Skip to content

Commit 85982ed

Browse files
datapythonistaTomAugspurger
authored andcommitted
DOC: Adding redirects to API moved pages (#24909)
* DOC: Adding redirects to API moved pages
1 parent 013ae3d commit 85982ed

22 files changed

+1877
-341
lines changed

.gitignore

+1-1
Original file line numberDiff line numberDiff line change
@@ -101,7 +101,7 @@ asv_bench/pandas/
101101
# Documentation generated files #
102102
#################################
103103
doc/source/generated
104-
doc/source/api/generated
104+
doc/source/reference/api
105105
doc/source/_static
106106
doc/source/vbench
107107
doc/source/vbench.rst

doc/make.py

+3-3
Original file line numberDiff line numberDiff line change
@@ -53,7 +53,7 @@ def __init__(self, num_jobs=0, include_api=True, single_doc=None,
5353
if single_doc and single_doc.endswith('.rst'):
5454
self.single_doc_html = os.path.splitext(single_doc)[0] + '.html'
5555
elif single_doc:
56-
self.single_doc_html = 'api/generated/pandas.{}.html'.format(
56+
self.single_doc_html = 'reference/api/pandas.{}.html'.format(
5757
single_doc)
5858

5959
def _process_single_doc(self, single_doc):
@@ -63,7 +63,7 @@ def _process_single_doc(self, single_doc):
6363
6464
For example, categorial.rst or pandas.DataFrame.head. For the latter,
6565
return the corresponding file path
66-
(e.g. generated/pandas.DataFrame.head.rst).
66+
(e.g. reference/api/pandas.DataFrame.head.rst).
6767
"""
6868
base_name, extension = os.path.splitext(single_doc)
6969
if extension in ('.rst', '.ipynb'):
@@ -258,7 +258,7 @@ def clean():
258258
Clean documentation generated files.
259259
"""
260260
shutil.rmtree(BUILD_PATH, ignore_errors=True)
261-
shutil.rmtree(os.path.join(SOURCE_PATH, 'api', 'generated'),
261+
shutil.rmtree(os.path.join(SOURCE_PATH, 'reference', 'api'),
262262
ignore_errors=True)
263263

264264
def zip_html(self):

doc/redirects.csv

+1,535
Large diffs are not rendered by default.

doc/source/index.rst.template

+2-2
Original file line numberDiff line numberDiff line change
@@ -35,7 +35,7 @@ See the :ref:`overview` for more detail about what's in the library.
3535
{{ single_doc[:-4] }}
3636
{% elif single_doc %}
3737
.. autosummary::
38-
:toctree: api/generated/
38+
:toctree: reference/api/
3939

4040
{{ single_doc }}
4141
{% else -%}
@@ -51,7 +51,7 @@ See the :ref:`overview` for more detail about what's in the library.
5151
ecosystem
5252
{% endif -%}
5353
{% if include_api -%}
54-
api/index
54+
reference/index
5555
{% endif -%}
5656
{% if not single_doc -%}
5757
development/index

doc/source/api/arrays.rst doc/source/reference/arrays.rst

+24-24
Original file line numberDiff line numberDiff line change
@@ -31,7 +31,7 @@ The top-level :meth:`array` method can be used to create a new array, which may
3131
stored in a :class:`Series`, :class:`Index`, or as a column in a :class:`DataFrame`.
3232

3333
.. autosummary::
34-
:toctree: generated/
34+
:toctree: api/
3535

3636
array
3737

@@ -48,14 +48,14 @@ or timezone-aware values.
4848
scalar type for timezone-naive or timezone-aware datetime data.
4949

5050
.. autosummary::
51-
:toctree: generated/
51+
:toctree: api/
5252

5353
Timestamp
5454

5555
Properties
5656
~~~~~~~~~~
5757
.. autosummary::
58-
:toctree: generated/
58+
:toctree: api/
5959

6060
Timestamp.asm8
6161
Timestamp.day
@@ -91,7 +91,7 @@ Properties
9191
Methods
9292
~~~~~~~
9393
.. autosummary::
94-
:toctree: generated/
94+
:toctree: api/
9595

9696
Timestamp.astimezone
9797
Timestamp.ceil
@@ -142,7 +142,7 @@ is used.
142142
If the data are tz-aware, then every value in the array must have the same timezone.
143143

144144
.. autosummary::
145-
:toctree: generated/
145+
:toctree: api/
146146

147147
arrays.DatetimeArray
148148
DatetimeTZDtype
@@ -156,14 +156,14 @@ NumPy can natively represent timedeltas. Pandas provides :class:`Timedelta`
156156
for symmetry with :class:`Timestamp`.
157157

158158
.. autosummary::
159-
:toctree: generated/
159+
:toctree: api/
160160

161161
Timedelta
162162

163163
Properties
164164
~~~~~~~~~~
165165
.. autosummary::
166-
:toctree: generated/
166+
:toctree: api/
167167

168168
Timedelta.asm8
169169
Timedelta.components
@@ -183,7 +183,7 @@ Properties
183183
Methods
184184
~~~~~~~
185185
.. autosummary::
186-
:toctree: generated/
186+
:toctree: api/
187187

