-
Notifications
You must be signed in to change notification settings - Fork 495
/
Copy pathtest_utils.py
46 lines (35 loc) · 1.25 KB
/
test_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#!/usr/bin/env python3
import logging
import os
import pathlib
import pandas as pd
import pytest
from neuralprophet import NeuralProphet, df_utils
log = logging.getLogger("NP.test")
log.setLevel("ERROR")
log.parent.setLevel("ERROR")
DIR = pathlib.Path(__file__).parent.parent.absolute()
DATA_DIR = os.path.join(DIR, "tests", "test-data")
PEYTON_FILE = os.path.join(DATA_DIR, "wp_log_peyton_manning.csv")
AIR_FILE = os.path.join(DATA_DIR, "air_passengers.csv")
YOS_FILE = os.path.join(DATA_DIR, "yosemite_temps.csv")
NROWS = 512
EPOCHS = 10
ADDITIONAL_EPOCHS = 5
LR = 1.0
BATCH_SIZE = 64
PLOT = False
def test_create_dummy_datestamps():
df = pd.read_csv(PEYTON_FILE, nrows=NROWS)
df_drop = df.drop("ds", axis=1)
df_dummy = df_utils.create_dummy_datestamps(df_drop)
df["ds"] = pd.NA
with pytest.raises(ValueError):
_ = df_utils.create_dummy_datestamps(df)
m = NeuralProphet(epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR)
_ = m.fit(df_dummy)
_ = m.make_future_dataframe(df_dummy, periods=365, n_historic_predictions=True)
def test_no_log():
df = pd.read_csv(PEYTON_FILE, nrows=NROWS)
m = NeuralProphet(epochs=EPOCHS, batch_size=BATCH_SIZE, learning_rate=LR)
_ = m.fit(df, metrics=False, metrics_log_dir=False)