13
13
pass
14
14
15
15
16
- class Factorize ( object ) :
16
+ class Factorize :
17
17
18
18
params = [[True , False ], ['int' , 'uint' , 'float' , 'string' ]]
19
19
param_names = ['sort' , 'dtype' ]
@@ -30,7 +30,7 @@ def time_factorize(self, sort, dtype):
30
30
self .idx .factorize (sort = sort )
31
31
32
32
33
- class FactorizeUnique ( object ) :
33
+ class FactorizeUnique :
34
34
35
35
params = [[True , False ], ['int' , 'uint' , 'float' , 'string' ]]
36
36
param_names = ['sort' , 'dtype' ]
@@ -48,7 +48,7 @@ def time_factorize(self, sort, dtype):
48
48
self .idx .factorize (sort = sort )
49
49
50
50
51
- class Duplicated ( object ) :
51
+ class Duplicated :
52
52
53
53
params = [['first' , 'last' , False ], ['int' , 'uint' , 'float' , 'string' ]]
54
54
param_names = ['keep' , 'dtype' ]
@@ -67,7 +67,7 @@ def time_duplicated(self, keep, dtype):
67
67
self .idx .duplicated (keep = keep )
68
68
69
69
70
- class DuplicatedUniqueIndex ( object ) :
70
+ class DuplicatedUniqueIndex :
71
71
72
72
params = ['int' , 'uint' , 'float' , 'string' ]
73
73
param_names = ['dtype' ]
@@ -86,7 +86,7 @@ def time_duplicated_unique(self, dtype):
86
86
self .idx .duplicated ()
87
87
88
88
89
- class Hashing ( object ) :
89
+ class Hashing :
90
90
91
91
def setup_cache (self ):
92
92
N = 10 ** 5
@@ -124,7 +124,7 @@ def time_series_dates(self, df):
124
124
hashing .hash_pandas_object (df ['dates' ])
125
125
126
126
127
- class Quantile ( object ) :
127
+ class Quantile :
128
128
params = [[0 , 0.5 , 1 ],
129
129
['linear' , 'nearest' , 'lower' , 'higher' , 'midpoint' ],
130
130
['float' , 'int' , 'uint' ]]
0 commit comments