diff --git a/asv_bench/benchmarks/algorithms.py b/asv_bench/benchmarks/algorithms.py index baac179355022..1ab88dc9f9e6d 100644 --- a/asv_bench/benchmarks/algorithms.py +++ b/asv_bench/benchmarks/algorithms.py @@ -15,8 +15,6 @@ class Factorize(object): - goal_time = 0.2 - params = [True, False] param_names = ['sort'] @@ -38,8 +36,6 @@ def time_factorize_string(self, sort): class Duplicated(object): - goal_time = 0.2 - params = ['first', 'last', False] param_names = ['keep'] @@ -61,8 +57,6 @@ def time_duplicated_string(self, keep): class DuplicatedUniqueIndex(object): - goal_time = 0.2 - def setup(self): N = 10**5 self.idx_int_dup = pd.Int64Index(np.arange(N * 5)) @@ -75,8 +69,6 @@ def time_duplicated_unique_int(self): class Match(object): - goal_time = 0.2 - def setup(self): self.uniques = tm.makeStringIndex(1000).values self.all = self.uniques.repeat(10) @@ -88,8 +80,6 @@ def time_match_string(self): class Hashing(object): - goal_time = 0.2 - def setup_cache(self): N = 10**5 diff --git a/asv_bench/benchmarks/attrs_caching.py b/asv_bench/benchmarks/attrs_caching.py index 7fb9fd26ad8ba..d061755208c9e 100644 --- a/asv_bench/benchmarks/attrs_caching.py +++ b/asv_bench/benchmarks/attrs_caching.py @@ -8,8 +8,6 @@ class DataFrameAttributes(object): - goal_time = 0.2 - def setup(self): self.df = DataFrame(np.random.randn(10, 6)) self.cur_index = self.df.index @@ -23,8 +21,6 @@ def time_set_index(self): class CacheReadonly(object): - goal_time = 0.2 - def setup(self): class Foo: diff --git a/asv_bench/benchmarks/binary_ops.py b/asv_bench/benchmarks/binary_ops.py index 35787920dc789..dfdebec86d67c 100644 --- a/asv_bench/benchmarks/binary_ops.py +++ b/asv_bench/benchmarks/binary_ops.py @@ -9,8 +9,6 @@ class Ops(object): - goal_time = 0.2 - params = [[True, False], ['default', 1]] param_names = ['use_numexpr', 'threads'] @@ -42,8 +40,6 @@ def teardown(self, use_numexpr, threads): class Ops2(object): - goal_time = 0.2 - def setup(self): N = 10**3 self.df = DataFrame(np.random.randn(N, N)) @@ -81,8 +77,6 @@ def time_frame_float_mod(self): class Timeseries(object): - goal_time = 0.2 - params = [None, 'US/Eastern'] param_names = ['tz'] @@ -109,8 +103,6 @@ def time_timestamp_ops_diff_with_shift(self, tz): class AddOverflowScalar(object): - goal_time = 0.2 - params = [1, -1, 0] param_names = ['scalar'] @@ -124,8 +116,6 @@ def time_add_overflow_scalar(self, scalar): class AddOverflowArray(object): - goal_time = 0.2 - def setup(self): N = 10**6 self.arr = np.arange(N) diff --git a/asv_bench/benchmarks/categoricals.py b/asv_bench/benchmarks/categoricals.py index 418e60eb6d6d3..8a0fbc48755b5 100644 --- a/asv_bench/benchmarks/categoricals.py +++ b/asv_bench/benchmarks/categoricals.py @@ -14,8 +14,6 @@ class Concat(object): - goal_time = 0.2 - def setup(self): N = 10**5 self.s = pd.Series(list('aabbcd') * N).astype('category') @@ -32,8 +30,6 @@ def time_union(self): class Constructor(object): - goal_time = 0.2 - def setup(self): N = 10**5 self.categories = list('abcde') @@ -75,8 +71,6 @@ def time_from_codes_all_int8(self): class ValueCounts(object): - goal_time = 0.2 - params = [True, False] param_names = ['dropna'] @@ -91,8 +85,6 @@ def time_value_counts(self, dropna): class Repr(object): - goal_time = 0.2 - def setup(self): self.sel = pd.Series(['s1234']).astype('category') @@ -102,8 +94,6 @@ def time_rendering(self): class SetCategories(object): - goal_time = 0.2 - def setup(self): n = 5 * 10**5 arr = ['s%04d' % i for i in np.random.randint(0, n // 10, size=n)] @@ -115,8 +105,6 @@ def time_set_categories(self): class Rank(object): - goal_time = 0.2 - def setup(self): N = 10**5 ncats = 100 @@ -154,8 +142,6 @@ def time_rank_int_cat_ordered(self): class Isin(object): - goal_time = 0.2 - params = ['object', 'int64'] param_names = ['dtype'] @@ -195,8 +181,6 @@ def time_categorical_series_is_monotonic_decreasing(self): class Contains(object): - goal_time = 0.2 - def setup(self): N = 10**5 self.ci = tm.makeCategoricalIndex(N) @@ -212,7 +196,6 @@ def time_categorical_contains(self): class CategoricalSlicing(object): - goal_time = 0.2 params = ['monotonic_incr', 'monotonic_decr', 'non_monotonic'] param_names = ['index'] diff --git a/asv_bench/benchmarks/ctors.py b/asv_bench/benchmarks/ctors.py index 94dbd05917455..198ed1c90a2e9 100644 --- a/asv_bench/benchmarks/ctors.py +++ b/asv_bench/benchmarks/ctors.py @@ -5,8 +5,6 @@ class SeriesConstructors(object): - goal_time = 0.2 - param_names = ["data_fmt", "with_index"] params = [[lambda x: x, list, @@ -30,8 +28,6 @@ def time_series_constructor(self, data_fmt, with_index): class SeriesDtypesConstructors(object): - goal_time = 0.2 - def setup(self): N = 10**4 self.arr = np.random.randn(N, N) @@ -54,8 +50,6 @@ def time_dtindex_from_index_with_series(self): class MultiIndexConstructor(object): - goal_time = 0.2 - def setup(self): N = 10**4 self.iterables = [tm.makeStringIndex(N), range(20)] diff --git a/asv_bench/benchmarks/eval.py b/asv_bench/benchmarks/eval.py index da2d7dc7c4492..837478efbad64 100644 --- a/asv_bench/benchmarks/eval.py +++ b/asv_bench/benchmarks/eval.py @@ -8,8 +8,6 @@ class Eval(object): - goal_time = 0.2 - params = [['numexpr', 'python'], [1, 'all']] param_names = ['engine', 'threads'] @@ -41,8 +39,6 @@ def teardown(self, engine, threads): class Query(object): - goal_time = 0.2 - def setup(self): N = 10**6 halfway = (N // 2) - 1 diff --git a/asv_bench/benchmarks/frame_ctor.py b/asv_bench/benchmarks/frame_ctor.py index d3f1a416a7cc1..60f6a66e07a7b 100644 --- a/asv_bench/benchmarks/frame_ctor.py +++ b/asv_bench/benchmarks/frame_ctor.py @@ -10,8 +10,6 @@ class FromDicts(object): - goal_time = 0.2 - def setup(self): N, K = 5000, 50 self.index = tm.makeStringIndex(N) @@ -45,8 +43,6 @@ def time_nested_dict_int64(self): class FromSeries(object): - goal_time = 0.2 - def setup(self): mi = MultiIndex.from_product([range(100), range(100)]) self.s = Series(np.random.randn(10000), index=mi) @@ -57,7 +53,6 @@ def time_mi_series(self): class FromDictwithTimestamp(object): - goal_time = 0.2 params = [Nano(1), Hour(1)] param_names = ['offset'] @@ -74,7 +69,6 @@ def time_dict_with_timestamp_offsets(self, offset): class FromRecords(object): - goal_time = 0.2 params = [None, 1000] param_names = ['nrows'] @@ -89,8 +83,6 @@ def time_frame_from_records_generator(self, nrows): class FromNDArray(object): - goal_time = 0.2 - def setup(self): N = 100000 self.data = np.random.randn(N) diff --git a/asv_bench/benchmarks/frame_methods.py b/asv_bench/benchmarks/frame_methods.py index 89fd879746f68..b60b45cc29f7d 100644 --- a/asv_bench/benchmarks/frame_methods.py +++ b/asv_bench/benchmarks/frame_methods.py @@ -9,8 +9,6 @@ class GetNumericData(object): - goal_time = 0.2 - def setup(self): self.df = DataFrame(np.random.randn(10000, 25)) self.df['foo'] = 'bar' @@ -24,8 +22,6 @@ def time_frame_get_numeric_data(self): class Lookup(object): - goal_time = 0.2 - def setup(self): self.df = DataFrame(np.random.randn(10000, 8), columns=list('abcdefgh')) @@ -46,8 +42,6 @@ def time_frame_fancy_lookup_all(self): class Reindex(object): - goal_time = 0.2 - def setup(self): N = 10**3 self.df = DataFrame(np.random.randn(N * 10, N)) @@ -77,8 +71,6 @@ def time_reindex_upcast(self): class Iteration(object): - goal_time = 0.2 - def setup(self): N = 1000 self.df = DataFrame(np.random.randn(N * 10, N)) @@ -112,8 +104,6 @@ def time_iterrows(self): class ToString(object): - goal_time = 0.2 - def setup(self): self.df = DataFrame(np.random.randn(100, 10)) @@ -123,8 +113,6 @@ def time_to_string_floats(self): class ToHTML(object): - goal_time = 0.2 - def setup(self): nrows = 500 self.df2 = DataFrame(np.random.randn(nrows, 10)) @@ -137,8 +125,6 @@ def time_to_html_mixed(self): class Repr(object): - goal_time = 0.2 - def setup(self): nrows = 10000 data = np.random.randn(nrows, 10) @@ -164,8 +150,6 @@ def time_frame_repr_wide(self): class MaskBool(object): - goal_time = 0.2 - def setup(self): data = np.random.randn(1000, 500) df = DataFrame(data) @@ -182,8 +166,6 @@ def time_frame_mask_floats(self): class Isnull(object): - goal_time = 0.2 - def setup(self): N = 10**3 self.df_no_null = DataFrame(np.random.randn(N, N)) @@ -216,7 +198,6 @@ def time_isnull_obj(self): class Fillna(object): - goal_time = 0.2 params = ([True, False], ['pad', 'bfill']) param_names = ['inplace', 'method'] @@ -231,7 +212,6 @@ def time_frame_fillna(self, inplace, method): class Dropna(object): - goal_time = 0.2 params = (['all', 'any'], [0, 1]) param_names = ['how', 'axis'] @@ -252,8 +232,6 @@ def time_dropna_axis_mixed_dtypes(self, how, axis): class Count(object): - goal_time = 0.2 - params = [0, 1] param_names = ['axis'] @@ -282,8 +260,6 @@ def time_count_level_mixed_dtypes_multi(self, axis): class Apply(object): - goal_time = 0.2 - def setup(self): self.df = DataFrame(np.random.randn(1000, 100)) @@ -312,8 +288,6 @@ def time_apply_ref_by_name(self): class Dtypes(object): - goal_time = 0.2 - def setup(self): self.df = DataFrame(np.random.randn(1000, 1000)) @@ -323,8 +297,6 @@ def time_frame_dtypes(self): class Equals(object): - goal_time = 0.2 - def setup(self): N = 10**3 self.float_df = DataFrame(np.random.randn(N, N)) @@ -361,7 +333,6 @@ def time_frame_object_unequal(self): class Interpolate(object): - goal_time = 0.2 params = [None, 'infer'] param_names = ['downcast'] @@ -387,7 +358,6 @@ def time_interpolate_some_good(self, downcast): class Shift(object): # frame shift speedup issue-5609 - goal_time = 0.2 params = [0, 1] param_names = ['axis'] @@ -409,8 +379,6 @@ def time_frame_nunique(self): class Duplicated(object): - goal_time = 0.2 - def setup(self): n = (1 << 20) t = date_range('2015-01-01', freq='S', periods=(n // 64)) @@ -429,7 +397,6 @@ def time_frame_duplicated_wide(self): class XS(object): - goal_time = 0.2 params = [0, 1] param_names = ['axis'] @@ -443,7 +410,6 @@ def time_frame_xs(self, axis): class SortValues(object): - goal_time = 0.2 params = [True, False] param_names = ['ascending'] @@ -456,8 +422,6 @@ def time_frame_sort_values(self, ascending): class SortIndexByColumns(object): - goal_time = 0.2 - def setup(self): N = 10000 K = 10 @@ -471,7 +435,6 @@ def time_frame_sort_values_by_columns(self): class Quantile(object): - goal_time = 0.2 params = [0, 1] param_names = ['axis'] @@ -484,8 +447,6 @@ def time_frame_quantile(self, axis): class GetDtypeCounts(object): # 2807 - goal_time = 0.2 - def setup(self): self.df = DataFrame(np.random.randn(10, 10000)) @@ -498,7 +459,6 @@ def time_info(self): class NSort(object): - goal_time = 0.2 params = ['first', 'last', 'all'] param_names = ['keep'] @@ -521,8 +481,6 @@ def time_nsmallest_two_columns(self, keep): class Describe(object): - goal_time = 0.2 - def setup(self): self.df = DataFrame({ 'a': np.random.randint(0, 100, int(1e6)), diff --git a/asv_bench/benchmarks/gil.py b/asv_bench/benchmarks/gil.py index 32cb60be3f485..6819a296c81df 100644 --- a/asv_bench/benchmarks/gil.py +++ b/asv_bench/benchmarks/gil.py @@ -28,7 +28,6 @@ def wrapper(fname): class ParallelGroupbyMethods(object): - goal_time = 0.2 params = ([2, 4, 8], ['count', 'last', 'max', 'mean', 'min', 'prod', 'sum', 'var']) param_names = ['threads', 'method'] @@ -60,7 +59,6 @@ def time_loop(self, threads, method): class ParallelGroups(object): - goal_time = 0.2 params = [2, 4, 8] param_names = ['threads'] @@ -82,7 +80,6 @@ def time_get_groups(self, threads): class ParallelTake1D(object): - goal_time = 0.2 params = ['int64', 'float64'] param_names = ['dtype'] @@ -126,8 +123,6 @@ def time_kth_smallest(self): class ParallelDatetimeFields(object): - goal_time = 0.2 - def setup(self): if not have_real_test_parallel: raise NotImplementedError @@ -174,7 +169,6 @@ def run(period): class ParallelRolling(object): - goal_time = 0.2 params = ['median', 'mean', 'min', 'max', 'var', 'skew', 'kurt', 'std'] param_names = ['method'] diff --git a/asv_bench/benchmarks/groupby.py b/asv_bench/benchmarks/groupby.py index be09bba97bea3..dbd79185ec006 100644 --- a/asv_bench/benchmarks/groupby.py +++ b/asv_bench/benchmarks/groupby.py @@ -20,8 +20,6 @@ class ApplyDictReturn(object): - goal_time = 0.2 - def setup(self): self.labels = np.arange(1000).repeat(10) self.data = Series(np.random.randn(len(self.labels))) @@ -33,8 +31,6 @@ def time_groupby_apply_dict_return(self): class Apply(object): - goal_time = 0.2 - def setup_cache(self): N = 10**4 labels = np.random.randint(0, 2000, size=N) @@ -67,8 +63,6 @@ def time_copy_overhead_single_col(self, df): class Groups(object): - goal_time = 0.2 - param_names = ['key'] params = ['int64_small', 'int64_large', 'object_small', 'object_large'] @@ -93,7 +87,6 @@ def time_series_groups(self, data, key): class GroupManyLabels(object): - goal_time = 0.2 params = [1, 1000] param_names = ['ncols'] @@ -109,8 +102,6 @@ def time_sum(self, ncols): class Nth(object): - goal_time = 0.2 - param_names = ['dtype'] params = ['float32', 'float64', 'datetime', 'object'] @@ -149,8 +140,6 @@ def time_series_nth(self, dtype): class DateAttributes(object): - goal_time = 0.2 - def setup(self): rng = date_range('1/1/2000', '12/31/2005', freq='H') self.year, self.month, self.day = rng.year, rng.month, rng.day @@ -162,8 +151,6 @@ def time_len_groupby_object(self): class Int64(object): - goal_time = 0.2 - def setup(self): arr = np.random.randint(-1 << 12, 1 << 12, (1 << 17, 5)) i = np.random.choice(len(arr), len(arr) * 5) @@ -180,8 +167,6 @@ def time_overflow(self): class CountMultiDtype(object): - goal_time = 0.2 - def setup_cache(self): n = 10000 offsets = np.random.randint(n, size=n).astype('timedelta64[ns]') @@ -208,8 +193,6 @@ def time_multi_count(self, df): class CountMultiInt(object): - goal_time = 0.2 - def setup_cache(self): n = 10000 df = DataFrame({'key1': np.random.randint(0, 500, size=n), @@ -227,8 +210,6 @@ def time_multi_int_nunique(self, df): class AggFunctions(object): - goal_time = 0.2 - def setup_cache(): N = 10**5 fac1 = np.array(['A', 'B', 'C'], dtype='O') @@ -259,8 +240,6 @@ def time_different_python_functions_singlecol(self, df): class GroupStrings(object): - goal_time = 0.2 - def setup(self): n = 2 * 10**5 alpha = list(map(''.join, product(ascii_letters, repeat=4))) @@ -276,8 +255,6 @@ def time_multi_columns(self): class MultiColumn(object): - goal_time = 0.2 - def setup_cache(self): N = 10**5 key1 = np.tile(np.arange(100, dtype=object), 1000) @@ -305,8 +282,6 @@ def time_col_select_numpy_sum(self, df): class Size(object): - goal_time = 0.2 - def setup(self): n = 10**5 offsets = np.random.randint(n, size=n).astype('timedelta64[ns]') @@ -334,8 +309,6 @@ def time_category_size(self): class GroupByMethods(object): - goal_time = 0.2 - param_names = ['dtype', 'method', 'application'] params = [['int', 'float', 'object', 'datetime'], ['all', 'any', 'bfill', 'count', 'cumcount', 'cummax', 'cummin', @@ -385,7 +358,6 @@ def time_dtype_as_field(self, dtype, method, application): class RankWithTies(object): # GH 21237 - goal_time = 0.2 param_names = ['dtype', 'tie_method'] params = [['float64', 'float32', 'int64', 'datetime64'], ['first', 'average', 'dense', 'min', 'max']] @@ -404,8 +376,6 @@ def time_rank_ties(self, dtype, tie_method): class Float32(object): # GH 13335 - goal_time = 0.2 - def setup(self): tmp1 = (np.random.random(10000) * 0.1).astype(np.float32) tmp2 = (np.random.random(10000) * 10.0).astype(np.float32) @@ -419,8 +389,6 @@ def time_sum(self): class Categories(object): - goal_time = 0.2 - def setup(self): N = 10**5 arr = np.random.random(N) @@ -457,7 +425,6 @@ def time_groupby_extra_cat_nosort(self): class Datelike(object): # GH 14338 - goal_time = 0.2 params = ['period_range', 'date_range', 'date_range_tz'] param_names = ['grouper'] @@ -475,8 +442,6 @@ def time_sum(self, grouper): class SumBools(object): # GH 2692 - goal_time = 0.2 - def setup(self): N = 500 self.df = DataFrame({'ii': range(N), @@ -488,7 +453,6 @@ def time_groupby_sum_booleans(self): class SumMultiLevel(object): # GH 9049 - goal_time = 0.2 timeout = 120.0 def setup(self): @@ -503,8 +467,6 @@ def time_groupby_sum_multiindex(self): class Transform(object): - goal_time = 0.2 - def setup(self): n1 = 400 n2 = 250 @@ -551,8 +513,6 @@ def time_transform_multi_key4(self): class TransformBools(object): - goal_time = 0.2 - def setup(self): N = 120000 transition_points = np.sort(np.random.choice(np.arange(N), 1400)) @@ -567,8 +527,6 @@ def time_transform_mean(self): class TransformNaN(object): # GH 12737 - goal_time = 0.2 - def setup(self): self.df_nans = DataFrame({'key': np.repeat(np.arange(1000), 10), 'B': np.nan, diff --git a/asv_bench/benchmarks/index_object.py b/asv_bench/benchmarks/index_object.py index c1bc53823a342..f76040921393f 100644 --- a/asv_bench/benchmarks/index_object.py +++ b/asv_bench/benchmarks/index_object.py @@ -6,7 +6,6 @@ class SetOperations(object): - goal_time = 0.2 params = (['datetime', 'date_string', 'int', 'strings'], ['intersection', 'union', 'symmetric_difference']) param_names = ['dtype', 'method'] @@ -32,8 +31,6 @@ def time_operation(self, dtype, method): class SetDisjoint(object): - goal_time = 0.2 - def setup(self): N = 10**5 B = N + 20000 @@ -46,8 +43,6 @@ def time_datetime_difference_disjoint(self): class Datetime(object): - goal_time = 0.2 - def setup(self): self.dr = date_range('20000101', freq='D', periods=10000) @@ -84,8 +79,6 @@ def time_modulo(self, dtype): class Range(object): - goal_time = 0.2 - def setup(self): self.idx_inc = RangeIndex(start=0, stop=10**7, step=3) self.idx_dec = RangeIndex(start=10**7, stop=-1, step=-3) @@ -105,8 +98,6 @@ def time_min_trivial(self): class IndexAppend(object): - goal_time = 0.2 - def setup(self): N = 10000 @@ -136,7 +127,6 @@ def time_append_obj_list(self): class Indexing(object): - goal_time = 0.2 params = ['String', 'Float', 'Int'] param_names = ['dtype'] @@ -181,8 +171,6 @@ def time_get_loc_non_unique_sorted(self, dtype): class Float64IndexMethod(object): # GH 13166 - goal_time = 0.2 - def setup(self): N = 100000 a = np.arange(N) diff --git a/asv_bench/benchmarks/indexing.py b/asv_bench/benchmarks/indexing.py index 49d6311a7bb66..57ba9cd80e55c 100644 --- a/asv_bench/benchmarks/indexing.py +++ b/asv_bench/benchmarks/indexing.py @@ -10,7 +10,6 @@ class NumericSeriesIndexing(object): - goal_time = 0.2 params = [ (Int64Index, UInt64Index, Float64Index), ('unique_monotonic_inc', 'nonunique_monotonic_inc'), @@ -82,7 +81,6 @@ def time_loc_slice(self, index, index_structure): class NonNumericSeriesIndexing(object): - goal_time = 0.2 params = [ ('string', 'datetime'), ('unique_monotonic_inc', 'nonunique_monotonic_inc'), @@ -118,8 +116,6 @@ def time_getitem_list_like(self, index, index_structure): class DataFrameStringIndexing(object): - goal_time = 0.2 - def setup(self): index = tm.makeStringIndex(1000) columns = tm.makeStringIndex(30) @@ -152,8 +148,6 @@ def time_boolean_rows_object(self): class DataFrameNumericIndexing(object): - goal_time = 0.2 - def setup(self): self.idx_dupe = np.array(range(30)) * 99 self.df = DataFrame(np.random.randn(10000, 5)) @@ -178,7 +172,6 @@ def time_bool_indexer(self): class Take(object): - goal_time = 0.2 params = ['int', 