Skip to content

Commit a7c8c16

Browse files
authored
Update README.md
1 parent 405b45d commit a7c8c16

File tree

1 file changed

+8
-6
lines changed

1 file changed

+8
-6
lines changed

README.md

+8-6
Original file line numberDiff line numberDiff line change
@@ -69,7 +69,7 @@ Visualizations - [Null Hypothesis Significance Testing (NHST)](https://rpsycholo
6969
[pdpipe](https://github.com/shaypal5/pdpipe) - Pipelines for DataFrames.
7070
[few](https://github.com/lacava/few) - Feature engineering wrapper for sklearn.
7171
[skoot](https://github.com/tgsmith61591/skoot) - Pipeline helper functions.
72-
[categorical-encoding](https://github.com/scikit-learn-contrib/categorical-encoding) - Categorical encoding of variables.
72+
[categorical-encoding](https://github.com/scikit-learn-contrib/categorical-encoding) - Categorical encoding of variables, [vtreat (R package)](https://cran.r-project.org/web/packages/vtreat/vignettes/vtreat.html).
7373
[dirty_cat](https://github.com/dirty-cat/dirty_cat) - Encoding dirty categorical variables.
7474
[patsy](https://github.com/pydata/patsy/) - R-like syntax for statistical models.
7575
[mlxtend](https://rasbt.github.io/mlxtend/user_guide/feature_extraction/LinearDiscriminantAnalysis/) - LDA.
@@ -88,8 +88,8 @@ Visualizations - [Null Hypothesis Significance Testing (NHST)](https://rpsycholo
8888

8989
#### Dimensionality Reduction
9090
[prince](https://github.com/MaxHalford/prince) - Dimensionality reduction, factor analysis (PCA, MCA, CA, FAMD).
91-
[sklearn](https://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html) - Multidimensional scaling.
92-
[sklearn](https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html) - t-distributed Stochastic Neighbor Embedding. Faster implementations: [lvdmaaten](https://lvdmaaten.github.io/tsne/), [MulticoreTSNE](https://github.com/DmitryUlyanov/Multicore-TSNE).
91+
[sklearn](https://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html) - Multidimensional scaling (MDS).
92+
[sklearn](https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html) - t-distributed Stochastic Neighbor Embedding (t-SNE), [intro](https://distill.pub/2016/misread-tsne/). Faster implementations: [lvdmaaten](https://lvdmaaten.github.io/tsne/), [MulticoreTSNE](https://github.com/DmitryUlyanov/Multicore-TSNE).
9393
[sklearn](http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html) - Truncated SVD (aka LSA).
9494
[mdr](https://github.com/EpistasisLab/scikit-mdr) - Dimensionality reduction, multifactor dimensionality reduction (MDR).
9595
[umap](https://github.com/lmcinnes/umap) - Uniform Manifold Approximation and Projection.
@@ -101,8 +101,10 @@ Visualizations - [Null Hypothesis Significance Testing (NHST)](https://rpsycholo
101101
[physt](https://github.com/janpipek/physt) - Better histograms, [talk](https://www.youtube.com/watch?v=ZG-wH3-Up9Y).
102102
[matplotlib_venn](https://github.com/konstantint/matplotlib-venn) - Venn diagrams.
103103
[joypy](https://github.com/sbebo/joypy) - Draw stacked density plots.
104+
[mosaic plots](https://www.statsmodels.org/dev/generated/statsmodels.graphics.mosaicplot.mosaic.html) - Categorical variable visualization, [example](https://sukhbinder.wordpress.com/2018/09/18/mosaic-plot-in-python/).
104105
[yellowbrick](https://github.com/DistrictDataLabs/yellowbrick) - Wrapper for matplotlib for diagnosic ML plots.
105106
[bokeh](https://bokeh.pydata.org/en/latest/) - Interactive visualization library, [Examples](https://bokeh.pydata.org/en/latest/docs/user_guide/server.html), [Examples](https://github.com/WillKoehrsen/Bokeh-Python-Visualization).
107+
[plotnine](https://github.com/has2k1/plotnine) - ggplot for Python.
106108
[altair](https://altair-viz.github.io/) - Declarative statistical visualization library.
107109
[bqplot](https://github.com/bloomberg/bqplot) - Plotting library for IPython/Jupyter Notebooks.
108110
[holoviews](http://holoviews.org/) - Visualization library.
@@ -144,6 +146,7 @@ Examples: [1](https://lazyprogrammer.me/tutorial-on-collaborative-filtering-and-
144146
[spotlight](https://github.com/maciejkula/spotlight) - Deep recommender models using PyTorch.
145147
[lightfm](https://github.com/lyst/lightfm) - Recommendation algorithms for both implicit and explicit feedback.
146148
[funk-svd](https://github.com/gbolmier/funk-svd) - Fast SVD.
149+
[pywFM](https://github.com/jfloff/pywFM) - Factorization.
147150

148151
#### Decision Tree Models
149152
[lightgbm](https://github.com/Microsoft/LightGBM) - Gradient boosting (GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, [doc](https://sites.google.com/view/lauraepp/parameters).
@@ -236,6 +239,7 @@ Feature Visualization: [Blog](https://distill.pub/2017/feature-visualization/),
236239

237240
##### Snippets
238241
[Simple Keras models](https://gist.github.com/candlewill/552fa102352ccce42fd829ae26277d24)
242+
[Entity Embeddings of Categorical Variables](https://arxiv.org/abs/1604.06737), [code](https://github.com/entron/entity-embedding-rossmann), [kaggle](https://www.kaggle.com/aquatic/entity-embedding-neural-net/code)
239243

240244
#### GPU
241245
[cuML](https://github.com/rapidsai/cuml) - Run traditional tabular ML tasks on GPUs.
@@ -336,6 +340,7 @@ RandomSurvivalForests (R packages: randomForestSRC, ggRandomForests).
336340
[edward](https://github.com/blei-lab/edward) - Probabilistic modeling, inference, and criticism, [Mixture Density Networks (MNDs)](http://edwardlib.org/tutorials/mixture-density-network), [MDN Explanation](https://towardsdatascience.com/a-hitchhikers-guide-to-mixture-density-networks-76b435826cca).
337341

338342
#### Stacking Models and Ensembles
343+
[Model Stacking Blog Post](http://blog.kaggle.com/2017/06/15/stacking-made-easy-an-introduction-to-stacknet-by-competitions-grandmaster-marios-michailidis-kazanova/)
339344
[mlxtend](https://github.com/rasbt/mlxtend) - `EnsembleVoteClassifier`, `StackingRegressor`, `StackingCVRegressor` for model stacking.
340345
[vecstack](https://github.com/vecxoz/vecstack) - Stacking ML models.
341346
[StackNet](https://github.com/kaz-Anova/StackNet) - Stacking ML models.
@@ -440,13 +445,10 @@ AlphaZero methodology - [1](https://github.com/AppliedDataSciencePartners/DeepRe
440445
[dateparser](https://dateparser.readthedocs.io/en/latest/) - A better date parser.
441446
[jellyfish](https://github.com/jamesturk/jellyfish) - Approximate string matching.
442447

443-
444448
#### Blogs
445449
[PocketCluster](https://blog.pocketcluster.io/) - Blog.
446450
[Distill.pub](https://distill.pub/) - Blog.
447451

448-
449-
450452
#### Awesome Lists
451453
[Awesome Adversarial Machine Learning](https://github.com/yenchenlin/awesome-adversarial-machine-learning)
452454
[Awesome AI Booksmarks](https://github.com/goodrahstar/my-awesome-AI-bookmarks)

0 commit comments

Comments
 (0)