@@ -49,7 +49,7 @@ def setup(self, dtype):
49
49
50
50
elif dtype in ["category[object]" , "category[int]" ]:
51
51
# Note: sizes are different in this case than others
52
- n = 5 * 10 ** 5
52
+ n = 5 * 10 ** 5
53
53
sample_size = 100
54
54
55
55
arr = list (np .random .randint (0 , n // 10 , size = n ))
@@ -174,7 +174,7 @@ class IsinWithArange:
174
174
175
175
def setup (self , dtype , M , offset_factor ):
176
176
offset = int (M * offset_factor )
177
- tmp = Series (np .random .randint (offset , M + offset , 10 ** 6 ))
177
+ tmp = Series (np .random .randint (offset , M + offset , 10 ** 6 ))
178
178
self .series = tmp .astype (dtype )
179
179
self .values = np .arange (M ).astype (dtype )
180
180
@@ -191,8 +191,8 @@ class IsInFloat64:
191
191
param_names = ["dtype" , "title" ]
192
192
193
193
def setup (self , dtype , title ):
194
- N_many = 10 ** 5
195
- N_few = 10 ** 6
194
+ N_many = 10 ** 5
195
+ N_few = 10 ** 6
196
196
self .series = Series ([1 , 2 ], dtype = dtype )
197
197
198
198
if title == "many_different_values" :
@@ -240,10 +240,10 @@ class IsInForObjects:
240
240
param_names = ["series_type" , "vals_type" ]
241
241
242
242
def setup (self , series_type , vals_type ):
243
- N_many = 10 ** 5
243
+ N_many = 10 ** 5
244
244
245
245
if series_type == "nans" :
246
- ser_vals = np .full (10 ** 4 , np .nan )
246
+ ser_vals = np .full (10 ** 4 , np .nan )
247
247
elif series_type == "short" :
248
248
ser_vals = np .arange (2 )
249
249
elif series_type == "long" :
@@ -254,7 +254,7 @@ def setup(self, series_type, vals_type):
254
254
self .series = Series (ser_vals ).astype (object )
255
255
256
256
if vals_type == "nans" :
257
- values = np .full (10 ** 4 , np .nan )
257
+ values = np .full (10 ** 4 , np .nan )
258
258
elif vals_type == "short" :
259
259
values = np .arange (2 )
260
260
elif vals_type == "long" :
@@ -277,7 +277,7 @@ class IsInLongSeriesLookUpDominates:
277
277
param_names = ["dtype" , "MaxNumber" , "series_type" ]
278
278
279
279
def setup (self , dtype , MaxNumber , series_type ):
280
- N = 10 ** 7
280
+ N = 10 ** 7
281
281
282
282
if series_type == "random_hits" :
283
283
array = np .random .randint (0 , MaxNumber , N )
@@ -304,15 +304,15 @@ class IsInLongSeriesValuesDominate:
304
304
param_names = ["dtype" , "series_type" ]
305
305
306
306
def setup (self , dtype , series_type ):
307
- N = 10 ** 7
307
+ N = 10 ** 7
308
308
309
309
if series_type == "random" :
310
310
vals = np .random .randint (0 , 10 * N , N )
311
311
if series_type == "monotone" :
312
312
vals = np .arange (N )
313
313
314
314
self .values = vals .astype (dtype .lower ())
315
- M = 10 ** 6 + 1
315
+ M = 10 ** 6 + 1
316
316
self .series = Series (np .arange (M )).astype (dtype )
317
317
318
318
def time_isin (self , dtypes , series_type ):
0 commit comments