'datetime'] param_names = ['index'] @@ -196,8 +189,6 @@ def time_take(self, index): class MultiIndexing(object): - goal_time = 0.2 - def setup(self): mi = MultiIndex.from_product([range(1000), range(1000)]) self.s = Series(np.random.randn(1000000), index=mi) @@ -226,8 +217,6 @@ def time_index_slice(self): class IntervalIndexing(object): - goal_time = 0.2 - def setup_cache(self): idx = IntervalIndex.from_breaks(np.arange(1000001)) monotonic = Series(np.arange(1000000), index=idx) @@ -248,7 +237,6 @@ def time_loc_list(self, monotonic): class CategoricalIndexIndexing(object): - goal_time = 0.2 params = ['monotonic_incr', 'monotonic_decr', 'non_monotonic'] param_names = ['index'] @@ -291,8 +279,6 @@ def time_get_indexer_list(self, index): class PanelIndexing(object): - goal_time = 0.2 - def setup(self): with warnings.catch_warnings(record=True): self.p = Panel(np.random.randn(100, 100, 100)) @@ -305,8 +291,6 @@ def time_subset(self): class MethodLookup(object): - goal_time = 0.2 - def setup_cache(self): s = Series() return s @@ -323,8 +307,6 @@ def time_lookup_loc(self, s): class GetItemSingleColumn(object): - goal_time = 0.2 - def setup(self): self.df_string_col = DataFrame(np.random.randn(3000, 1), columns=['A']) self.df_int_col = DataFrame(np.random.randn(3000, 1)) @@ -338,8 +320,6 @@ def time_frame_getitem_single_column_int(self): class AssignTimeseriesIndex(object): - goal_time = 0.2 - def setup(self): N = 100000 idx = date_range('1/1/2000', periods=N, freq='H') @@ -351,8 +331,6 @@ def time_frame_assign_timeseries_index(self): class InsertColumns(object): - goal_time = 0.2 - def setup(self): self.N = 10**3 self.df = DataFrame(index=range(self.N)) diff --git a/asv_bench/benchmarks/indexing_engines.py b/asv_bench/benchmarks/indexing_engines.py index 243f2ada7be32..1e9283c7fb92b 100644 --- a/asv_bench/benchmarks/indexing_engines.py +++ b/asv_bench/benchmarks/indexing_engines.py @@ -6,7 +6,6 @@ class NumericEngineIndexing(object): - goal_time = 0.2 params = [[Int64Engine, UInt64Engine, Float64Engine], [np.int64, np.uint64, np.float64], ['monotonic_incr', 'monotonic_decr', 'non_monotonic'], @@ -33,7 +32,6 @@ def time_get_loc(self, engine, dtype, index_type): class ObjectEngineIndexing(object): - goal_time = 0.2 params = [('monotonic_incr', 'monotonic_decr', 'non_monotonic')] param_names = ['index_type'] diff --git a/asv_bench/benchmarks/inference.py b/asv_bench/benchmarks/inference.py index 7fb57991c99bc..423bd02b93596 100644 --- a/asv_bench/benchmarks/inference.py +++ b/asv_bench/benchmarks/inference.py @@ -7,7 +7,6 @@ class NumericInferOps(object): # from GH 7332 - goal_time = 0.2 params = numeric_dtypes param_names = ['dtype'] @@ -34,8 +33,6 @@ def time_modulo(self, dtype): class DateInferOps(object): # from GH 7332 - goal_time = 0.2 - def setup_cache(self): N = 5 * 10**5 df = DataFrame({'datetime64': np.arange(N).astype('datetime64[ms]')}) @@ -54,7 +51,6 @@ def time_add_timedeltas(self, df): class ToNumeric(object): - goal_time = 0.2 params = ['ignore', 'coerce'] param_names = ['errors'] diff --git a/asv_bench/benchmarks/io/csv.py b/asv_bench/benchmarks/io/csv.py index ac2370fe85e5a..771f2795334e1 100644 --- a/asv_bench/benchmarks/io/csv.py +++ b/asv_bench/benchmarks/io/csv.py @@ -11,7 +11,6 @@ class ToCSV(BaseIO): - goal_time = 0.2 fname = '__test__.csv' params = ['wide', 'long', 'mixed'] param_names = ['kind'] @@ -41,7 +40,6 @@ def time_frame(self, kind): class ToCSVDatetime(BaseIO): - goal_time = 0.2 fname = '__test__.csv' def setup(self): @@ -61,7 +59,6 @@ def data(self, stringio_object): class ReadCSVDInferDatetimeFormat(StringIORewind): - goal_time = 0.2 params = ([True, False], ['custom', 'iso8601', 'ymd']) param_names = ['infer_datetime_format', 'format'] @@ -82,7 +79,6 @@ def time_read_csv(self, infer_datetime_format, format): class ReadCSVSkipRows(BaseIO): - goal_time = 0.2 fname = '__test__.csv' params = [None, 10000] param_names = ['skiprows'] @@ -104,8 +100,6 @@ def time_skipprows(self, skiprows): class ReadUint64Integers(StringIORewind): - goal_time = 0.2 - def setup(self): self.na_values = [2**63 + 500] arr = np.arange(10000).astype('uint64') + 2**63 @@ -127,7 +121,6 @@ def time_read_uint64_na_values(self): class ReadCSVThousands(BaseIO): - goal_time = 0.2 fname = '__test__.csv' params = ([',', '|'], [None, ',']) param_names = ['sep', 'thousands'] @@ -149,8 +142,6 @@ def time_thousands(self, sep, thousands): class ReadCSVComment(StringIORewind): - goal_time = 0.2 - def setup(self): data = ['A,B,C'] + (['1,2,3 # comment'] * 100000) self.StringIO_input = StringIO('\n'.join(data)) @@ -162,7 +153,6 @@ def time_comment(self): class ReadCSVFloatPrecision(StringIORewind): - goal_time = 0.2 params = ([',', ';'], ['.', '_'], [None, 'high', 'round_trip']) param_names = ['sep', 'decimal', 'float_precision'] @@ -185,7 +175,6 @@ def time_read_csv_python_engine(self, sep, decimal, float_precision): class ReadCSVCategorical(BaseIO): - goal_time = 0.2 fname = '__test__.csv' def setup(self): @@ -203,8 +192,6 @@ def time_convert_direct(self): class ReadCSVParseDates(StringIORewind): - goal_time = 0.2 - def setup(self): data = """{},19:00:00,18:56:00,0.8100,2.8100,7.2000,0.0000,280.0000\n {},20:00:00,19:56:00,0.0100,2.2100,7.2000,0.0000,260.0000\n diff --git a/asv_bench/benchmarks/io/excel.py b/asv_bench/benchmarks/io/excel.py index b873dc1040a66..1bee864fbcf2d 100644 --- a/asv_bench/benchmarks/io/excel.py +++ b/asv_bench/benchmarks/io/excel.py @@ -3,12 +3,9 @@ from pandas.compat import BytesIO import pandas.util.testing as tm -from ..pandas_vb_common import BaseIO - class Excel(object): - goal_time = 0.2 params = ['openpyxl', 'xlsxwriter', 'xlwt'] param_names = ['engine'] diff --git a/asv_bench/benchmarks/io/hdf.py b/asv_bench/benchmarks/io/hdf.py index c150d82450770..f08904ba70a5f 100644 --- a/asv_bench/benchmarks/io/hdf.py +++ b/asv_bench/benchmarks/io/hdf.py @@ -9,8 +9,6 @@ class HDFStoreDataFrame(BaseIO): - goal_time = 0.2 - def setup(self): N = 25000 index = tm.makeStringIndex(N) @@ -103,8 +101,6 @@ def time_store_info(self): class HDFStorePanel(BaseIO): - goal_time = 0.2 - def setup(self): self.fname = '__test__.h5' with warnings.catch_warnings(record=True): @@ -130,7 +126,6 @@ def time_write_store_table_panel(self): class HDF(BaseIO): - goal_time = 0.2 params = ['table', 'fixed'] param_names = ['format'] diff --git