-
Notifications
You must be signed in to change notification settings - Fork 9.6k
/
Copy pathtest_losses.py
167 lines (141 loc) · 5.39 KB
/
test_losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import pytest
import torch
from mmdet.models import Accuracy, build_loss
def test_ce_loss():
# use_mask and use_sigmoid cannot be true at the same time
with pytest.raises(AssertionError):
loss_cfg = dict(
type='CrossEntropyLoss',
use_mask=True,
use_sigmoid=True,
loss_weight=1.0)
build_loss(loss_cfg)
# test loss with class weights
loss_cls_cfg = dict(
type='CrossEntropyLoss',
use_sigmoid=False,
class_weight=[0.8, 0.2],
loss_weight=1.0)
loss_cls = build_loss(loss_cls_cfg)
fake_pred = torch.Tensor([[100, -100]])
fake_label = torch.Tensor([1]).long()
assert torch.allclose(loss_cls(fake_pred, fake_label), torch.tensor(40.))
loss_cls_cfg = dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)
loss_cls = build_loss(loss_cls_cfg)
assert torch.allclose(loss_cls(fake_pred, fake_label), torch.tensor(200.))
def test_varifocal_loss():
# only sigmoid version of VarifocalLoss is implemented
with pytest.raises(AssertionError):
loss_cfg = dict(
type='VarifocalLoss', use_sigmoid=False, loss_weight=1.0)
build_loss(loss_cfg)
# test that alpha should be greater than 0
with pytest.raises(AssertionError):
loss_cfg = dict(
type='VarifocalLoss',
alpha=-0.75,
gamma=2.0,
use_sigmoid=True,
loss_weight=1.0)
build_loss(loss_cfg)
# test that pred and target should be of the same size
loss_cls_cfg = dict(
type='VarifocalLoss',
use_sigmoid=True,
alpha=0.75,
gamma=2.0,
iou_weighted=True,
reduction='mean',
loss_weight=1.0)
loss_cls = build_loss(loss_cls_cfg)
with pytest.raises(AssertionError):
fake_pred = torch.Tensor([[100.0, -100.0]])
fake_target = torch.Tensor([[1.0]])
loss_cls(fake_pred, fake_target)
# test the calculation
loss_cls = build_loss(loss_cls_cfg)
fake_pred = torch.Tensor([[100.0, -100.0]])
fake_target = torch.Tensor([[1.0, 0.0]])
assert torch.allclose(loss_cls(fake_pred, fake_target), torch.tensor(0.0))
# test the loss with weights
loss_cls = build_loss(loss_cls_cfg)
fake_pred = torch.Tensor([[0.0, 100.0]])
fake_target = torch.Tensor([[1.0, 1.0]])
fake_weight = torch.Tensor([0.0, 1.0])
assert torch.allclose(
loss_cls(fake_pred, fake_target, fake_weight), torch.tensor(0.0))
def test_kd_loss():
# test that temeprature should be greater than 1
with pytest.raises(AssertionError):
loss_cfg = dict(
type='KnowledgeDistillationKLDivLoss', loss_weight=1.0, T=0.5)
build_loss(loss_cfg)
# test that pred and target should be of the same size
loss_cls_cfg = dict(
type='KnowledgeDistillationKLDivLoss', loss_weight=1.0, T=1)
loss_cls = build_loss(loss_cls_cfg)
with pytest.raises(AssertionError):
fake_pred = torch.Tensor([[100, -100]])
fake_label = torch.Tensor([1]).long()
loss_cls(fake_pred, fake_label)
# test the calculation
loss_cls = build_loss(loss_cls_cfg)
fake_pred = torch.Tensor([[100.0, 100.0]])
fake_target = torch.Tensor([[1.0, 1.0]])
assert torch.allclose(loss_cls(fake_pred, fake_target), torch.tensor(0.0))
# test the loss with weights
loss_cls = build_loss(loss_cls_cfg)
fake_pred = torch.Tensor([[100.0, -100.0], [100.0, 100.0]])
fake_target = torch.Tensor([[1.0, 0.0], [1.0, 1.0]])
fake_weight = torch.Tensor([0.0, 1.0])
assert torch.allclose(
loss_cls(fake_pred, fake_target, fake_weight), torch.tensor(0.0))
def test_accuracy():
# test for empty pred
pred = torch.empty(0, 4)
label = torch.empty(0)
accuracy = Accuracy(topk=1)
acc = accuracy(pred, label)
assert acc.item() == 0
pred = torch.Tensor([[0.2, 0.3, 0.6, 0.5], [0.1, 0.1, 0.2, 0.6],
[0.9, 0.0, 0.0, 0.1], [0.4, 0.7, 0.1, 0.1],
[0.0, 0.0, 0.99, 0]])
# test for top1
true_label = torch.Tensor([2, 3, 0, 1, 2]).long()
accuracy = Accuracy(topk=1)
acc = accuracy(pred, true_label)
assert acc.item() == 100
# test for top1 with score thresh=0.8
true_label = torch.Tensor([2, 3, 0, 1, 2]).long()
accuracy = Accuracy(topk=1, thresh=0.8)
acc = accuracy(pred, true_label)
assert acc.item() == 40
# test for top2
accuracy = Accuracy(topk=2)
label = torch.Tensor([3, 2, 0, 0, 2]).long()
acc = accuracy(pred, label)
assert acc.item() == 100
# test for both top1 and top2
accuracy = Accuracy(topk=(1, 2))
true_label = torch.Tensor([2, 3, 0, 1, 2]).long()
acc = accuracy(pred, true_label)
for a in acc:
assert a.item() == 100
# topk is larger than pred class number
with pytest.raises(AssertionError):
accuracy = Accuracy(topk=5)
accuracy(pred, true_label)
# wrong topk type
with pytest.raises(AssertionError):
accuracy = Accuracy(topk='wrong type')
accuracy(pred, true_label)
# label size is larger than required
with pytest.raises(AssertionError):
label = torch.Tensor([2, 3, 0, 1, 2, 0]).long() # size mismatch
accuracy = Accuracy()
accuracy(pred, label)
# wrong pred dimension
with pytest.raises(AssertionError):
accuracy = Accuracy()
accuracy(pred[:, :, None], true_label)