[arg-type] mask.put(selector, True) if mask.sum() < len(self.index): @@ -952,7 +954,9 @@ def _get_dummies_1d( if dtype is None: dtype = np.uint8 - dtype = np.dtype(dtype) + # error: Argument 1 to "dtype" has incompatible type "Union[ExtensionDtype, str, + # dtype[Any], Type[object]]"; expected "Type[Any]" + dtype = np.dtype(dtype) # type: ignore[arg-type] if is_object_dtype(dtype): raise ValueError("dtype=object is not a valid dtype for get_dummies") diff --git a/pandas/core/series.py b/pandas/core/series.py index 468c3baca92c3..b92ada9537bd4 100644 --- a/pandas/core/series.py +++ b/pandas/core/series.py @@ -353,7 +353,9 @@ def __init__( copy = False elif isinstance(data, np.ndarray): - if len(data.dtype): + # error: Argument 1 to "len" has incompatible type "dtype"; expected + # "Sized" + if len(data.dtype): # type: ignore[arg-type] # GH#13296 we are dealing with a compound dtype, which # should be treated as 2D raise ValueError( @@ -402,7 +404,12 @@ def __init__( elif copy: data = data.copy() else: - data = sanitize_array(data, index, dtype, copy) + # error: Argument 3 to "sanitize_array" has incompatible type + # "Union[ExtensionDtype, str, dtype[Any], Type[object], None]"; expected + # "Union[dtype[Any], ExtensionDtype, None]" + data = sanitize_array( + data, index, dtype, copy # type: ignore[arg-type] + ) manager = get_option("mode.data_manager") if manager == "block": @@ -453,7 +460,10 @@ def _init_dict(self, data, index=None, dtype: Optional[Dtype] = None): # Input is now list-like, so rely on "standard" construction: # TODO: passing np.float64 to not break anything yet. See GH-17261 - s = create_series_with_explicit_dtype( + + # error: Value of type variable "ArrayLike" of + # "create_series_with_explicit_dtype" cannot be "Tuple[Any, ...]" + s = create_series_with_explicit_dtype( # type: ignore[type-var] values, index=keys, dtype=dtype, dtype_if_empty=np.float64 ) @@ -1053,7 +1063,9 @@ def __setitem__(self, key, value): def _set_with_engine(self, key, value): # fails with AttributeError for IntervalIndex loc = self.index._engine.get_loc(key) - validate_numeric_casting(self.dtype, value) + # error: Argument 1 to "validate_numeric_casting" has incompatible type + # "Union[dtype, ExtensionDtype]"; expected "dtype" + validate_numeric_casting(self.dtype, value) # type: ignore[arg-type] self._values[loc] = value def _set_with(self, key, value): @@ -2005,7 +2017,9 @@ def drop_duplicates(self, keep="first", inplace=False) -> Optional[Series]: else: return result - def duplicated(self, keep="first") -> Series: + # error: Return type "Series" of "duplicated" incompatible with return type + # "ndarray" in supertype "IndexOpsMixin" + def duplicated(self, keep="first") -> Series: # type: ignore[override] """ Indicate duplicate Series values. @@ -2988,7 +3002,12 @@ def combine(self, other, func, fill_value=None) -> Series: # TODO: can we do this for only SparseDtype? # The function can return something of any type, so check # if the type is compatible with the calling EA. - new_values = maybe_cast_to_extension_array(type(self._values), new_values) + + # error: Value of type variable "ArrayLike" of + # "maybe_cast_to_extension_array" cannot be "List[Any]" + new_values = maybe_cast_to_extension_array( + type(self._values), new_values # type: ignore[type-var] + ) return self._constructor(new_values, index=new_index, name=new_name) def combine_first(self, other) -> Series: diff --git a/pandas/core/sorting.py b/pandas/core/sorting.py index 973fed2c1436f..ba81866602361 100644 --- a/pandas/core/sorting.py +++ b/pandas/core/sorting.py @@ -43,6 +43,7 @@ _INT64_MAX = np.iinfo(np.int64).max +# error: Function "numpy.array" is not valid as a type def get_indexer_indexer( target: Index, level: Union[str, int, List[str], List[int]], @@ -51,7 +52,7 @@ def get_indexer_indexer( na_position: str, sort_remaining: bool, key: IndexKeyFunc, -) -> Optional[np.array]: +) -> Optional[np.array]: # type: ignore[valid-type] """ Helper method that return the indexer according to input parameters for the sort_index method of DataFrame and Series. @@ -584,11 +585,16 @@ def get_group_index_sorter( df.groupby(key)[col].transform('first') """ if ngroups is None: - ngroups = 1 + group_index.max() + # error: Incompatible types in assignment (expression has type "number[Any]", + # variable has type "Optional[int]") + ngroups = 1 + group_index.max() # type: ignore[assignment] count = len(group_index) alpha = 0.0 # taking complexities literally; there may be beta = 1.0 # some room for fine-tuning these parameters - do_groupsort = count > 0 and ((alpha + beta * ngroups) < (count * np.log(count))) + # error: Unsupported operand types for * ("float" and "None") + do_groupsort = count > 0 and ( + (alpha + beta * ngroups) < (count * np.log(count)) # type: ignore[operator] + ) if do_groupsort: sorter, _ = algos.groupsort_indexer(ensure_int64(group_index), ngroups) return ensure_platform_int(sorter) diff --git a/pandas/core/strings/accessor.py b/pandas/core/strings/accessor.py index 32a99c0a020b2..3508624e51a9d 100644 --- a/pandas/core/strings/accessor.py +++ b/pandas/core/strings/accessor.py @@ -604,15 +604,27 @@ def cat(self, others=None, sep=None, na_rep=None, join="left"): if isinstance(self._orig, ABCIndex): # add dtype for case that result is all-NA - result = Index(result, dtype=object, name=self._orig.name) + + # error: Incompatible types in assignment (expression has type + # "Index", variable has type "ndarray") + result = Index( # type: ignore[assignment] + result, dtype=object, name=self._orig.name + ) else: # Series if is_categorical_dtype(self._orig.dtype): # We need to infer the new categories. dtype = None else: dtype = self._orig.dtype - result = Series(result, dtype=dtype, index=data.index, name=self._orig.name) - result = result.