188188
Timedelta.ceil
189189
Timedelta.floor
@@ -196,7 +196,7 @@ Methods
196196
A collection of timedeltas may be stored in a :class:`TimedeltaArray`.
197197

198198
.. autosummary::
199-
:toctree: generated/
199+
:toctree: api/
200200

201201
arrays.TimedeltaArray
202202

@@ -210,14 +210,14 @@ Pandas represents spans of times as :class:`Period` objects.
210210
Period
211211
------
212212
.. autosummary::
213-
:toctree: generated/
213+
:toctree: api/
214214

215215
Period
216216

217217
Properties
218218
~~~~~~~~~~
219219
.. autosummary::
220-
:toctree: generated/
220+
:toctree: api/
221221

222222
Period.day
223223
Period.dayofweek
@@ -244,7 +244,7 @@ Properties
244244
Methods
245245
~~~~~~~
246246
.. autosummary::
247-
:toctree: generated/
247+
:toctree: api/
248248

249249
Period.asfreq
250250
Period.now
@@ -255,7 +255,7 @@ A collection of timedeltas may be stored in a :class:`arrays.PeriodArray`.
255255
Every period in a ``PeriodArray`` must have the same ``freq``.
256256

257257
.. autosummary::
258-
:toctree: generated/
258+
:toctree: api/
259259

260260
arrays.DatetimeArray
261261
PeriodDtype
@@ -268,14 +268,14 @@ Interval Data
268268
Arbitrary intervals can be represented as :class:`Interval` objects.
269269

270270
.. autosummary::
271-
:toctree: generated/
271+
:toctree: api/
272272

273273
Interval
274274

275275
Properties
276276
~~~~~~~~~~
277277
.. autosummary::
278-
:toctree: generated/
278+
:toctree: api/
279279

280280
Interval.closed
281281
Interval.closed_left
@@ -291,7 +291,7 @@ Properties
291291
A collection of intervals may be stored in an :class:`IntervalArray`.
292292

293293
.. autosummary::
294-
:toctree: generated/
294+
:toctree: api/
295295

296296
IntervalArray
297297
IntervalDtype
@@ -305,7 +305,7 @@ Nullable Integer
305305
Pandas provides this through :class:`arrays.IntegerArray`.
306306

307307
.. autosummary::
308-
:toctree: generated/
308+
:toctree: api/
309309

310310
arrays.IntegerArray
311311
Int8Dtype
@@ -327,21 +327,21 @@ limited, fixed set of values. The dtype of a ``Categorical`` can be described by
327327
a :class:`pandas.api.types.CategoricalDtype`.
328328

329329
.. autosummary::
330-
:toctree: generated/
330+
:toctree: api/
331331
:template: autosummary/class_without_autosummary.rst
332332

333333
CategoricalDtype
334334

335335
.. autosummary::
336-
:toctree: generated/
336+
:toctree: api/
337337

338338
CategoricalDtype.categories
339339
CategoricalDtype.ordered
340340

341341
Categorical data can be stored in a :class:`pandas.Categorical`
342342

343343
.. autosummary::
344-
:toctree: generated/
344+
:toctree: api/
345345
:template: autosummary/class_without_autosummary.rst
346346

347347
Categorical
@@ -350,14 +350,14 @@ The alternative :meth:`Categorical.from_codes` constructor can be used when you
350350
have the categories and integer codes already:
351351

352352
.. autosummary::
353-
:toctree: generated/
353+
:toctree: api/
354354

355355
Categorical.from_codes
356356

357357
The dtype information is available on the ``Categorical``
358358

359359
.. autosummary::
360-
:toctree: generated/
360+
:toctree: api/
361361

362362
Categorical.dtype
363363
Categorical.categories
@@ -368,7 +368,7 @@ The dtype information is available on the ``Categorical``
368368
the Categorical back to a NumPy array, so categories and order information is not preserved!
369369

370370
.. autosummary::
371-
:toctree: generated/
371+
:toctree: api/
372372

373373
Categorical.__array__
374374

@@ -391,7 +391,7 @@ Data where a single value is repeated many times (e.g. ``0`` or ``NaN``) may
391391
be stored efficiently as a :class:`SparseArray`.
392392

393393
.. autosummary::
394-
:toctree: generated/
394+
:toctree: api/
395395

396396
SparseArray
397397
SparseDtype

doc/source/api/extensions.rst doc/source/reference/extensions.rst

+1-1
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,7 @@ These are primarily intended for library authors looking to extend pandas
1111
objects.
1212

1313
.. autosummary::
14-
:toctree: generated/
14+
:toctree: api/
1515

1616
api.extensions.register_extension_dtype
1717
api.extensions.register_dataframe_accessor

0 commit comments

Comments
 (0)