a/asv_bench/benchmarks/io/json.py b/asv_bench/benchmarks/io/json.py index df5bf7341c303..ec2ddc11b7c1d 100644 --- a/asv_bench/benchmarks/io/json.py +++ b/asv_bench/benchmarks/io/json.py @@ -7,7 +7,6 @@ class ReadJSON(BaseIO): - goal_time = 0.2 fname = "__test__.json" params = (['split', 'index', 'records'], ['int', 'datetime']) param_names = ['orient', 'index'] @@ -27,7 +26,6 @@ def time_read_json(self, orient, index): class ReadJSONLines(BaseIO): - goal_time = 0.2 fname = "__test_lines__.json" params = ['int', 'datetime'] param_names = ['index'] @@ -58,7 +56,6 @@ def peakmem_read_json_lines_concat(self, index): class ToJSON(BaseIO): - goal_time = 0.2 fname = "__test__.json" params = ['split', 'columns', 'index'] param_names = ['orient'] diff --git a/asv_bench/benchmarks/io/msgpack.py b/asv_bench/benchmarks/io/msgpack.py index 7033aa9ce3c40..dc2642d920fd0 100644 --- a/asv_bench/benchmarks/io/msgpack.py +++ b/asv_bench/benchmarks/io/msgpack.py @@ -7,8 +7,6 @@ class MSGPack(BaseIO): - goal_time = 0.2 - def setup(self): self.fname = '__test__.msg' N = 100000 diff --git a/asv_bench/benchmarks/io/pickle.py b/asv_bench/benchmarks/io/pickle.py index 0960d721281c7..74a58bbb946aa 100644 --- a/asv_bench/benchmarks/io/pickle.py +++ b/asv_bench/benchmarks/io/pickle.py @@ -7,8 +7,6 @@ class Pickle(BaseIO): - goal_time = 0.2 - def setup(self): self.fname = '__test__.pkl' N = 100000 diff --git a/asv_bench/benchmarks/io/sas.py b/asv_bench/benchmarks/io/sas.py index 526c524de7fff..2783f42cad895 100644 --- a/asv_bench/benchmarks/io/sas.py +++ b/asv_bench/benchmarks/io/sas.py @@ -5,7 +5,6 @@ class SAS(object): - goal_time = 0.2 params = ['sas7bdat', 'xport'] param_names = ['format'] diff --git a/asv_bench/benchmarks/io/sql.py b/asv_bench/benchmarks/io/sql.py index 6a8529cad592b..075d3bdda5ed9 100644 --- a/asv_bench/benchmarks/io/sql.py +++ b/asv_bench/benchmarks/io/sql.py @@ -8,7 +8,6 @@ class SQL(object): - goal_time = 0.2 params = ['sqlalchemy', 'sqlite'] param_names = ['connection'] @@ -41,7 +40,6 @@ def time_read_sql_query(self, connection): class WriteSQLDtypes(object): - goal_time = 0.2 params = (['sqlalchemy', 'sqlite'], ['float', 'float_with_nan', 'string', 'bool', 'int', 'datetime']) param_names = ['connection', 'dtype'] @@ -75,8 +73,6 @@ def time_read_sql_query_select_column(self, connection, dtype): class ReadSQLTable(object): - goal_time = 0.2 - def setup(self): N = 10000 self.table_name = 'test' @@ -104,8 +100,6 @@ def time_read_sql_table_parse_dates(self): class ReadSQLTableDtypes(object): - goal_time = 0.2 - params = ['float', 'float_with_nan', 'string', 'bool', 'int', 'datetime'] param_names = ['dtype'] diff --git a/asv_bench/benchmarks/io/stata.py b/asv_bench/benchmarks/io/stata.py index d74a531877e18..a7f854a853f50 100644 --- a/asv_bench/benchmarks/io/stata.py +++ b/asv_bench/benchmarks/io/stata.py @@ -7,7 +7,6 @@ class Stata(BaseIO): - goal_time = 0.2 params = ['tc', 'td', 'tm', 'tw', 'th', 'tq', 'ty'] param_names = ['convert_dates'] diff --git a/asv_bench/benchmarks/join_merge.py b/asv_bench/benchmarks/join_merge.py index 3524a5adb5450..5b28d8a4eec62 100644 --- a/asv_bench/benchmarks/join_merge.py +++ b/asv_bench/benchmarks/join_merge.py @@ -14,8 +14,6 @@ class Append(object): - goal_time = 0.2 - def setup(self): self.df1 = DataFrame(np.random.randn(10000, 4), columns=['A', 'B', 'C', 'D']) @@ -42,7 +40,6 @@ def time_append_mixed(self): class Concat(object): - goal_time = 0.2 params = [0, 1] param_names = ['axis'] @@ -71,7 +68,6 @@ def time_concat_empty_left(self, axis): class ConcatPanels(object): - goal_time = 0.2 params = ([0, 1, 2], [True, False]) param_names = ['axis', 'ignore_index'] @@ -97,7 +93,6 @@ def time_f_ordered(self, axis, ignore_index): class ConcatDataFrames(object): - goal_time = 0.2 params = ([0, 1], [True, False]) param_names = ['axis', 'ignore_index'] @@ -118,7 +113,6 @@ def time_f_ordered(self, axis, ignore_index): class Join(object): - goal_time = 0.2 params = [True, False] param_names = ['sort'] @@ -166,8 +160,6 @@ def time_join_dataframe_index_shuffle_key_bigger_sort(self, sort): class JoinIndex(object): - goal_time = 0.2 - def setup(self): N = 50000 self.left = DataFrame(np.random.randint(1, N / 500, (N, 2)), @@ -182,8 +174,6 @@ def time_left_outer_join_index(self): class JoinNonUnique(object): # outer join of non-unique # GH 6329 - goal_time = 0.2 - def setup(self): date_index = date_range('01-Jan-2013', '23-Jan-2013', freq='T') daily_dates = date_index.to_period('D').to_timestamp('S', 'S') @@ -200,7 +190,6 @@ def time_join_non_unique_equal(self): class Merge(object): - goal_time = 0.2 params = [True, False] param_names = ['sort'] @@ -235,7 +224,6 @@ def time_merge_dataframe_integer_key(self, sort): class I8Merge(object): - goal_time = 0.2 params = ['inner', 'outer', 'left', 'right'] param_names = ['how'] @@ -254,8 +242,6 @@ def time_i8merge(self, how): class MergeCategoricals(object): - goal_time = 0.2 - def setup(self): self.left_object = DataFrame( {'X': np.random.choice(range(0, 10), size=(10000,)), @@ -343,8 +329,6 @@ def time_multiby(self): class Align(object): - goal_time = 0.2 - def setup(self): size = 5 * 10**5 rng = np.arange(0, 10**13, 10**7) diff --git a/asv_bench/benchmarks/multiindex_object.py b/asv_bench/benchmarks/multiindex_object.py index eaf2bbbe510c2..ff202322dbe84 100644 --- a/asv_bench/benchmarks/multiindex_object.py +++ b/asv_bench/benchmarks/multiindex_object.py @@ -7,8 +7,6 @@ class GetLoc(object): - goal_time = 0.2 - def setup(self): self.mi_large = MultiIndex.from_product( [np.arange(1000), np.arange(20), list(string.ascii_letters)], @@ -44,8 +42,6 @@ def time_small_get_loc_warm(self): class Duplicates(object): - goal_time = 0.2 - def setup(self): size = 65536 arrays = [np.random.randint(0, 8192, size), @@ -60,8 +56,6 @@ def time_remove_unused_levels(self): class Integer(object): - goal_time = 0.2 - def setup(self): self.mi_int = MultiIndex.from_product([np.arange(1000), np.arange(1000)], @@ -80,8 +74,6 @@ def time_is_monotonic(self): class Duplicated(object): - goal_time = 0.2 - def setup(self): n, k = 200, 5000 levels = [np.arange(n), @@ -96,8 +88,6 @@ def time_duplicated(self): class Sortlevel(object): - goal_time = 0.2 - def setup(self): n = 1182720 low, high = -4096, 4096 @@ -122,8 +112,6 @@ def time_sortlevel_one(self): class Values(object): - goal_time = 0.2 - def