__finalize__(self._orig, method="str_cat") + # error: Incompatible types in assignment (expression has type + # "Series", variable has type "ndarray") + result = Series( # type: ignore[assignment] + result, dtype=dtype, index=data.index, name=self._orig.name + ) + # error: "ndarray" has no attribute "__finalize__" + result = result.__finalize__( # type: ignore[attr-defined] + self._orig, method="str_cat" + ) return result _shared_docs[ @@ -3030,10 +3042,16 @@ def _str_extract_noexpand(arr, pat, flags=0): names = dict(zip(regex.groupindex.values(), regex.groupindex.keys())) columns = [names.get(1 + i, i) for i in range(regex.groups)] if arr.size == 0: - result = DataFrame(columns=columns, dtype=object) + # error: Incompatible types in assignment (expression has type + # "DataFrame", variable has type "ndarray") + result = DataFrame( # type: ignore[assignment] + columns=columns, dtype=object + ) else: dtype = _result_dtype(arr) - result = DataFrame( + # error: Incompatible types in assignment (expression has type + # "DataFrame", variable has type "ndarray") + result = DataFrame( # type:ignore[assignment] [groups_or_na(val) for val in arr], columns=columns, index=arr.index, diff --git a/pandas/core/strings/object_array.py b/pandas/core/strings/object_array.py index 0a4543057c386..edf32bade0657 100644 --- a/pandas/core/strings/object_array.py +++ b/pandas/core/strings/object_array.py @@ -63,10 +63,14 @@ def _str_map(self, f, na_value=None, dtype: Optional[Dtype] = None): na_value = self._str_na_value if not len(arr): - return np.ndarray(0, dtype=dtype) + # error: Argument 1 to "ndarray" has incompatible type "int"; + # expected "Sequence[int]" + return np.ndarray(0, dtype=dtype) # type: ignore[arg-type] if not isinstance(arr, np.ndarray): - arr = np.asarray(arr, dtype=object) + # error: Incompatible types in assignment (expression has type "ndarray", + # variable has type "ObjectStringArrayMixin") + arr = np.asarray(arr, dtype=object) # type: ignore[assignment] mask = isna(arr) convert = not np.all(mask) try: diff --git a/pandas/core/tools/datetimes.py b/pandas/core/tools/datetimes.py index d58b5e5ffa83d..f7bb3083b91a9 100644 --- a/pandas/core/tools/datetimes.py +++ b/pandas/core/tools/datetimes.py @@ -245,7 +245,9 @@ def _convert_and_box_cache( from pandas import Series result = Series(arg).map(cache_array) - return _box_as_indexlike(result, utc=None, name=name) + # error: Value of type variable "ArrayLike" of "_box_as_indexlike" cannot + # be "Series" + return _box_as_indexlike(result, utc=None, name=name) # type: ignore[type-var] def _return_parsed_timezone_results(result: np.ndarray, timezones, tz, name) -> Index: @@ -362,7 +364,9 @@ def _convert_listlike_datetimes( result = np.array(["NaT"], dtype="datetime64[ns]").repeat(len(arg)) return DatetimeIndex(result, name=name) elif errors == "ignore": - result = Index(arg, name=name) + # error: Incompatible types in assignment (expression has type + # "Index", variable has type "ExtensionArray") + result = Index(arg, name=name) # type: ignore[assignment] return result raise @@ -382,10 +386,14 @@ def _convert_listlike_datetimes( require_iso8601 = not infer_datetime_format format = None - result = None + # error: Incompatible types in assignment (expression has type "None", variable has + # type "ExtensionArray") + result = None # type: ignore[assignment] if format is not None: - result = _to_datetime_with_format( + # error: Incompatible types in assignment (expression has type + # "Optional[Index]", variable has type "ndarray") + result = _to_datetime_with_format( # type: ignore[assignment] arg, orig_arg, name, tz, format, exact, errors, infer_datetime_format ) if result is not None: @@ -494,7 +502,9 @@ def _to_datetime_with_format( # fallback if result is None: - result = _array_strptime_with_fallback( + # error: Incompatible types in assignment (expression has type + # "Optional[Index]", variable has type "Optional[ndarray]") + result = _array_strptime_with_fallback( # type: ignore[assignment] arg, name, tz, fmt, exact, errors, infer_datetime_format ) if result is not None: @@ -510,7 +520,9 @@ def _to_datetime_with_format( except (ValueError, TypeError): raise e - return result + # error: Incompatible return value type (got "Optional[ndarray]", expected + # "Optional[Index]") + return result # type: ignore[return-value] def _to_datetime_with_unit(arg, unit, name, tz, errors: Optional[str]) -> Index: @@ -529,12 +541,18 @@ def _to_datetime_with_unit(arg, unit, name, tz, errors: Optional[str]) -> Index: if errors == "ignore": # Index constructor _may_ infer to DatetimeIndex - result = Index(result, name=name) + + # error: Incompatible types in assignment (expression has type "Index", variable + # has type "ExtensionArray") + result = Index(result, name=name) # type: ignore[assignment] else: - result = DatetimeIndex(result, name=name) + # error: Incompatible types in assignment (expression has type "DatetimeIndex", + # variable has type "ExtensionArray") + result = DatetimeIndex(result, name=name) # type: ignore[assignment] if not isinstance(result, DatetimeIndex): - return result + # error: Incompatible return value type (got "ExtensionArray", expected "Index") + return result # type: ignore[return-value] # GH#23758: We may still need to localize the result with tz # GH#25546: Apply tz_parsed first (from arg), then tz (from caller) @@ -1063,7 +1081,9 @@ def calc_with_mask(carg, mask): # string with NaN-like try: - mask = ~algorithms.isin(arg, list(nat_strings)) + # error: Value of type variable "AnyArrayLike" of "isin" cannot be + # "Iterable[Any]" + mask = ~algorithms.isin(arg, list(nat_strings)) # type: ignore[type-var] return calc_with_mask(arg, mask) except (ValueError, OverflowError, TypeError): pass diff --git a/pandas/core/tools/numeric.py b/pandas/core/tools/numeric.py index 1032edcb22b46..31ab78e59a556 100644 --- a/pandas/core/tools/numeric.py +++ b/pandas/core/tools/numeric.py @@ -168,7 +168,9 @@ def to_numeric(arg, errors="raise", downcast=None): mask = values._mask values = values._data[~mask] else: - mask = None + # error: Incompatible types in assignment (expression has type "None", variable + # has type "ndarray") + mask = None # type: ignore[assignment] values_dtype = getattr(values, "dtype", None) if is_numeric_dtype(values_dtype): diff --git a/pandas/core/tools/timedeltas.py b/pandas/core/tools/timedeltas.py index a335146265523..a8378e91f9375 100644 --- a/pandas/core/tools/timedeltas.py +++ b/pandas/core/tools/timedeltas.py @@ -181,5 +181,7 @@ def _convert_listlike(arg, unit=None, errors="raise", name=None): from pandas import TimedeltaIndex - value = TimedeltaIndex(value, unit="ns", name=name) + # error: Incompatible types in assignment (expression has type "TimedeltaIndex", + # variable has type "ndarray") + value = TimedeltaIndex(value, unit="ns", name=name) # type: ignore[assignment] return value diff --git a/pandas/core/util/hashing.py b/pandas/core/util/hashing.py index 9d488bb13b0f1..7d314d6a6fa1a 100644 --- a/pandas/core/util/hashing.py +++ b/pandas/core/util/hashing.py @@ -116,10 +116,14 @@ def hash_pandas_object( return Series(hash_tuples(obj, encoding, hash_key), dtype="uint64", copy=False) elif isinstance(obj, ABCIndex): - h = hash_array(obj._values, encoding, hash_key, categorize).astype( - "uint64", copy=False - ) - h = Series(h, index=obj, dtype="uint64", copy=False) + # error: Value of type variable "ArrayLike" of "hash_array" cannot be + # "Union[ExtensionArray, ndarray]" + h = hash_array( # type: ignore[type-var] + obj._values, encoding, hash_key, categorize + ).astype("uint64", copy=False) + # error: Incompatible types in assignment (expression has type "Series", + # variable has type "ndarray") + h = Series(h, index=obj, dtype="uint64", copy=False) # type: ignore[assignment] elif isinstance(obj, ABCSeries): h = hash_array(obj._values, encoding, hash_key, categorize).astype( @@ -139,7 +143,11 @@ def hash_pandas_object( arrays = itertools.chain([h], index_iter) h = combine_hash_arrays(arrays, 2) - h = Series(h, index=obj.index, dtype="uint64", copy=False) + # error: Incompatible types in assignment (expression has type "Series", + # variable has type "ndarray") + h = Series( # type: ignore[assignment] + h, index=obj.index, dtype="uint64", copy=False + ) elif isinstance(obj, ABCDataFrame): hashes = (hash_array(series._values) for _, series in obj.items()) @@ -162,10 +170,15 @@ def hash_pandas_object( hashes = (x for x in _hashes) h = combine_hash_arrays(hashes, num_items) - h = Series(h, index=obj.index, dtype="uint64", copy=False) + # error: Incompatible types in assignment (expression has type "Series", + # variable has type "ndarray") + h = Series( # type: ignore[assignment] + h, index=obj.index, dtype="uint64", copy=False + ) else: raise TypeError(f"Unexpected type for hashing {type(obj)}") - return h + # error: Incompatible return value type (got "ndarray", expected "Series") + return h # type: ignore[return-value] def hash_tuples( @@ -284,12 +297,21 @@ def hash_array( # hash values. (This check is above the complex check so that we don't ask # numpy if categorical is a subdtype of complex, as it will choke). if is_categorical_dtype(dtype): - vals = cast("Categorical", vals) - return _hash_categorical(vals, encoding, hash_key) + # error: Incompatible types in assignment (expression has type "Categorical", + # variable has type "ndarray") + vals = cast("Categorical", vals) # type: ignore[assignment] + # error: Argument 1 to "_hash_categorical" has incompatible type "ndarray"; + # expected "Categorical" + return _hash_categorical(vals, encoding, hash_key) # type: ignore[arg-type] elif is_extension_array_dtype(dtype): - vals, _ = vals._values_for_factorize() - - return _hash_ndarray(vals, encoding, hash_key, categorize) + # error: Incompatible types in assignment (expression has type "ndarray", + # variable has type "ExtensionArray") + # error: "ndarray" has no attribute "_values_for_factorize" + vals, _ = vals._values_for_factorize() # type: ignore[assignment,attr-defined] + + # error: Argument 1 to "_hash_ndarray" has incompatible type "ExtensionArray"; + # expected "ndarray" + return _hash_ndarray(vals, encoding, hash_key, categorize) # type: ignore[arg-type] def _hash_ndarray( diff --git a/pandas/core/window/ewm.py b/pandas/core/window/ewm.py index 4537e525c5086..4c9222e0805f1 100644 --- a/pandas/core/window/ewm.py +++ b/pandas/core/window/ewm.py @@ -261,7 +261,9 @@ def __init__( self.times = self._selected_obj[self.times] if not is_datetime64_ns_dtype(self.times): raise ValueError("times must be datetime64[ns] dtype.") - if len(self.times) != len(obj): + # error: Argument 1 to "len" has incompatible type "Union[str, ndarray, + # FrameOrSeries, None]"; expected "Sized" + if len(self.times) != len(obj): # type: ignore[arg-type] raise ValueError("times must be the same length as the object.") if not isinstance(self.halflife, (str, datetime.timedelta)): raise ValueError( @@ -269,7 +271,13 @@ def __init__( ) if isna(self.times).any(): raise ValueError("Cannot convert NaT values to integer") - _times = np.asarray(self.times.view(np.int64), dtype=np.float64) + # error: Item "str" of "Union[str, ndarray, FrameOrSeries, None]" has no + # attribute "view" + # error: Item "None" of "Union[str, ndarray, FrameOrSeries, None]" has no + # attribute "view" + _times = np.asarray( + self.times.view(np.int64), dtype=np.float64 # type: ignore[union-attr] + ) _halflife = float(Timedelta(self.halflife).value) self._deltas = np.diff(_times) / _halflife # Halflife is no longer applicable when calculating COM @@ -289,7 +297,13 @@ def __init__( # Without times, points are equally spaced self._deltas = np.ones(max(len(self.obj) - 1, 0), dtype=np.float64) self._com = get_center_of_mass( - self.com, self.span, self.halflife, self.alpha + # error: Argument 3 to "get_center_of_mass" has incompatible type + # "Union[float, Any, None, timedelta64, signedinteger[_64Bit]]"; + # expected "Optional[float]" + self.com, + self.span, + self.halflife, # type: ignore[arg-type] + self.alpha, ) def _get_window_indexer(self) -> BaseIndexer: diff --git a/pandas/core/window/rolling.py b/pandas/core/window/rolling.py index 503849bf673d5..17d05e81b82bb 100644 --- a/pandas/core/window/rolling.py +++ b/pandas/core/window/rolling.py @@ -316,11 +316,17 @@ def _prep_values(self, values: ArrayLike) -> np.ndarray: raise TypeError(f"cannot handle this type -> {values.dtype}") from err # Convert inf to nan for C funcs - inf = np.isinf(values) + + # error: Argument 1 to "__call__" of "ufunc" has incompatible type + # "Optional[ndarray]"; expected "Union[bool, int, float, complex, + # _SupportsArray, Sequence[Any]]" + inf = np.isinf(values) # type: ignore[arg-type] if inf.any(): values = np.where(inf, np.nan, values) - return values + # error: Incompatible return value type (got "Optional[ndarray]", + # expected "ndarray") + return values # type: ignore[return-value] def _insert_on_column(self, result: DataFrame, obj: DataFrame): # if we have an 'on' column we want to put it back into @@ -418,7 +424,11 @@ def hfunc(bvalues: ArrayLike) -> ArrayLike: return getattr(res_values, "T", res_values) def hfunc2d(values: ArrayLike) -> ArrayLike: - values = self._prep_values(values) + # error: Incompatible types in assignment (expression has type "ndarray", + # variable has type "ExtensionArray") + # error: Argument 1 to "_prep_values" of "BaseWindow" has incompatible type + # "ExtensionArray"; expected "Optional[ndarray]" + values = self._prep_values(values) # type: ignore[assignment,arg-type] return homogeneous_func(values) if isinstance(mgr, ArrayManager) and self.axis == 1: diff --git a/pandas/io/formats/format.py b/pandas/io/formats/format.py index ab8e19d9f8a6f..f54481f527d93 100644 --- a/pandas/io/formats/format.py +++ b/pandas/io/formats/format.py @@ -1565,7 +1565,10 @@ def _format_strings(self) -> List[str]: if is_categorical_dtype(values.dtype): # Categorical is special for now, so that we can preserve tzinfo - array = values._internal_get_values() + + # error: Item "ExtensionArray" of "Union[Any, ExtensionArray]" has no + # attribute "_internal_get_values" + array = values._internal_get_values() # type: ignore[union-attr] else: array = np.asarray(values) @@ -1632,10 +1635,25 @@ def format_percentiles( raise ValueError("percentiles should all be in the interval [0,1]") percentiles = 100 * percentiles - int_idx = np.isclose(percentiles.astype(int), percentiles) + + # error: Item "List[Union[int, float]]" of "Union[ndarray, List[Union[int, float]], + # List[float], List[Union[str, float]]]" has no attribute "astype" + # error: Item "List[float]" of "Union[ndarray, List[Union[int, float]], List[float], + # List[Union[str, float]]]" has no attribute "astype" + # error: Item "List[Union[str, float]]" of "Union[ndarray, List[Union[int, float]], + # List[float], List[Union[str, float]]]" has no attribute "astype" + int_idx = np.isclose( + percentiles.astype(int), percentiles # type: ignore[union-attr] + ) if np.all(int_idx): - out = percentiles.astype(int).astype(str) + # error: Item "List[Union[int, float]]" of "Union[ndarray, List[Union[int, + # float]], List[float], List[Union[str, float]]]" has no attribute "astype" + # error: Item "List[float]" of "Union[ndarray, List[Union[int, float]], + # List[float], List[Union[str, float]]]" has no attribute "astype" + # error: Item "List[Union[str, float]]" of "Union[ndarray, List[Union[int, + # float]], List[float], List[Union[str, float]]]" has no attribute "astype" + out = percentiles.astype(int).astype(str) # type: ignore[union-attr] return [i + "%" for i in out] unique_pcts = np.unique(percentiles) @@ -1648,8 +1666,19 @@ def format_percentiles( ).astype(int) prec = max(1, prec) out = np.empty_like(percentiles, dtype=object) - out[int_idx] = percentiles[int_idx].astype(int).astype(str) - out[~int_idx] = percentiles[~int_idx].round(prec).astype(str) + # error: No overload variant of "__getitem__" of "list" matches argument type + # "Union[bool_, ndarray]" + out[int_idx] = ( + percentiles[int_idx].astype(int).astype(str) # type: ignore[call-overload] + ) + + # error: Item "float" of "Union[Any, float, str]" has no attribute "round" + # error: Item "str" of "Union[Any, float, str]" has no attribute "round" + # error: Invalid index type "Union[bool_, Any]" for "Union[ndarray, List[Union[int, + # float]], List[float], List[Union[str, float]]]"; expected type "int" + out[~int_idx] = ( + percentiles[~int_idx].round(prec).astype(str) # type: ignore[union-attr,index] + ) return [i + "%" for i in out] @@ -1772,7 +1801,11 @@ def get_format_timedelta64( one_day_nanos = 86400 * 10 ** 9 even_days = ( - np.logical_and(consider_values, values_int % one_day_nanos != 0).sum() == 0 + # error: Unsupported operand types for % ("ExtensionArray" and "int") + np.logical_and( + consider_values, values_int % one_day_nanos != 0 # type: ignore[operator] + ).sum() + == 0 ) if even_days: diff --git a/pandas/io/formats/string.py b/pandas/io/formats/string.py index 622001f280885..84333cfc441b2 100644 --- a/pandas/io/formats/string.py +++ b/pandas/io/formats/string.py @@ -117,7 +117,13 @@ def _join_multiline(self, strcols_input: Iterable[List[str]]) -> str: if self.fmt.index: idx = strcols.pop(0) - lwidth -= np.array([self.adj.len(x) for x in idx]).max() + adjoin_width + # error: Argument 1 to "__call__" of "_NumberOp" has incompatible type + # "None"; expected "Union[int, float, complex, number, bool_]" + # error: Incompatible types in assignment (expression has type "number", + # variable has type "Optional[int]") + lwidth -= ( # type: ignore[assignment,arg-type] + np.array([self.adj.len(x) for x in idx]).max() + adjoin_width + ) col_widths = [ np.array([self.adj.len(x) for x in col]).max() if len(col) > 0 else 0 @@ -125,7 +131,9 @@ def _join_multiline(self, strcols_input: Iterable[List[str]]) -> str: ] assert lwidth is not None - col_bins = _binify(col_widths, lwidth) + # error: Argument 1 to "_binify" has incompatible type "List[object]"; expected + # "List[int]" + col_bins = _binify(col_widths, lwidth) # type: ignore[arg-type] nbins = len(col_bins) if self.fmt.is_truncated_vertically: diff --git a/pandas/io/formats/style.py b/pandas/io/formats/style.py index ec09a4cc4cd89..cc5f3164385cb 100644 --- a/pandas/io/formats/style.py +++ b/pandas/io/formats/style.py @@ -1708,7 +1708,11 @@ def f(data: DataFrame, props: str) -> np.ndarray: if props is None: props = f"background-color: {null_color};" - return self.apply(f, axis=None, subset=subset, props=props) + # error: Argument 1 to "apply" of "Styler" has incompatible type + # "Callable[[DataFrame, str], ndarray]"; expected "Callable[..., Styler]" + return self.apply( + f, axis=None, subset=subset, props=props # type: ignore[arg-type] + ) def highlight_max( self, @@ -1751,7 +1755,11 @@ def f(data: FrameOrSeries, props: str) -> np.ndarray: if props is None: props = f"background-color: {color};" - return self.apply(f, axis=axis, subset=subset, props=props) + # error: Argument 1 to "apply" of "Styler" has incompatible type + # "Callable[[FrameOrSeries, str], ndarray]"; expected "Callable[..., Styler]" + return self.apply( + f, axis=axis, subset=subset, props=props # type: ignore[arg-type] + ) def highlight_min( self, @@ -1794,7 +1802,11 @@ def f(data: FrameOrSeries, props: str) -> np.ndarray: if props is None: props = f"background-color: {color};" - return self.apply(f, axis=axis, subset=subset, props=props) + # error: Argument 1 to "apply" of "Styler" has incompatible type + # "Callable[[FrameOrSeries, str], ndarray]"; expected "Callable[..., Styler]" + return