|
| 1 | + |
| 2 | +# 训练日志 |
| 3 | + |
| 4 | +## 训练结果 |
| 5 | + |
| 6 | + |
| 7 | + |
| 8 | + |
| 9 | + |
| 10 | + |
| 11 | + |
| 12 | +## 训练日志 |
| 13 | + |
| 14 | +``` |
| 15 | +$ python train.py --config-file configs/vgg_ssd300_voc0712.yaml |
| 16 | +2020-05-16 11:10:04,780 SSD INFO: Using 1 GPUs |
| 17 | +2020-05-16 11:10:04,780 SSD INFO: Namespace(config_file='configs/vgg_ssd300_voc0712.yaml', distributed=False, eval_step=2500, local_rank=0, log_step=10, num_gpus=1, opts=[], save_step=2500, skip_test=False, use_tensorboard=True) |
| 18 | +2020-05-16 11:10:04,780 SSD INFO: Loaded configuration file configs/vgg_ssd300_voc0712.yaml |
| 19 | +2020-05-16 11:10:04,780 SSD INFO: |
| 20 | +MODEL: |
| 21 | + NUM_CLASSES: 21 |
| 22 | +INPUT: |
| 23 | + IMAGE_SIZE: 300 |
| 24 | +DATASETS: |
| 25 | + TRAIN: ("voc_2007_trainval", "voc_2012_trainval") |
| 26 | + TEST: ("voc_2007_test", ) |
| 27 | +SOLVER: |
| 28 | + MAX_ITER: 120000 |
| 29 | + LR_STEPS: [80000, 100000] |
| 30 | + GAMMA: 0.1 |
| 31 | + BATCH_SIZE: 32 |
| 32 | + LR: 1e-3 |
| 33 | +
|
| 34 | +OUTPUT_DIR: 'outputs/vgg_ssd300_voc0712' |
| 35 | +2020-05-16 11:10:04,781 SSD INFO: Running with config: |
| 36 | +DATASETS: |
| 37 | + TEST: ('voc_2007_test',) |
| 38 | + TRAIN: ('voc_2007_trainval', 'voc_2012_trainval') |
| 39 | +DATA_LOADER: |
| 40 | + NUM_WORKERS: 8 |
| 41 | + PIN_MEMORY: True |
| 42 | +INPUT: |
| 43 | + IMAGE_SIZE: 300 |
| 44 | + PIXEL_MEAN: [123, 117, 104] |
| 45 | +MODEL: |
| 46 | + BACKBONE: |
| 47 | + NAME: vgg |
| 48 | + OUT_CHANNELS: (512, 1024, 512, 256, 256, 256) |
| 49 | + PRETRAINED: True |
| 50 | + BOX_HEAD: |
| 51 | + NAME: SSDBoxHead |
| 52 | + PREDICTOR: SSDBoxPredictor |
| 53 | + CENTER_VARIANCE: 0.1 |
| 54 | + DEVICE: cuda |
| 55 | + META_ARCHITECTURE: SSDDetector |
| 56 | + NEG_POS_RATIO: 3 |
| 57 | + NUM_CLASSES: 21 |
| 58 | + PRIORS: |
| 59 | + ASPECT_RATIOS: [[2], [2, 3], [2, 3], [2, 3], [2], [2]] |
| 60 | + BOXES_PER_LOCATION: [4, 6, 6, 6, 4, 4] |
| 61 | + CLIP: True |
| 62 | + FEATURE_MAPS: [38, 19, 10, 5, 3, 1] |
| 63 | + MAX_SIZES: [60, 111, 162, 213, 264, 315] |
| 64 | + MIN_SIZES: [30, 60, 111, 162, 213, 264] |
| 65 | + STRIDES: [8, 16, 32, 64, 100, 300] |
| 66 | + SIZE_VARIANCE: 0.2 |
| 67 | + THRESHOLD: 0.5 |
| 68 | +OUTPUT_DIR: outputs/vgg_ssd300_voc0712 |
| 69 | +SOLVER: |
| 70 | + BATCH_SIZE: 32 |
| 71 | + GAMMA: 0.1 |
| 72 | + LR: 0.001 |
| 73 | + LR_STEPS: [80000, 100000] |
| 74 | + MAX_ITER: 120000 |
| 75 | + MOMENTUM: 0.9 |
| 76 | + WARMUP_FACTOR: 0.3333333333333333 |
| 77 | + WARMUP_ITERS: 500 |
| 78 | + WEIGHT_DECAY: 0.0005 |
| 79 | +TEST: |
| 80 | + BATCH_SIZE: 10 |
| 81 | + CONFIDENCE_THRESHOLD: 0.01 |
| 82 | + MAX_PER_CLASS: -1 |
| 83 | + MAX_PER_IMAGE: 100 |
| 84 | + NMS_THRESHOLD: 0.45 |
| 85 | +2020-05-16 11:10:14,710 SSD.trainer INFO: No checkpoint found. |
| 86 | +2020-05-16 11:10:14,970 SSD.trainer INFO: Start training ... |
| 87 | +2020-05-16 11:10:43,388 SSD.trainer INFO: iter: 000010, lr: 0.00035, total_loss: 20.884 (20.884), reg_loss: 3.032 (3.032), cls_loss: 17.852 (17.852), time: 2.668 (2.668), eta: 3 days, 16:54:42, mem: 8288M |
| 88 | +2020-05-16 11:10:49,240 SSD.trainer INFO: iter: 000020, lr: 0.00036, total_loss: 15.886 (18.385), reg_loss: 2.946 (2.989), cls_loss: 12.940 (15.396), time: 0.585 (1.626), eta: 2 days, 6:12:16, mem: 8288M |
