-
Notifications
You must be signed in to change notification settings - Fork 9.6k
/
Copy pathonnx2tensorrt.py
227 lines (206 loc) · 7.47 KB
/
onnx2tensorrt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import argparse
import os
import os.path as osp
import numpy as np
import onnx
import onnxruntime as ort
import torch
from mmcv.ops import get_onnxruntime_op_path
from mmcv.tensorrt import (TRTWraper, is_tensorrt_plugin_loaded, onnx2trt,
save_trt_engine)
from mmdet.core import get_classes
from mmdet.core.export import preprocess_example_input
from mmdet.core.visualization.image import imshow_det_bboxes
def get_GiB(x: int):
"""return x GiB."""
return x * (1 << 30)
def onnx2tensorrt(onnx_file,
trt_file,
input_config,
verify=False,
show=False,
dataset='coco',
workspace_size=1,
verbose=False):
import tensorrt as trt
onnx_model = onnx.load(onnx_file)
input_shape = input_config['input_shape']
max_shape = input_config['max_shape']
# create trt engine and wraper
opt_shape_dict = {'input': [input_shape, input_shape, max_shape]}
max_workspace_size = get_GiB(workspace_size)
trt_engine = onnx2trt(
onnx_model,
opt_shape_dict,
log_level=trt.Logger.VERBOSE if verbose else trt.Logger.ERROR,
fp16_mode=False,
max_workspace_size=max_workspace_size)
save_dir, _ = osp.split(trt_file)
if save_dir:
os.makedirs(save_dir, exist_ok=True)
save_trt_engine(trt_engine, trt_file)
print(f'Successfully created TensorRT engine: {trt_file}')
if verify:
one_img, one_meta = preprocess_example_input(input_config)
input_img_cpu = one_img.detach().cpu().numpy()
input_img_cuda = one_img.cuda()
img = one_meta['show_img']
# Get results from ONNXRuntime
ort_custom_op_path = get_onnxruntime_op_path()
session_options = ort.SessionOptions()
if osp.exists(ort_custom_op_path):
session_options.register_custom_ops_library(ort_custom_op_path)
sess = ort.InferenceSession(onnx_file, session_options)
output_names = [_.name for _ in sess.get_outputs()]
ort_outputs = sess.run(None, {
'input': input_img_cpu,
})
with_mask = len(output_names) == 3
ort_outputs = [_.squeeze(0) for _ in ort_outputs]
ort_dets, ort_labels = ort_outputs[:2]
ort_masks = ort_outputs[2] if with_mask else None
ort_shapes = [_.shape for _ in ort_outputs]
print(f'ONNX Runtime output names: {output_names}, \
output shapes: {ort_shapes}')
# Get results from TensorRT
trt_model = TRTWraper(trt_file, ['input'], output_names)
with torch.no_grad():
trt_outputs = trt_model({'input': input_img_cuda})
trt_outputs = [
trt_outputs[_].detach().cpu().numpy().squeeze(0)
for _ in output_names
]
trt_dets, trt_labels = trt_outputs[:2]
trt_shapes = [_.shape for _ in trt_outputs]
print(f'TensorRT output names: {output_names}, \
output shapes: {trt_shapes}')
trt_masks = trt_outputs[2] if with_mask else None
if trt_masks is not None and trt_masks.dtype != np.bool:
trt_masks = trt_masks >= 0.5
ort_masks = ort_masks >= 0.5
# Show detection outputs
if show:
CLASSES = get_classes(dataset)
score_thr = 0.35
imshow_det_bboxes(
img.copy(),
trt_dets,
trt_labels,
segms=trt_masks,
class_names=CLASSES,
score_thr=score_thr,
win_name='TensorRT')
imshow_det_bboxes(
img.copy(),
ort_dets,
ort_labels,
segms=ort_masks,
class_names=CLASSES,
score_thr=score_thr,
win_name='ONNXRuntime')
# Compare results
np.testing.assert_allclose(ort_dets, trt_dets, rtol=1e-03, atol=1e-05)
np.testing.assert_allclose(ort_labels, trt_labels)
if with_mask:
np.testing.assert_allclose(
ort_masks, trt_masks, rtol=1e-03, atol=1e-05)
print('The numerical values are the same ' +
'between ONNXRuntime and TensorRT')
def parse_args():
parser = argparse.ArgumentParser(
description='Convert MMDetection models from ONNX to TensorRT')
parser.add_argument('model', help='Filename of input ONNX model')
parser.add_argument(
'--trt-file',
type=str,
default='tmp.trt',
help='Filename of output TensorRT engine')
parser.add_argument(
'--input-img', type=str, default='', help='Image for test')
parser.add_argument(
'--show', action='store_true', help='Whether to show output results')
parser.add_argument(
'--dataset', type=str, default='coco', help='Dataset name')
parser.add_argument(
'--verify',
action='store_true',
help='Verify the outputs of ONNXRuntime and TensorRT')
parser.add_argument(
'--verbose',
action='store_true',
help='Whether to verbose logging messages while creating \
TensorRT engine. Defaults to False.')
parser.add_argument(
'--to-rgb',
action='store_false',
help='Feed model with RGB or BGR image. Default is RGB.')
parser.add_argument(
'--shape',
type=int,
nargs='+',
default=[400, 600],
help='Input size of the model')
parser.add_argument(
'--max-shape',
type=int,
nargs='+',
default=None,
help='Maximum input size of the model in TensorRT')
parser.add_argument(
'--mean',
type=float,
nargs='+',
default=[123.675, 116.28, 103.53],
help='Mean value used for preprocess input data')
parser.add_argument(
'--std',
type=float,
nargs='+',
default=[58.395, 57.12, 57.375],
help='Variance value used for preprocess input data')
parser.add_argument(
'--workspace-size',
type=int,
default=1,
help='Max workspace size in GiB')
args = parser.parse_args()
return args
if __name__ == '__main__':
assert is_tensorrt_plugin_loaded(), 'TensorRT plugin should be compiled.'
args = parse_args()
if not args.input_img:
args.input_img = osp.join(osp.dirname(__file__), '../demo/demo.jpg')
if len(args.shape) == 1:
input_shape = (1, 3, args.shape[0], args.shape[0])
elif len(args.shape) == 2:
input_shape = (1, 3) + tuple(args.shape)
else:
raise ValueError('invalid input shape')
if not args.max_shape:
max_shape = input_shape
else:
if len(args.max_shape) == 1:
max_shape = (1, 3, args.max_shape[0], args.max_shape[0])
elif len(args.max_shape) == 2:
max_shape = (1, 3) + tuple(args.max_shape)
else:
raise ValueError('invalid input max_shape')
assert len(args.mean) == 3
assert len(args.std) == 3
normalize_cfg = {'mean': args.mean, 'std': args.std, 'to_rgb': args.to_rgb}
input_config = {
'input_shape': input_shape,
'input_path': args.input_img,
'normalize_cfg': normalize_cfg,
'max_shape': max_shape
}
# Create TensorRT engine
onnx2tensorrt(
args.model,
args.trt_file,
input_config,
verify=args.verify,
show=args.show,
dataset=args.dataset,
workspace_size=args.workspace_size,
verbose=args.verbose)