self.apply( + f, axis=axis, subset=subset, props=props # type: ignore[arg-type] + ) @classmethod def from_custom_template(cls, searchpath, name): diff --git a/pandas/io/json/_json.py b/pandas/io/json/_json.py index aa654e971641f..7c83beca1ae71 100644 --- a/pandas/io/json/_json.py +++ b/pandas/io/json/_json.py @@ -570,7 +570,12 @@ def read_json( raise ValueError("cannot pass both convert_axes and orient='table'") if dtype is None and orient != "table": - dtype = True + # error: Incompatible types in assignment (expression has type "bool", variable + # has type "Union[ExtensionDtype, str, dtype[Any], Type[str], Type[float], + # Type[int], Type[complex], Type[bool], Type[object], Dict[Optional[Hashable], + # Union[ExtensionDtype, Union[str, dtype[Any]], Type[str], Type[float], + # Type[int], Type[complex], Type[bool], Type[object]]], None]") + dtype = True # type: ignore[assignment] if convert_axes is None and orient != "table": convert_axes = True @@ -914,7 +919,12 @@ def _try_convert_data(self, name, data, use_dtypes=True, convert_dates=True): return data, False return data.fillna(np.nan), True - elif self.dtype is True: + # error: Non-overlapping identity check (left operand type: + # "Union[ExtensionDtype, str, dtype[Any], Type[object], + # Dict[Optional[Hashable], Union[ExtensionDtype, Union[str, dtype[Any]], + # Type[str], Type[float], Type[int], Type[complex], Type[bool], + # Type[object]]]]", right operand type: "Literal[True]") + elif self.dtype is True: # type: ignore[comparison-overlap] pass else: # dtype to force @@ -923,7 +933,10 @@ def _try_convert_data(self, name, data, use_dtypes=True, convert_dates=True): ) if dtype is not None: try: - dtype = np.dtype(dtype) + # error: Argument 1 to "dtype" has incompatible type + # "Union[ExtensionDtype, str, dtype[Any], Type[object]]"; + # expected "Type[Any]" + dtype = np.dtype(dtype) # type: ignore[arg-type] return data.astype(dtype), True except (TypeError, ValueError): return data, False diff --git a/pandas/io/parsers/base_parser.py b/pandas/io/parsers/base_parser.py index c05efe9e73c5a..4539ceabbb92f 100644 --- a/pandas/io/parsers/base_parser.py +++ b/pandas/io/parsers/base_parser.py @@ -658,7 +658,9 @@ def _infer_types(self, values, na_values, try_num_bool=True): na_count = 0 if issubclass(values.dtype.type, (np.number, np.bool_)): mask = algorithms.isin(values, list(na_values)) - na_count = mask.sum() + # error: Incompatible types in assignment (expression has type + # "number[Any]", variable has type "int") + na_count = mask.sum() # type: ignore[assignment] if na_count > 0: if is_integer_dtype(values): values = values.astype(np.float64) @@ -716,7 +718,10 @@ def _cast_types(self, values, cast_type, column): # TODO: this is for consistency with # c-parser which parses all categories # as strings - values = astype_nansafe(values, str) + + # error: Argument 2 to "astype_nansafe" has incompatible type + # "Type[str]"; expected "Union[dtype[Any], ExtensionDtype]" + values = astype_nansafe(values, str) # type: ignore[arg-type] cats = Index(values).unique().dropna() values = Categorical._from_inferred_categories( @@ -909,7 +914,20 @@ def _get_empty_meta( if not is_dict_like(dtype): # if dtype == None, default will be object. default_dtype = dtype or object - dtype = defaultdict(lambda: default_dtype) + # error: Argument 1 to "defaultdict" has incompatible type "Callable[[], + # Union[ExtensionDtype, str, dtype[Any], Type[object], Dict[Hashable, + # Union[ExtensionDtype, Union[str, dtype[Any]], Type[str], Type[float], + # Type[int], Type[complex], Type[bool], Type[object]]]]]"; expected + # "Optional[Callable[[], Union[ExtensionDtype, str, dtype[Any], + # Type[object]]]]" + # error: Incompatible return value type (got "Union[ExtensionDtype, str, + # dtype[Any], Type[object], Dict[Hashable, Union[ExtensionDtype, Union[str, + # dtype[Any]], Type[str], Type[float], Type[int], Type[complex], Type[bool], + # Type[object]]]]", expected "Union[ExtensionDtype, str, dtype[Any], + # Type[object]]") + dtype = defaultdict( + lambda: default_dtype # type: ignore[arg-type, return-value] + ) else: dtype = cast(dict, dtype) dtype = defaultdict( diff --git a/pandas/io/pytables.py b/pandas/io/pytables.py index ceb4900b887f1..24bd2da6cc12e 100644 --- a/pandas/io/pytables.py +++ b/pandas/io/pytables.py @@ -2092,7 +2092,9 @@ def convert(self, values: np.ndarray, nan_rep, encoding: str, errors: str): kwargs["freq"] = None new_pd_index = factory(values, **kwargs) - new_pd_index = _set_tz(new_pd_index, self.tz) + # error: Incompatible types in assignment (expression has type + # "Union[ndarray, DatetimeIndex]", variable has type "Index") + new_pd_index = _set_tz(new_pd_index, self.tz) # type: ignore[assignment] return new_pd_index, new_pd_index def take_data(self): @@ -2254,7 +2256,9 @@ def convert(self, values: np.ndarray, nan_rep, encoding: str, errors: str): """ assert isinstance(values, np.ndarray), type(values) - values = Int64Index(np.arange(len(values))) + # error: Incompatible types in assignment (expression has type + # "Int64Index", variable has