Skip to content

Latest commit

 

History

History
16 lines (12 loc) · 1.17 KB

README.md

File metadata and controls

16 lines (12 loc) · 1.17 KB

multiagent-confrontation

This is the source code of "Efficient training techniques for multi-agent reinforcement learning in combatant tasks", we construct a multi-agent confrontation environment originated from a combatant scenario of multiple unman aerial vehicles. To begin with, we consider to solve this confrontation problem with two types of MARL algorithms. One is extended from the classical deep Q-network for multi-agent settings (MADQN). The other one is extended from the state-of-art multi-agent reinforcement method, multi-agent deep deterministic policy gradient (MADDPG). We compare the two methods for the initial confrontation scenario and find that MADDPG outperforms MADQN. Then with MADDPG as the baseline, we propose three efficient training techniques, i.e., scenario-transfer training, self-play training and rule-coupled training.

image

Rule-coupled red agents vs Random-move blue agents

image

Rule-coupled red agents vs Blue agents trained by self-play