@@ -80,110 +80,49 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
80
80
-i " pandas.CategoricalIndex.codes SA01" \
81
81
-i " pandas.CategoricalIndex.ordered SA01" \
82
82
-i " pandas.DataFrame.__dataframe__ SA01" \
83
- -i " pandas.DataFrame.__iter__ SA01" \
84
83
-i " pandas.DataFrame.at_time PR01" \
85
- -i " pandas.DataFrame.columns SA01" \
86
- -i " pandas.DataFrame.droplevel SA01" \
87
- -i " pandas.DataFrame.hist RT03" \
88
- -i " pandas.DataFrame.infer_objects RT03" \
89
84
-i " pandas.DataFrame.kurt RT03,SA01" \
90
85
-i " pandas.DataFrame.kurtosis RT03,SA01" \
91
86
-i " pandas.DataFrame.max RT03" \
92
87
-i " pandas.DataFrame.mean RT03,SA01" \
93
88
-i " pandas.DataFrame.median RT03,SA01" \
94
89
-i " pandas.DataFrame.min RT03" \
95
90
-i " pandas.DataFrame.plot PR02,SA01" \
96
- -i " pandas.DataFrame.pop SA01" \
97
91
-i " pandas.DataFrame.prod RT03" \
98
92
-i " pandas.DataFrame.product RT03" \
99
- -i " pandas.DataFrame.reorder_levels SA01" \
100
93
-i " pandas.DataFrame.sem PR01,RT03,SA01" \
101
94
-i " pandas.DataFrame.skew RT03,SA01" \
102
95
-i " pandas.DataFrame.sparse PR01" \
103
96
-i " pandas.DataFrame.std PR01,RT03,SA01" \
104
97
-i " pandas.DataFrame.sum RT03" \
105
98
-i " pandas.DataFrame.swaplevel SA01" \
106
- -i " pandas.DataFrame.to_feather SA01" \
107
99
-i " pandas.DataFrame.to_markdown SA01" \
108
- -i " pandas.DataFrame.to_parquet RT03" \
109
100
-i " pandas.DataFrame.var PR01,RT03,SA01" \
110
- -i " pandas.DatetimeIndex.ceil SA01" \
111
- -i " pandas.DatetimeIndex.date SA01" \
112
- -i " pandas.DatetimeIndex.day SA01" \
113
- -i " pandas.DatetimeIndex.day_of_year SA01" \
114
- -i " pandas.DatetimeIndex.dayofyear SA01" \
115
- -i " pandas.DatetimeIndex.floor SA01" \
116
- -i " pandas.DatetimeIndex.freqstr SA01" \
117
101
-i " pandas.DatetimeIndex.indexer_at_time PR01,RT03" \
118
- -i " pandas.DatetimeIndex.indexer_between_time RT03" \
119
- -i " pandas.DatetimeIndex.inferred_freq SA01" \
120
- -i " pandas.DatetimeIndex.is_leap_year SA01" \
121
- -i " pandas.DatetimeIndex.microsecond SA01" \
122
- -i " pandas.DatetimeIndex.nanosecond SA01" \
123
- -i " pandas.DatetimeIndex.quarter SA01" \
124
- -i " pandas.DatetimeIndex.round SA01" \
125
- -i " pandas.DatetimeIndex.snap PR01,RT03,SA01" \
126
- -i " pandas.DatetimeIndex.std PR01,RT03" \
127
- -i " pandas.DatetimeIndex.time SA01" \
128
- -i " pandas.DatetimeIndex.timetz SA01" \
102
+ -i " pandas.DatetimeIndex.snap PR01,RT03" \
129
103
-i " pandas.DatetimeIndex.to_period RT03" \
130
- -i " pandas.DatetimeIndex.to_pydatetime RT03,SA01" \
131
- -i " pandas.DatetimeIndex.tz SA01" \
132
- -i " pandas.DatetimeIndex.tz_convert RT03" \
133
- -i " pandas.DatetimeTZDtype SA01" \
134
- -i " pandas.DatetimeTZDtype.tz SA01" \
135
- -i " pandas.DatetimeTZDtype.unit SA01" \
136
104
-i " pandas.Grouper PR02" \
137
- -i " pandas.HDFStore.groups SA01" \
138
- -i " pandas.HDFStore.info RT03,SA01" \
139
- -i " pandas.HDFStore.keys SA01" \
140
- -i " pandas.HDFStore.put PR01,SA01" \
141
- -i " pandas.HDFStore.select SA01" \
142
- -i " pandas.HDFStore.walk SA01" \
143
105
-i " pandas.Index PR07" \
144
- -i " pandas.Index.T SA01" \
145
106
-i " pandas.Index.append PR07,RT03,SA01" \
146
- -i " pandas.Index.astype SA01" \
147
- -i " pandas.Index.copy PR07,SA01" \
148
107
-i " pandas.Index.difference PR07,RT03,SA01" \
149
- -i " pandas.Index.drop PR07,SA01" \
150
- -i " pandas.Index.drop_duplicates RT03" \
151
- -i " pandas.Index.droplevel RT03,SA01" \
152
- -i " pandas.Index.dropna RT03,SA01" \
153
- -i " pandas.Index.dtype SA01" \
154