setup_cache(self): level1 = range(1000) diff --git a/asv_bench/benchmarks/offset.py b/asv_bench/benchmarks/offset.py index e161b887ee86f..4570e73cccc71 100644 --- a/asv_bench/benchmarks/offset.py +++ b/asv_bench/benchmarks/offset.py @@ -34,8 +34,6 @@ class ApplyIndex(object): - goal_time = 0.2 - params = other_offsets param_names = ['offset'] @@ -49,8 +47,6 @@ def time_apply_index(self, offset): class OnOffset(object): - goal_time = 0.2 - params = offsets param_names = ['offset'] @@ -67,7 +63,6 @@ def time_on_offset(self, offset): class OffsetSeriesArithmetic(object): - goal_time = 0.2 params = offsets param_names = ['offset'] @@ -83,7 +78,6 @@ def time_add_offset(self, offset): class OffsetDatetimeIndexArithmetic(object): - goal_time = 0.2 params = offsets param_names = ['offset'] @@ -98,7 +92,6 @@ def time_add_offset(self, offset): class OffestDatetimeArithmetic(object): - goal_time = 0.2 params = offsets param_names = ['offset'] diff --git a/asv_bench/benchmarks/panel_ctor.py b/asv_bench/benchmarks/panel_ctor.py index c2e5bfa175feb..47b3ad612f9b1 100644 --- a/asv_bench/benchmarks/panel_ctor.py +++ b/asv_bench/benchmarks/panel_ctor.py @@ -5,8 +5,6 @@ class DifferentIndexes(object): - goal_time = 0.2 - def setup(self): self.data_frames = {} start = datetime(1990, 1, 1) @@ -24,8 +22,6 @@ def time_from_dict(self): class SameIndexes(object): - goal_time = 0.2 - def setup(self): idx = DatetimeIndex(start=datetime(1990, 1, 1), end=datetime(2012, 1, 1), @@ -40,8 +36,6 @@ def time_from_dict(self): class TwoIndexes(object): - goal_time = 0.2 - def setup(self): start = datetime(1990, 1, 1) end = datetime(2012, 1, 1) diff --git a/asv_bench/benchmarks/panel_methods.py b/asv_bench/benchmarks/panel_methods.py index 542af44a78ffe..a4c12c082236e 100644 --- a/asv_bench/benchmarks/panel_methods.py +++ b/asv_bench/benchmarks/panel_methods.py @@ -6,7 +6,6 @@ class PanelMethods(object): - goal_time = 0.2 params = ['items', 'major', 'minor'] param_names = ['axis'] diff --git a/asv_bench/benchmarks/period.py b/asv_bench/benchmarks/period.py index 29b8c7efda40c..fc34a47fee3e1 100644 --- a/asv_bench/benchmarks/period.py +++ b/asv_bench/benchmarks/period.py @@ -37,8 +37,6 @@ def time_asfreq(self, freq): class PeriodIndexConstructor(object): - goal_time = 0.2 - params = ['D'] param_names = ['freq'] @@ -55,8 +53,6 @@ def time_from_pydatetime(self, freq): class DataFramePeriodColumn(object): - goal_time = 0.2 - def setup(self): self.rng = period_range(start='1/1/1990', freq='S', periods=20000) self.df = DataFrame(index=range(len(self.rng))) @@ -72,8 +68,6 @@ def time_set_index(self): class Algorithms(object): - goal_time = 0.2 - params = ['index', 'series'] param_names = ['typ'] @@ -95,8 +89,6 @@ def time_value_counts(self, typ): class Indexing(object): - goal_time = 0.2 - def setup(self): self.index = PeriodIndex(start='1985', periods=1000, freq='D') self.series = Series(range(1000), index=self.index) diff --git a/asv_bench/benchmarks/plotting.py b/asv_bench/benchmarks/plotting.py index 68dc39b648152..1373d5f0b4258 100644 --- a/asv_bench/benchmarks/plotting.py +++ b/asv_bench/benchmarks/plotting.py @@ -10,8 +10,6 @@ class Plotting(object): - goal_time = 0.2 - def setup(self): self.s = Series(np.random.randn(1000000)) self.df = DataFrame({'col': self.s}) @@ -25,8 +23,6 @@ def time_frame_plot(self): class TimeseriesPlotting(object): - goal_time = 0.2 - def setup(self): N = 2000 M = 5 @@ -50,8 +46,6 @@ def time_plot_irregular(self): class Misc(object): - goal_time = 0.6 - def setup(self): N = 500 M = 10 diff --git a/asv_bench/benchmarks/reindex.py b/asv_bench/benchmarks/reindex.py index 13f2877e6048d..82c61a98e2c34 100644 --- a/asv_bench/benchmarks/reindex.py +++ b/asv_bench/benchmarks/reindex.py @@ -7,8 +7,6 @@ class Reindex(object): - goal_time = 0.2 - def setup(self): rng = DatetimeIndex(start='1/1/1970', periods=10000, freq='1min') self.df = DataFrame(np.random.rand(10000, 10), index=rng, @@ -37,7 +35,6 @@ def time_reindex_multiindex(self): class ReindexMethod(object): - goal_time = 0.2 params = ['pad', 'backfill'] param_names = ['method'] @@ -52,7 +49,6 @@ def time_reindex_method(self, method): class Fillna(object): - goal_time = 0.2 params = ['pad', 'backfill'] param_names = ['method'] @@ -72,8 +68,6 @@ def time_float_32(self, method): class LevelAlign(object): - goal_time = 0.2 - def setup(self): self.index = MultiIndex( levels=[np.arange(10), np.arange(100), np.arange(100)], @@ -94,7 +88,6 @@ def time_reindex_level(self): class DropDuplicates(object): - goal_time = 0.2 params = [True, False] param_names = ['inplace'] @@ -139,8 +132,6 @@ def time_frame_drop_dups_bool(self, inplace): class Align(object): # blog "pandas escaped the zoo" - goal_time = 0.2 - def setup(self): n = 50000 indices = tm.makeStringIndex(n) @@ -156,8 +147,6 @@ def time_align_series_irregular_string(self): class LibFastZip(object): - goal_time = 0.2 - def setup(self): N = 10000 K = 10 diff --git a/asv_bench/benchmarks/replace.py b/asv_bench/benchmarks/replace.py index 3236b09acec37..d8efaf99e2c4d 100644 --- a/asv_bench/benchmarks/replace.py +++ b/asv_bench/benchmarks/replace.py @@ -4,7 +4,6 @@ class FillNa(object): - goal_time = 0.2 params = [True, False] param_names = ['inplace'] @@ -24,7 +23,6 @@ def time_replace(self, inplace): class ReplaceDict(object): - goal_time = 0.2 params = [True, False] param_names = ['inplace'] @@ -40,7 +38,6 @@ def time_replace_series(self, inplace): class Convert(object): - goal_time = 0.5 params = (['DataFrame', 'Series'], ['Timestamp', 'Timedelta']) param_names = ['constructor', 'replace_data'] diff --git a/asv_bench/benchmarks/reshape.py b/asv_bench/benchmarks/reshape.py index 3140f6fc81cbb..bda486dba3b0f 100644 --- a/asv_bench/benchmarks/reshape.py +++ b/asv_bench/benchmarks/reshape.py @@ -8,8 +8,6 @@ class Melt(object): - goal_time = 0.2 - def setup(self): self.df = DataFrame(np.random.randn(10000, 3), columns=['A', 'B', 'C']) self.df['id1'] = np.random.randint(0, 10, 10000) @@ -21,8 +19,6 @@ def time_melt_dataframe(self): class Pivot(object): - goal_time = 0.2 - def setup(self): N = 10000 index = date_range('1/1/2000', periods=N, freq='h') @@ -37,8 +33,6 @@ def time_reshape_pivot_time_series(self): class SimpleReshape(object): - goal_time = 0.2 - def setup(self): arrays = [np.arange(100).repeat(100), np.roll(np.tile(np.arange(100), 100), 25)] @@ -55,8 +49,6 @@ def time_unstack(self): class Unstack(object): - goal_time = 0.2 - def setup(self): m = 100 n = 1000 @@ -77,8 +69,6 @@ def time_without_last_row(self): class SparseIndex(object): - goal_time = 0.2 - def setup(self): NUM_ROWS = 1000 self.df = DataFrame({'A': np.random.randint(50, size=NUM_ROWS), @@ -95,8 +85,6 @@ def time_unstack(self): class WideToLong(object): - goal_time = 0.2 - def setup(self): nyrs = 20 nidvars = 20 @@ -115,8 +103,6 @@ def time_wide_to_long_big(self): class PivotTable(object): - goal_time = 0.2 - def setup(self): N = 100000 fac1 = np.array(['A', 'B', 'C'], dtype='O') @@ -135,8 +121,6 @@ def time_pivot_table(self): class GetDummies(object): - goal_time = 0.2 - def setup(self): categories = list(string.ascii_letters[:12]) s = pd.Series(np.random.choice(categories, size=1000000), diff --git a/asv_bench/benchmarks/series_methods.py b/asv_bench/benchmarks/series_methods.py index 2388acbc2d33f..46fb5011cc1a5 100644 --- a/asv_bench/benchmarks/series_methods.py +++ b/asv_bench/benchmarks/series_methods.py @@ -7,7 +7,6 @@ class SeriesConstructor(object): - goal_time = 0.2 params = [None, 'dict'] param_names = ['data'] @@ -24,7 +23,6 @@ def time_constructor(self, data): class IsIn(object): - goal_time = 0.2 params = ['int64', 'object'] param_names = ['dtype'] @@ -96,7 +94,6 @@ def time_isin_long_series_long_values_floats(self): class NSort(object): - goal_time = 0.2 params = ['first', 'last', 'all'] param_names = ['keep'] @@ -112,7 +109,6 @@ def time_nsmallest(self, keep): class Dropna(object): - goal_time = 0.2 params = ['int', 'datetime'] param_names = ['dtype'] @@ -130,7 +126,6 @@ def time_dropna(self, dtype): class Map(object): - goal_time = 0.2 params = ['dict', 'Series'] param_names = 'mapper' @@ -146,8 +141,6 @@ def time_map(self, mapper): class Clip(object): - goal_time = 0.2 - def setup(self): self.s = Series(np.random.randn(50)) @@ -157,7 +150,6 @@ def time_clip(self): class ValueCounts(object): - goal_time = 0.2 params = ['int', 'float', 'object'] param_names = ['dtype'] @@ -170,8 +162,6 @@ def time_value_counts(self, dtype): class Dir(object): - goal_time = 0.2 - def setup(self): self.s = Series(index=tm.makeStringIndex(10000)) @@ -181,8 +171,6 @@ def time_dir_strings(self): class SeriesGetattr(object): # https://github.com/pandas-dev/pandas/issues/19764 - goal_time = 0.2 - def setup(self): self.s = Series(1, index=date_range("2012-01-01", freq='s', diff --git a/asv_bench/benchmarks/sparse.py b/asv_bench/benchmarks/sparse.py index bbc076790a923..64f87c1670170 100644 --- a/asv_bench/benchmarks/sparse.py +++ b/asv_bench/benchmarks/sparse.py @@ -16,8 +16,6 @@ def make_array(size, dense_proportion, fill_value, dtype): class SparseSeriesToFrame(object): - goal_time = 0.2 - def setup(self): K = 50 N = 50001 @@ -35,7 +33,6 @@ def time_series_to_frame(self): class SparseArrayConstructor(object): - goal_time = 0.2 params = ([0.1, 0.01], [0, np.nan], [np.int64, np.float64, np.object]) param_names = ['dense_proportion', 'fill_value', 'dtype'] @@ -50,8 +47,6 @@ def time_sparse_array(self, dense_proportion, fill_value, dtype): class SparseDataFrameConstructor(object): - goal_time = 0.2 - def setup(self): N = 1000 self.arr = np.arange(N) @@ -70,8 +65,6 @@ def time_from_dict(self): class FromCoo(object): - goal_time = 0.2 - def setup(self): self.matrix = scipy.sparse.coo_matrix(([3.0, 1.0, 2.0], ([1, 0, 0], [0, 2, 3])), @@ -83,8 +76,6 @@ def time_sparse_series_from_coo(self): class ToCoo(object): - goal_time = 0.2 - def setup(self): s = Series([np.nan] * 10000) s[0] = 3.0 @@ -101,7 +92,6 @@ def time_sparse_series_to_coo(self): class Arithmetic(object): - goal_time = 0.2 params = ([0.1, 0.01], [0, np.nan]) param_names = ['dense_proportion', 'fill_value'] @@ -127,7 +117,6 @@ def time_divide(self, dense_proportion, fill_value): class ArithmeticBlock(object): - goal_time = 0.2 params = [np.nan, 0] param_names = ['fill_value'] diff --git a/asv_bench/benchmarks/stat_ops.py b/asv_bench/benchmarks/stat_ops.py index 3a6223d283073..5c777c00261e1 100644 --- a/asv_bench/benchmarks/stat_ops.py +++ b/asv_bench/benchmarks/stat_ops.py @@ -8,7 +8,6 @@ class FrameOps(object): - goal_time = 0.2 params = [ops, ['float', 'int'], [0, 1], [True, False]] param_names = ['op', 'dtype', 'axis', 'use_bottleneck'] @@ -27,7 +26,6 @@ def time_op(self, op, dtype, axis, use_bottleneck): class FrameMultiIndexOps(object): - goal_time = 0.2 params = ([0, 1, [0, 1]], ops) param_names = ['level', 'op'] @@ -46,7 +44,6 @@ def time_op(self, level, op): class SeriesOps(object): - goal_time = 0.2 params = [ops, ['float', 'int'], [True, False]] param_names = ['op', 'dtype', 'use_bottleneck'] @@ -65,7 +62,6 @@ def time_op(self, op, dtype, use_bottleneck): class SeriesMultiIndexOps(object): - goal_time = 0.2 params = ([0, 1, [0, 1]], ops) param_names = ['level', 'op'] @@ -84,7 +80,6 @@ def time_op(self, level, op): class Rank(object): - goal_time = 0.2 params = [['DataFrame', 'Series'], [True, False]] param_names = ['constructor', 'pct'] @@ -101,7 +96,6 @@ def time_average_old(self, constructor, pct): class Correlation(object): - goal_time = 0.2 params = ['spearman', 'kendall', 'pearson'] param_names = ['method'] diff --git a/asv_bench/benchmarks/strings.py b/asv_bench/benchmarks/strings.py index ccfac2f73f14d..d880fb258560d 100644 --- a/asv_bench/benchmarks/strings.py +++ b/asv_bench/benchmarks/strings.py @@ -7,8 +7,6 @@ class Methods(object): - goal_time = 0.2 - def setup(self): self.s = Series(tm.makeStringIndex(10**5)) @@ -70,7 +68,6 @@ def time_lower(self): class Repeat(object): - goal_time = 0.2 params = ['int', 'array'] param_names = ['repeats'] @@ -86,7 +83,6 @@ def time_repeat(self, repeats): class Cat(object): - goal_time = 0.2 params = ([0, 3], [None, ','], [None, '-'], [0.0, 0.001, 0.15]) param_names = ['other_cols', 'sep', 'na_rep', 'na_frac'] @@ -112,7 +108,6 @@ def time_cat(self, other_cols, sep, na_rep, na_frac): class Contains(object): - goal_time = 0.2 params = [True, False] param_names = ['regex'] @@ -125,7 +120,6 @@ def time_contains(self, regex): class Split(object): - goal_time = 0.2 params = [True, False] param_names = ['expand'] @@ -138,8 +132,6 @@ def time_split(self, expand): class Dummies(object): - goal_time = 0.2 - def setup(self): self.s = Series(tm.makeStringIndex(10**5)).str.join('|') @@ -149,8 +141,6 @@ def