| 89 | +2020-05-16 11:10:55,108 SSD.trainer INFO: iter: 000030, lr: 0.00037, total_loss: 15.040 (17.270), reg_loss: 2.730 (2.903), cls_loss: 12.310 (14.367), time: 0.587 (1.280), eta: 1 day, 18:39:04, mem: 8288M |
| 90 | +2020-05-16 11:11:00,976 SSD.trainer INFO: iter: 000040, lr: 0.00039, total_loss: 14.594 (16.601), reg_loss: 2.765 (2.868), cls_loss: 11.829 (13.733), time: 0.587 (1.107), eta: 1 day, 12:52:26, mem: 8288M |
| 91 | +2020-05-16 11:11:06,836 SSD.trainer INFO: iter: 000050, lr: 0.00040, total_loss: 13.840 (16.049), reg_loss: 2.842 (2.863), cls_loss: 10.998 (13.186), time: 0.586 (1.002), eta: 1 day, 9:24:06, mem: 8288M |
| 92 | +2020-05-16 11:11:12,690 SSD.trainer INFO: iter: 000060, lr: 0.00041, total_loss: 11.895 (15.357), reg_loss: 2.800 (2.853) |
| 93 | +。。。 |
| 94 | +。。。 |
| 95 | +2020-05-17 07:20:21,323 SSD.trainer INFO: iter: 119940, lr: 0.00001, total_loss: 1.961 (2.557), reg_loss: 0.593 (0.754), cls_loss: 1.368 (1.803), time: 0.589 (0.605), eta: 0:00:36, mem: 8288M |
| 96 | +2020-05-17 07:20:27,208 SSD.trainer INFO: iter: 119950, lr: 0.00001, total_loss: 1.739 (2.557), reg_loss: 0.511 (0.754), cls_loss: 1.227 (1.803), time: 0.588 (0.605), eta: 0:00:30, mem: 8288M |
| 97 | +2020-05-17 07:20:33,106 SSD.trainer INFO: iter: 119960, lr: 0.00001, total_loss: 1.777 (2.557), reg_loss: 0.488 (0.753), cls_loss: 1.289 (1.803), time: 0.590 (0.605), eta: 0:00:24, mem: 8288M |
| 98 | +2020-05-17 07:20:38,987 SSD.trainer INFO: iter: 119970, lr: 0.00001, total_loss: 1.709 (2.557), reg_loss: 0.463 (0.753), cls_loss: 1.246 (1.803), time: 0.588 (0.605), eta: 0:00:18, mem: 8288M |
| 99 | +2020-05-17 07:20:44,867 SSD.trainer INFO: iter: 119980, lr: 0.00001, total_loss: 1.843 (2.557), reg_loss: 0.528 (0.753), cls_loss: 1.315 (1.803), time: 0.588 (0.605), eta: 0:00:12, mem: 8288M |
| 100 | +2020-05-17 07:20:50,752 SSD.trainer INFO: iter: 119990, lr: 0.00001, total_loss: 1.918 (2.557), reg_loss: 0.546 (0.753), cls_loss: 1.371 (1.803), time: 0.588 (0.605), eta: 0:00:06, mem: 8288M |
| 101 | +2020-05-17 07:20:56,633 SSD.trainer INFO: iter: 120000, lr: 0.00001, total_loss: 1.885 (2.557), reg_loss: 0.529 (0.753), cls_loss: 1.356 (1.803), time: 0.588 (0.605), eta: 0:00:00, mem: 8288M |
| 102 | +2020-05-17 07:20:57,016 SSD.trainer INFO: Saving checkpoint to outputs/vgg_ssd300_voc0712/model_120000.pth |
| 103 | +2020-05-17 07:20:57,186 SSD.trainer INFO: Saving checkpoint to outputs/vgg_ssd300_voc0712/model_final.pth |
| 104 | +2020-05-17 07:20:57,302 SSD.trainer INFO: Total training time: 20:10:40 (0.6053 s / it) |
| 105 | +2020-05-17 07:20:57,314 SSD INFO: Start evaluating... |
| 106 | +2020-05-17 07:20:57,316 SSD.inference INFO: Evaluating voc_2007_test dataset(4952 images): |
| 107 | +100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 496/496 [00:40<00:00, 12.34it/s] |
| 108 | +2020-05-17 07:21:39,792 SSD.inference INFO: mAP: 0.7740 |
| 109 | +aeroplane : 0.8113 |
| 110 | +bicycle : 0.8322 |
| 111 | +bird : 0.7476 |
| 112 | +boat : 0.7160 |
| 113 | +bottle : 0.5331 |
| 114 | +bus : 0.8619 |
| 115 | +car : 0.8669 |
| 116 | +cat : 0.8781 |
| 117 | +chair : 0.6243 |
| 118 | +cow : 0.8297 |
| 119 | +diningtable : 0.7607 |
| 120 | +dog : 0.8393 |
| 121 | +horse : 0.8634 |
| 122 | +motorbike : 0.8420 |
| 123 | +person : 0.7972 |
| 124 | +pottedplant : 0.5075 |
| 125 | +sheep : 0.7754 |
| 126 | +sofa : 0.7775 |
| 127 | +train : 0.8548 |
| 128 | +tvmonitor : 0.7622 |
| 129 | +``` |
0 commit comments