108
-i " pandas.Index.duplicated RT03" \
155
- -i " pandas.Index.empty GL08" \
156
- -i " pandas.Index.equals SA01" \
157
- -i " pandas.Index.fillna RT03" \
158
109
-i " pandas.Index.get_indexer PR07,SA01" \
159
110
-i " pandas.Index.get_indexer_for PR01,SA01" \
160
111
-i " pandas.Index.get_indexer_non_unique PR07,SA01" \
161
112
-i " pandas.Index.get_loc PR07,RT03,SA01" \
162
- -i " pandas.Index.get_slice_bound PR07" \
163
- -i " pandas.Index.hasnans SA01" \
164
113
-i " pandas.Index.identical PR01,SA01" \
165
- -i " pandas.Index.inferred_type SA01" \
166
114
-i " pandas.Index.insert PR07,RT03,SA01" \
167
115
-i " pandas.Index.intersection PR07,RT03,SA01" \
168
- -i " pandas.Index.item SA01" \
169
116
-i " pandas.Index.join PR07,RT03,SA01" \
170
- -i " pandas.Index.map SA01" \
171
- -i " pandas.Index.memory_usage RT03" \
172
- -i " pandas.Index.name SA01" \
173
117
-i " pandas.Index.names GL08" \
174
- -i " pandas.Index.nbytes SA01" \
175
118
-i " pandas.Index.nunique RT03" \
176
119
-i " pandas.Index.putmask PR01,RT03" \
177
120
-i " pandas.Index.ravel PR01,RT03" \
178
- -i " pandas.Index.reindex PR07" \
179
121
-i " pandas.Index.slice_indexer PR07,RT03,SA01" \
180
- -i " pandas.Index.slice_locs RT03" \
181
122
-i " pandas.Index.str PR01,SA01" \
182
123
-i " pandas.Index.symmetric_difference PR07,RT03,SA01" \
183
124
-i " pandas.Index.take PR01,PR07" \
184
- -i " pandas.Index.to_list RT03" \
185
125
-i " pandas.Index.union PR07,RT03,SA01" \
186
- -i " pandas.Index.unique RT03" \
187
126
-i " pandas.Index.view GL08" \
188
127
-i " pandas.Int16Dtype SA01" \
189
128
-i " pandas.Int32Dtype SA01" \
@@ -211,7 +150,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
211
150
-i " pandas.MultiIndex.append PR07,SA01" \
212
151
-i " pandas.MultiIndex.copy PR07,RT03,SA01" \
213
152
-i " pandas.MultiIndex.drop PR07,RT03,SA01" \
214
- -i " pandas.MultiIndex.droplevel RT03,SA01" \
215
153
-i " pandas.MultiIndex.dtypes SA01" \
216
154
-i " pandas.MultiIndex.get_indexer PR07,SA01" \
217
155
-i " pandas.MultiIndex.get_level_values SA01" \
@@ -252,7 +190,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
252
190
-i " pandas.PeriodIndex.dayofyear SA01" \
253
191
-i " pandas.PeriodIndex.days_in_month SA01" \
254
192
-i " pandas.PeriodIndex.daysinmonth SA01" \
255
- -i " pandas.PeriodIndex.freqstr SA01" \
256
193
-i " pandas.PeriodIndex.from_fields PR07,SA01" \
257
194
-i " pandas.PeriodIndex.from_ordinals SA01" \
258
195
-i " pandas.PeriodIndex.hour SA01" \
@@ -273,7 +210,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
273
210
-i " pandas.RangeIndex.step SA01" \
274
211
-i " pandas.RangeIndex.stop SA01" \
275
212
-i " pandas.Series SA01" \
276
- -i " pandas.Series.T SA01" \
277
213
-i " pandas.Series.__iter__ RT03,SA01" \
278
214
-i " pandas.Series.add PR07" \
279
215
-i " pandas.Series.at_time PR01" \
@@ -291,52 +227,37 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
291
227
-i " pandas.Series.cat.reorder_categories PR01,PR02" \
292
228
-i " pandas.Series.cat.set_categories PR01,PR02" \
293
229
-i " pandas.Series.div PR07" \
294
- -i " pandas.Series.droplevel SA01" \
295
230
-i " pandas.Series.dt.as_unit PR01,PR02" \
296
- -i " pandas.Series.dt.ceil PR01,PR02,SA01 " \
231
+ -i " pandas.Series.dt.ceil PR01,PR02" \
297
232
-i " pandas.Series.dt.components SA01" \
298
- -i " pandas.Series.dt.date SA01" \
299
- -i " pandas.Series.dt.day SA01" \
300
233
-i " pandas.Series.dt.day_name PR01,PR02" \
301
- -i " pandas.Series.dt.day_of_year SA01" \
302
- -i " pandas.Series.dt.dayofyear SA01" \
303
234
