@@ -31,7 +31,7 @@ The top-level :meth:`array` method can be used to create a new array, which may
31
31
stored in a :class: `Series `, :class: `Index `, or as a column in a :class: `DataFrame `.
32
32
33
33
.. autosummary ::
34
- :toctree: generated /
34
+ :toctree: api /
35
35
36
36
array
37
37
@@ -48,14 +48,14 @@ or timezone-aware values.
48
48
scalar type for timezone-naive or timezone-aware datetime data.
49
49
50
50
.. autosummary ::
51
- :toctree: generated /
51
+ :toctree: api /
52
52
53
53
Timestamp
54
54
55
55
Properties
56
56
~~~~~~~~~~
57
57
.. autosummary ::
58
- :toctree: generated /
58
+ :toctree: api /
59
59
60
60
Timestamp.asm8
61
61
Timestamp.day
@@ -91,7 +91,7 @@ Properties
91
91
Methods
92
92
~~~~~~~
93
93
.. autosummary ::
94
- :toctree: generated /
94
+ :toctree: api /
95
95
96
96
Timestamp.astimezone
97
97
Timestamp.ceil
@@ -142,7 +142,7 @@ is used.
142
142
If the data are tz-aware, then every value in the array must have the same timezone.
143
143
144
144
.. autosummary ::
145
- :toctree: generated /
145
+ :toctree: api /
146
146
147
147
arrays.DatetimeArray
148
148
DatetimeTZDtype
@@ -156,14 +156,14 @@ NumPy can natively represent timedeltas. Pandas provides :class:`Timedelta`
156
156
for symmetry with :class: `Timestamp `.
157
157
158
158
.. autosummary ::
159
- :toctree: generated /
159
+ :toctree: api /
160
160
161
161
Timedelta
162
162
163
163
Properties
164
164
~~~~~~~~~~
165
165
.. autosummary ::
166
- :toctree: generated /
166
+ :toctree: api /
167
167
168
168
Timedelta.asm8
169
169
Timedelta.components
@@ -183,7 +183,7 @@ Properties
183
183
Methods
184
184
~~~~~~~
185
185
.. autosummary ::
186
- :toctree: generated /
186
+ :toctree: api /
187
187
188
188
Timedelta.ceil
189
189
Timedelta.floor
@@ -196,7 +196,7 @@ Methods
196
196
A collection of timedeltas may be stored in a :class: `TimedeltaArray `.
197
197
198
198
.. autosummary ::
199
- :toctree: generated /
199
+ :toctree: api /
200
200
201
201
arrays.TimedeltaArray
202
202
@@ -210,14 +210,14 @@ Pandas represents spans of times as :class:`Period` objects.
210
210
Period
211
211
------
212
212
.. autosummary ::
213
- :toctree: generated /
213
+ :toctree: api /
214
214
215
215
Period
216
216
217
217
Properties
218
218
~~~~~~~~~~
219
219
.. autosummary ::
220
- :toctree: generated /
220
+ :toctree: api /
221
221
222
222
Period.day
223
223
Period.dayofweek
@@ -244,7 +244,7 @@ Properties
244
244
Methods
245
245
~~~~~~~
246
246
.. autosummary ::
247
- :toctree: generated /
247
+ :toctree: api /
248
248
249
249
Period.asfreq
250
250
Period.now
@@ -255,7 +255,7 @@ A collection of timedeltas may be stored in a :class:`arrays.PeriodArray`.
255
255
Every period in a ``PeriodArray `` must have the same ``freq ``.
256
256
257
257
.. autosummary ::
258
- :toctree: generated /
258
+ :toctree: api /
259
259
260
260
arrays.DatetimeArray
261
261
PeriodDtype
@@ -268,14 +268,14 @@ Interval Data
268
268
Arbitrary intervals can be represented as :class: `Interval ` objects.
269
269
270
270
.. autosummary ::
271
- :toctree: generated /
271
+ :toctree: api /
272
272
273
273
Interval
274
274
275
275
Properties
276
276
~~~~~~~~~~
277
277
.. autosummary ::
278
- :toctree: generated /
278
+ :toctree: api /
279
279
280
280
Interval.closed
281
281
Interval.closed_left
@@ -291,7 +291,7 @@ Properties
291
291
A collection of intervals may be stored in an :class: `IntervalArray `.
292
292
293
293
.. autosummary ::
294
- :toctree: generated /
294
+ :toctree: api /
295
295
296
296
IntervalArray
297
297
IntervalDtype
@@ -305,7 +305,7 @@ Nullable Integer
305
305
Pandas provides this through :class: `arrays.IntegerArray `.
306
306
307
307
.. autosummary ::
308
- :toctree: generated /
308
+ :toctree: api /
309
309
310
310
arrays.IntegerArray
311
311
Int8Dtype
@@ -327,21 +327,21 @@ limited, fixed set of values. The dtype of a ``Categorical`` can be described by
327
327
a :class: `pandas.api.types.CategoricalDtype `.
328
328
329
329
.. autosummary ::
330
- :toctree: generated /
330
+ :toctree: api /
331
331
:template: autosummary/class_without_autosummary.rst
332
332
333
333
CategoricalDtype
334
334
335
335
.. autosummary ::
336
- :toctree: generated /
336
+ :toctree: api /
337
337
338
338
CategoricalDtype.categories
339
339
CategoricalDtype.ordered
340
340
341
341
Categorical data can be stored in a :class: `pandas.Categorical `
342
342
343
343
.. autosummary ::
344
- :toctree: generated /
344
+ :toctree: api /
345
345
:template: autosummary/class_without_autosummary.rst
346
346
347
347
Categorical
@@ -350,14 +350,14 @@ The alternative :meth:`Categorical.from_codes` constructor can be used when you
350
350
have the categories and integer codes already:
351
351
352
352
.. autosummary ::
353
- :toctree: generated /
353
+ :toctree: api /
354
354
355
355
Categorical.from_codes
356
356
357
357
The dtype information is available on the ``Categorical ``
358
358
359
359
.. autosummary ::
360
- :toctree: generated /
360
+ :toctree: api /
361
361
362
362
Categorical.dtype
363
363
Categorical.categories
@@ -368,7 +368,7 @@ The dtype information is available on the ``Categorical``
368
368
the Categorical back to a NumPy array, so categories and order information is not preserved!
369
369
370
370
.. autosummary ::
371
- :toctree: generated /
371
+ :toctree: api /
372
372
373
373
Categorical.__array__
374
374
@@ -391,7 +391,7 @@ Data where a single value is repeated many times (e.g. ``0`` or ``NaN``) may
391
391
be stored efficiently as a :class: `SparseArray `.
392
392
393
393
.. autosummary ::
394
- :toctree: generated /
394
+ :toctree: api /
395
395
396
396
SparseArray
397
397
SparseDtype
0 commit comments