time_get_dummies(self): class Encode(object): - goal_time = 0.2 - def setup(self): self.ser = Series(tm.makeUnicodeIndex()) @@ -160,8 +150,6 @@ def time_encode_decode(self): class Slice(object): - goal_time = 0.2 - def setup(self): self.s = Series(['abcdefg', np.nan] * 500000) diff --git a/asv_bench/benchmarks/timedelta.py b/asv_bench/benchmarks/timedelta.py index 3fe75b3c34299..01d53fb9cbbd9 100644 --- a/asv_bench/benchmarks/timedelta.py +++ b/asv_bench/benchmarks/timedelta.py @@ -6,8 +6,6 @@ class TimedeltaConstructor(object): - goal_time = 0.2 - def time_from_int(self): Timedelta(123456789) @@ -36,8 +34,6 @@ def time_from_missing(self): class ToTimedelta(object): - goal_time = 0.2 - def setup(self): self.ints = np.random.randint(0, 60, size=10000) self.str_days = [] @@ -58,7 +54,6 @@ def time_convert_string_seconds(self): class ToTimedeltaErrors(object): - goal_time = 0.2 params = ['coerce', 'ignore'] param_names = ['errors'] @@ -73,8 +68,6 @@ def time_convert(self, errors): class TimedeltaOps(object): - goal_time = 0.2 - def setup(self): self.td = to_timedelta(np.arange(1000000)) self.ts = Timestamp('2000') @@ -85,8 +78,6 @@ def time_add_td_ts(self): class TimedeltaProperties(object): - goal_time = 0.2 - def setup_cache(self): td = Timedelta(days=365, minutes=35, seconds=25, milliseconds=35) return td @@ -106,8 +97,6 @@ def time_timedelta_nanoseconds(self, td): class DatetimeAccessor(object): - goal_time = 0.2 - def setup_cache(self): N = 100000 series = Series(timedelta_range('1 days', periods=N, freq='h')) diff --git a/asv_bench/benchmarks/timeseries.py b/asv_bench/benchmarks/timeseries.py index 11a789453c2df..84bdcc5fa30f2 100644 --- a/asv_bench/benchmarks/timeseries.py +++ b/asv_bench/benchmarks/timeseries.py @@ -11,7 +11,6 @@ class DatetimeIndex(object): - goal_time = 0.2 params = ['dst', 'repeated', 'tz_aware', 'tz_naive'] param_names = ['index_type'] @@ -58,8 +57,6 @@ def time_to_pydatetime(self, index_type): class TzLocalize(object): - goal_time = 0.2 - def setup(self): dst_rng = date_range(start='10/29/2000 1:00:00', end='10/29/2000 1:59:59', freq='S') @@ -77,7 +74,6 @@ def time_infer_dst(self): class ResetIndex(object): - goal_time = 0.2 params = [None, 'US/Eastern'] param_names = 'tz' @@ -91,7 +87,6 @@ def time_reest_datetimeindex(self, tz): class Factorize(object): - goal_time = 0.2 params = [None, 'Asia/Tokyo'] param_names = 'tz' @@ -106,7 +101,6 @@ def time_factorize(self, tz): class InferFreq(object): - goal_time = 0.2 params = [None, 'D', 'B'] param_names = ['freq'] @@ -123,8 +117,6 @@ def time_infer_freq(self, freq): class TimeDatetimeConverter(object): - goal_time = 0.2 - def setup(self): N = 100000 self.rng = date_range(start='1/1/2000', periods=N, freq='T') @@ -135,7 +127,6 @@ def time_convert(self): class Iteration(object): - goal_time = 0.2 params = [date_range, period_range] param_names = ['time_index'] @@ -156,7 +147,6 @@ def time_iter_preexit(self, time_index): class ResampleDataFrame(object): - goal_time = 0.2 params = ['max', 'mean', 'min'] param_names = ['method'] @@ -171,7 +161,6 @@ def time_method(self, method): class ResampleSeries(object): - goal_time = 0.2 params = (['period', 'datetime'], ['5min', '1D'], ['mean', 'ohlc']) param_names = ['index', 'freq', 'method'] @@ -192,8 +181,6 @@ def time_resample(self, index, freq, method): class ResampleDatetetime64(object): # GH 7754 - goal_time = 0.2 - def setup(self): rng3 = date_range(start='2000-01-01 00:00:00', end='2000-01-01 10:00:00', freq='555000U') @@ -205,7 +192,6 @@ def time_resample(self): class AsOf(object): - goal_time = 0.2 params = ['DataFrame', 'Series'] param_names = ['constructor'] @@ -253,7 +239,6 @@ def time_asof_nan_single(self, constructor): class SortIndex(object): - goal_time = 0.2 params = [True, False] param_names = ['monotonic'] @@ -273,8 +258,6 @@ def time_get_slice(self, monotonic): class IrregularOps(object): - goal_time = 0.2 - def setup(self): N = 10**5 idx = date_range(start='1/1/2000', periods=N, freq='s') @@ -288,8 +271,6 @@ def time_add(self): class Lookup(object): - goal_time = 0.2 - def setup(self): N = 1500000 rng = date_range(start='1/1/2000', periods=N, freq='S') @@ -303,8 +284,6 @@ def time_lookup_and_cleanup(self): class ToDatetimeYYYYMMDD(object): - goal_time = 0.2 - def setup(self): rng = date_range(start='1/1/2000', periods=10000, freq='D') self.stringsD = Series(rng.strftime('%Y%m%d')) @@ -315,8 +294,6 @@ def time_format_YYYYMMDD(self): class ToDatetimeISO8601(object): - goal_time = 0.2 - def setup(self): rng = date_range(start='1/1/2000', periods=20000, freq='H') self.strings = rng.strftime('%Y-%m-%d %H:%M:%S').tolist() @@ -342,8 +319,6 @@ def time_iso8601_tz_spaceformat(self): class ToDatetimeNONISO8601(object): - goal_time = 0.2 - def setup(self): N = 10000 half = int(N / 2) @@ -361,8 +336,6 @@ def time_different_offset(self): class ToDatetimeFormat(object): - goal_time = 0.2 - def setup(self): self.s = Series(['19MAY11', '19MAY11:00:00:00'] * 100000) self.s2 = self.s.str.replace(':\\S+$', '') @@ -376,7 +349,6 @@ def time_no_exact(self): class ToDatetimeCache(object): - goal_time = 0.2 params = [True, False] param_names = ['cache'] diff --git a/asv_bench/benchmarks/timestamp.py b/asv_bench/benchmarks/timestamp.py index c142a9b59fc43..8eaf815eaa962 100644 --- a/asv_bench/benchmarks/timestamp.py +++ b/asv_bench/benchmarks/timestamp.py @@ -29,8 +29,6 @@ def time_fromtimestamp(self): class TimestampProperties(object): - goal_time = 0.2 - _tzs = [None, pytz.timezone('Europe/Amsterdam')] _freqs = [None, 'B'] params = [_tzs, _freqs] @@ -89,8 +87,6 @@ def time_microsecond(self, tz, freq): class TimestampOps(object): - goal_time = 0.2 - params = [None, 'US/Eastern'] param_names = ['tz'] @@ -108,8 +104,6 @@ def time_to_pydatetime(self, tz): class TimestampAcrossDst(object): - goal_time = 0.2 - def setup(self): dt = datetime.datetime(2016, 3, 27, 1) self.tzinfo = pytz.timezone('CET').localize(dt, is_dst=False).tzinfo diff --git a/setup.cfg b/setup.cfg index 84f19e56ad3bc..ee39844996025 100644 --- a/setup.cfg +++ b/setup.cfg @@ -23,7 +23,6 @@ ignore = C408, # Unnecessary dict call - rewrite as a literal. C409 # Unnecessary list passed to tuple() - rewrite as a tuple literal. exclude = - asv_bench/*.py, # TODO we should fix linting in those files instead of excluding doc/sphinxext/*.py, doc/build/*.py, doc/temp/*.py,