-i " pandas.Series.dt.days SA01" \
304
235
-i " pandas.Series.dt.days_in_month SA01" \
305
236
-i " pandas.Series.dt.daysinmonth SA01" \
306
- -i " pandas.Series.dt.floor PR01,PR02,SA01 " \
237
+ -i " pandas.Series.dt.floor PR01,PR02" \
307
238
-i " pandas.Series.dt.freq GL08" \
308
- -i " pandas.Series.dt.is_leap_year SA01" \
309
- -i " pandas.Series.dt.microsecond SA01" \
310
239
-i " pandas.Series.dt.microseconds SA01" \
311
240
-i " pandas.Series.dt.month_name PR01,PR02" \
312
- -i " pandas.Series.dt.nanosecond SA01" \
313
241
-i " pandas.Series.dt.nanoseconds SA01" \
314
242
-i " pandas.Series.dt.normalize PR01" \
315
- -i " pandas.Series.dt.quarter SA01" \
316
243
-i " pandas.Series.dt.qyear GL08" \
317
- -i " pandas.Series.dt.round PR01,PR02,SA01 " \
244
+ -i " pandas.Series.dt.round PR01,PR02" \
318
245
-i " pandas.Series.dt.seconds SA01" \
319
246
-i " pandas.Series.dt.strftime PR01,PR02" \
320
- -i " pandas.Series.dt.time SA01" \
321
- -i " pandas.Series.dt.timetz SA01" \
322
247
-i " pandas.Series.dt.to_period PR01,PR02,RT03" \
323
248
-i " pandas.Series.dt.total_seconds PR01" \
324
- -i " pandas.Series.dt.tz SA01" \
325
- -i " pandas.Series.dt.tz_convert PR01,PR02,RT03" \
249
+ -i " pandas.Series.dt.tz_convert PR01,PR02" \
326
250
-i " pandas.Series.dt.tz_localize PR01,PR02" \
327
251
-i " pandas.Series.dt.unit GL08" \
328
252
-i " pandas.Series.dtype SA01" \
329
- -i " pandas.Series.empty GL08" \
330
253
-i " pandas.Series.eq PR07,SA01" \
331
254
-i " pandas.Series.floordiv PR07" \
332
255
-i " pandas.Series.ge PR07,SA01" \
333
256
-i " pandas.Series.gt PR07,SA01" \
334
257
-i " pandas.Series.hasnans SA01" \
335
- -i " pandas.Series.infer_objects RT03" \
336
258
-i " pandas.Series.is_monotonic_decreasing SA01" \
337
259
-i " pandas.Series.is_monotonic_increasing SA01" \
338
260
-i " pandas.Series.is_unique SA01" \
339
- -i " pandas.Series.item SA01" \
340
261
-i " pandas.Series.kurt RT03,SA01" \
341
262
-i " pandas.Series.kurtosis RT03,SA01" \
342
263
-i " pandas.Series.le PR07,SA01" \
@@ -351,7 +272,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
351
272
-i " pandas.Series.mod PR07" \
352
273
-i " pandas.Series.mode SA01" \
353
274
-i " pandas.Series.mul PR07" \
354
- -i " pandas.Series.nbytes SA01" \
355
275
-i " pandas.Series.ne PR07,SA01" \
356
276
-i " pandas.Series.nunique RT03" \
357
277
-i " pandas.Series.pad PR01,SA01" \
@@ -416,7 +336,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
416
336
-i " pandas.Series.swaplevel SA01" \
417
337
-i " pandas.Series.to_dict SA01" \
418
338
-i " pandas.Series.to_frame SA01" \
419
- -i " pandas.Series.to_list RT03" \
420
339
-i " pandas.Series.to_markdown SA01" \
421
340
-i " pandas.Series.to_string SA01" \
422
341
-i " pandas.Series.truediv PR07" \
@@ -439,14 +358,10 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
439
358
-i " pandas.Timedelta.total_seconds SA01" \
440
359
-i " pandas.Timedelta.view SA01" \
441
360
-i " pandas.TimedeltaIndex.as_unit RT03,SA01" \
442
- -i " pandas.TimedeltaIndex.ceil SA01" \
443
361
-i " pandas.TimedeltaIndex.components SA01" \
444
362
-i " pandas.TimedeltaIndex.days SA01" \
445
- -i " pandas.TimedeltaIndex.floor SA01" \
446
- -i " pandas.TimedeltaIndex.inferred_freq SA01" \
447
363
-i " pandas.TimedeltaIndex.microseconds SA01" \
448
364
-i " pandas.TimedeltaIndex.nanoseconds SA01" \
449
- -i " pandas.TimedeltaIndex.round SA01" \
450
365
-i " pandas.TimedeltaIndex.seconds SA01" \
451
366
-i " pandas.TimedeltaIndex.to_pytimedelta RT03,SA01" \
452
367
-i " pandas.Timestamp PR07,SA01" \
0 commit comments