type "ndarray") + values = Int64Index(np.arange(len(values))) # type: ignore[assignment] return values, values def set_attr(self): @@ -3087,10 +3091,17 @@ def write_array(self, key: str, obj: FrameOrSeries, items: Optional[Index] = Non elif is_datetime64tz_dtype(value.dtype): # store as UTC # with a zone - self._handle.create_array(self.group, key, value.asi8) + + # error: Item "ExtensionArray" of "Union[Any, ExtensionArray]" has no + # attribute "asi8" + self._handle.create_array( + self.group, key, value.asi8 # type: ignore[union-attr] + ) node = getattr(self.group, key) - node._v_attrs.tz = _get_tz(value.tz) + # error: Item "ExtensionArray" of "Union[Any, ExtensionArray]" has no + # attribute "tz" + node._v_attrs.tz = _get_tz(value.tz) # type: ignore[union-attr] node._v_attrs.value_type = "datetime64" elif is_timedelta64_dtype(value.dtype): self._handle.create_array(self.group, key, value.view("i8")) @@ -3376,7 +3387,10 @@ def validate_multiindex( @property def nrows_expected(self) -> int: """ based on our axes, compute the expected nrows """ - return np.prod([i.cvalues.shape[0] for i in self.index_axes]) + # error: Incompatible return value type (got "number", expected "int") + return np.prod( # type: ignore[return-value] + [i.cvalues.shape[0] for i in self.index_axes] + ) @property def is_exists(self) -> bool: @@ -3462,8 +3476,12 @@ def write_metadata(self, key: str, values: np.ndarray): key : str values : ndarray """ - values = Series(values) - self.parent.put( + # error: Incompatible types in assignment (expression has type + # "Series", variable has type "ndarray") + values = Series(values) # type: ignore[assignment] + # error: Value of type variable "FrameOrSeries" of "put" of "HDFStore" + # cannot be "ndarray" + self.parent.put( # type: ignore[type-var] self._get_metadata_path(key), values, format="table", @@ -4818,14 +4836,18 @@ def _set_tz( elif coerce: values = np.asarray(values, dtype="M8[ns]") - return values + # error: Incompatible return value type (got "Union[ndarray, Index]", + # expected "Union[ndarray, DatetimeIndex]") + return values # type: ignore[return-value] def _convert_index(name: str, index: Index, encoding: str, errors: str) -> IndexCol: assert isinstance(name, str) index_name = index.name - converted, dtype_name = _get_data_and_dtype_name(index) + # error: Value of type variable "ArrayLike" of "_get_data_and_dtype_name" + # cannot be "Index" + converted, dtype_name = _get_data_and_dtype_name(index) # type: ignore[type-var] kind = _dtype_to_kind(dtype_name) atom = DataIndexableCol._get_atom(converted) @@ -4966,7 +4988,12 @@ def _maybe_convert_for_string_atom( ) # itemsize is the maximum length of a string (along any dimension) - data_converted = _convert_string_array(data, encoding, errors).reshape(data.shape) + + # error: Argument 1 to "_convert_string_array" has incompatible type "Union[ndarray, + # ExtensionArray]"; expected "ndarray" + data_converted = _convert_string_array( + data, encoding, errors # type: ignore[arg-type] + ).reshape(data.shape) itemsize = data_converted.itemsize # specified min_itemsize? @@ -5142,20 +5169,26 @@ def _get_data_and_dtype_name(data: ArrayLike): Convert the passed data into a storable form and a dtype string. """ if isinstance(data, Categorical): - data = data.codes + # error: Incompatible types in assignment (expression has type + # "ndarray", variable has type "ExtensionArray") + data = data.codes # type: ignore[assignment] # For datetime64tz we need to drop the TZ in tests TODO: why? dtype_name = data.dtype.name.split("[")[0] if data.dtype.kind in ["m", "M"]: - data = np.asarray(data.view("i8")) + # error: Incompatible types in assignment (expression has type "ndarray", + # variable has type "ExtensionArray") + data = np.asarray(data.view("i8")) # type: ignore[assignment] # TODO: we used to reshape for the dt64tz case, but no longer # doing that doesn't seem to break anything. why? elif isinstance(data, PeriodIndex): data = data.asi8 - data = np.asarray(data) + # error: Incompatible types in assignment (expression has type "ndarray", variable + # has type "ExtensionArray") + data = np.asarray(data) # type: ignore[assignment] return data, dtype_name diff --git a/pandas/io/sql.py b/pandas/io/sql.py index c028e1f5c5dbe..fb08abb6fea45 100644 --- a/pandas/io/sql.py +++ b/pandas/io/sql.py @@ -898,7 +898,9 @@ def insert_data(self): mask = isna(d) d[mask] = None - data_list[i] = d + # error: No overload variant of "__setitem__" of "list" matches + # argument types "int", "ndarray" + data_list[i] = d # type: ignore[call-overload] return column_names, data_list @@ -1545,7 +1547,13 @@ def to_sql( """ if dtype: if not is_dict_like(dtype): - dtype = {col_name: dtype for col_name in frame} + # error: Value expression in dictionary comprehension has incompatible + # type "Union[ExtensionDtype, str, dtype[Any], Type[object], + # Dict[Optional[Hashable], Union[ExtensionDtype, Union[str, dtype[Any]], + # Type[str], Type[float], Type[int], Type[complex], Type[bool], + # Type[object]]]]"; expected type "Union[ExtensionDtype, str, + # dtype[Any], Type[object]]" + dtype = {col_name: dtype for col_name in frame} # type: ignore[misc] else: dtype = cast(dict, dtype) @@ -2022,7 +2030,13 @@ def to_sql( """ if dtype: if not is_dict_like(dtype): - dtype = {col_name: dtype for col_name in frame} + # error: Value expression in dictionary comprehension has incompatible + # type "Union[ExtensionDtype, str, dtype[Any], Type[object], + # Dict[Optional[Hashable], Union[ExtensionDtype, Union[str, dtype[Any]], + # Type[str], Type[float], Type[int], Type[complex], Type[bool], + # Type[object]]]]"; expected type "Union[ExtensionDtype, str, + # dtype[Any], Type[object]]" + dtype = {col_name: dtype for col_name in frame} # type: ignore[misc] else: dtype = cast(dict, dtype) diff --git a/pandas/io/stata.py b/pandas/io/stata.py index ebc0395aec0b2..c01a369bf0054 100644 --- a/pandas/io/stata.py +++ b/pandas/io/stata.py @@ -1233,7 +1233,9 @@ def g(typ: int) -> Union[str, np.dtype]: if typ <= 2045: return str(typ) try: - return self.DTYPE_MAP_XML[typ] + # error: Incompatible return value type (got "Type[number]", expected + # "Union[str, dtype]") + return self.DTYPE_MAP_XML[typ] # type: ignore[return-value] except KeyError as err: raise ValueError(f"cannot convert stata dtype [{typ}]") from err @@ -1666,7 +1668,12 @@ def read( if self.dtyplist[i] is not None: col = data.columns[i] dtype = data[col].dtype - if dtype != np.dtype(object) and dtype != self.dtyplist[i]: + # error: Value of type variable "_DTypeScalar" of "dtype" cannot be + # "object" + if ( + dtype != np.dtype(object) # type: ignore[type-var] + and dtype != self.dtyplist[i] + ): requires_type_conversion = True data_formatted.append( (col, Series(data[col], ix, self.dtyplist[i])) diff --git a/pandas/tests/io/parser/common/test_chunksize.py b/pandas/tests/io/parser/common/test_chunksize.py index 4bc3f3c38f506..6d5aeaa713687 100644 --- a/pandas/tests/io/parser/common/test_chunksize.py +++ b/pandas/tests/io/parser/common/test_chunksize.py @@ -143,7 +143,10 @@ def test_read_chunksize_jagged_names(all_parsers): parser = all_parsers data = "\n".join(["0"] * 7 + [",".join(["0"] * 10)]) - expected = DataFrame([[0] + [np.nan] * 9] * 7 + [[0] * 10]) + # error: List item 0 has incompatible type "float"; expected "int" + expected = DataFrame( + [[0] + [np.nan] * 9] * 7 + [[0] * 10] # type: ignore[list-item] + ) with parser.read_csv(StringIO(data), names=range(10), chunksize=4) as reader: result = concat(reader) tm.assert_frame_equal(result, expected) diff --git a/pandas/tseries/frequencies.py b/pandas/tseries/frequencies.py index 048d138608ef9..c5b875b8f027e 100644 --- a/pandas/tseries/frequencies.py +++ b/pandas/tseries/frequencies.py @@ -385,7 +385,8 @@ def _is_business_daily(self) -> bool: shifts = np.diff(self.index.asi8) shifts = np.floor_divide(shifts, _ONE_DAY) weekdays = np.mod(first_weekday + np.cumsum(shifts), 7) - return np.all( + # error: Incompatible return value type (got "bool_", expected "bool") + return np.all( # type: ignore[return-value] ((weekdays == 0) & (shifts == 3)) | ((weekdays > 0) & (weekdays <= 4) & (shifts == 1)) ) diff --git a/pandas/util/_test_decorators.py b/pandas/util/_test_decorators.py index c39647522aaf1..752ed43849d2b 100644 --- a/pandas/util/_test_decorators.py +++ b/pandas/util/_test_decorators.py @@ -212,7 +212,9 @@ def skip_if_np_lt(ver_str: str, *args, reason: Optional[str] = None): if reason is None: reason = f"NumPy {ver_str} or greater required" return pytest.mark.skipif( - np.__version__ < LooseVersion(ver_str), *args, reason=reason + np.__version__ < LooseVersion(ver_str), + *args, + reason=reason, ) diff --git a/requirements-dev.txt b/requirements-dev.txt index 37adbbb8e671f..f60e3bf0daea7 100644 --- a/requirements-dev.txt +++ b/requirements-dev.txt @@ -1,7 +1,7 @@ # This file is auto-generated from environment.yml, do not modify. # See that file for comments about the need/usage of each dependency. -numpy>=1.16.5, <1.20 +numpy>=1.16.5 python-dateutil>=2.7.3 pytz asv diff --git a/setup.cfg b/setup.cfg index fdc0fbdbd6b57..a0b6a0cdfc260 100644 --- a/setup.cfg +++ b/setup.cfg @@ -192,3 +192,42 @@ check_untyped_defs = False [mypy-pandas.io.clipboard] check_untyped_defs = False + +[mypy-pandas.io.formats.string] +ignore_errors = True + +[mypy-pandas.tests.apply.test_series_apply] +ignore_errors = True + +[mypy-pandas.tests.arithmetic.conftest] +ignore_errors = True + +[mypy-pandas.tests.arrays.sparse.test_combine_concat] +ignore_errors = True + +[mypy-pandas.tests.dtypes.test_common] +ignore_errors = True + +[mypy-pandas.tests.frame.methods.test_to_records] +ignore_errors = True + +[mypy-pandas.tests.groupby.test_rank] +ignore_errors = True + +[mypy-pandas.tests.groupby.transform.test_transform] +ignore_errors = True + +[mypy-pandas.tests.indexes.interval.test_interval] +ignore_errors = True + +[mypy-pandas.tests.indexing.test_categorical] +ignore_errors = True + +[mypy-pandas.tests.io.excel.test_writers] +ignore_errors = True + +[mypy-pandas.tests.reductions.test_reductions] +ignore_errors = True + +[mypy-pandas.tests.test_expressions] +ignore_errors = True