Skip to content

Commit f283710

Browse files
authored
Script, data and images
1 parent 3ed06c1 commit f283710

File tree

11 files changed

+8246
-0
lines changed

11 files changed

+8246
-0
lines changed
Lines changed: 121 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,121 @@
1+
import streamlit as st
2+
import pandas as pd
3+
import numpy as np
4+
from sklearn.svm import SVC
5+
from sklearn.linear_model import LogisticRegression
6+
from sklearn.ensemble import RandomForestClassifier
7+
from sklearn.preprocessing import LabelEncoder
8+
from sklearn.model_selection import train_test_split
9+
from sklearn.metrics import plot_confusion_matrix, plot_roc_curve, plot_precision_recall_curve
10+
from sklearn.metrics import precision_score, recall_score
11+
12+
def main():
13+
st.title("Binary Classification Web App")
14+
st.sidebar.title("Binary Classification Web App")
15+
st.markdown("Are your mushrooms edible or poisonous? 🍄")
16+
st.sidebar.markdown("Are your mushrooms edible or poisonous? 🍄")
17+
18+
@st.cache(persist=True)
19+
def load_data():
20+
data = pd.read_csv("C:\Users\SANJAY N T\Desktop\project\streamlit-ml\mushrooms.csv")
21+
labelencoder=LabelEncoder()
22+
for col in data.columns:
23+
data[col] = labelencoder.fit_transform(data[col])
24+
return data
25+
26+
@st.cache(persist=True)
27+
def split(df):
28+
y = df.type
29+
x = df.drop(columns=['type'])
30+
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=0)
31+
return x_train, x_test, y_train, y_test
32+
33+
def plot_metrics(metrics_list):
34+
if 'Confusion Matrix' in metrics_list:
35+
st.subheader("Confusion Matrix")
36+
plot_confusion_matrix(model, x_test, y_test, display_labels=class_names)
37+
st.pyplot()
38+
39+
if 'ROC Curve' in metrics_list:
40+
st.subheader("ROC Curve")
41+
plot_roc_curve(model, x_test, y_test)
42+
st.pyplot()
43+
44+
if 'Precision-Recall Curve' in metrics_list:
45+
st.subheader('Precision-Recall Curve')
46+
plot_precision_recall_curve(model, x_test, y_test)
47+
st.pyplot()
48+
49+
df = load_data()
50+
class_names = ['edible', 'poisonous']
51+
52+
x_train, x_test, y_train, y_test = split(df)
53+
54+
st.sidebar.subheader("Choose Classifier")
55+
classifier = st.sidebar.selectbox("Classifier", ("Support Vector Machine (SVM)", "Logistic Regression", "Random Forest"))
56+
57+
if classifier == 'Support Vector Machine (SVM)':
58+
st.sidebar.subheader("Model Hyperparameters")
59+
#choose parameters
60+
C = st.sidebar.number_input("C (Regularization parameter)", 0.01, 10.0, step=0.01, key='C_SVM')
61+
kernel = st.sidebar.radio("Kernel", ("rbf", "linear"), key='kernel')
62+
gamma = st.sidebar.radio("Gamma (Kernel Coefficient)", ("scale", "auto"), key='gamma')
63+
64+
metrics = st.sidebar.multiselect("What metrics to plot?", ('Confusion Matrix', 'ROC Curve', 'Precision-Recall Curve'))
65+
66+
if st.sidebar.button("Classify", key='classify'):
67+
st.subheader("Support Vector Machine (SVM) Results")
68+
model = SVC(C=C, kernel=kernel, gamma=gamma)
69+
model.fit(x_train, y_train)
70+
accuracy = model.score(x_test, y_test)
71+
y_pred = model.predict(x_test)
72+
st.write("Accuracy: ", accuracy.round(2))
73+
st.write("Precision: ", precision_score(y_test, y_pred, labels=class_names).round(2))
74+
st.write("Recall: ", recall_score(y_test, y_pred, labels=class_names).round(2))
75+
plot_metrics(metrics)
76+
77+
if classifier == 'Logistic Regression':
78+
st.sidebar.subheader("Model Hyperparameters")
79+
C = st.sidebar.number_input("C (Regularization parameter)", 0.01, 10.0, step=0.01, key='C_LR')
80+
max_iter = st.sidebar.slider("Maximum number of iterations", 100, 500, key='max_iter')
81+
82+
metrics = st.sidebar.multiselect("What metrics to plot?", ('Confusion Matrix', 'ROC Curve', 'Precision-Recall Curve'))
83+
84+
if st.sidebar.button("Classify", key='classify'):
85+
st.subheader("Logistic Regression Results")
86+
model = LogisticRegression(C=C, penalty='l2', max_iter=max_iter)
87+
model.fit(x_train, y_train)
88+
accuracy = model.score(x_test, y_test)
89+
y_pred = model.predict(x_test)
90+
st.write("Accuracy: ", accuracy.round(2))
91+
st.write("Precision: ", precision_score(y_test, y_pred, labels=class_names).round(2))
92+
st.write("Recall: ", recall_score(y_test, y_pred, labels=class_names).round(2))
93+
plot_metrics(metrics)
94+
95+
if classifier == 'Random Forest':
96+
st.sidebar.subheader("Model Hyperparameters")
97+
n_estimators = st.sidebar.number_input("The number of trees in the forest", 100, 5000, step=10, key='n_estimators')
98+
max_depth = st.sidebar.number_input("The maximum depth of the tree", 1, 20, step=1, key='n_estimators')
99+
bootstrap = st.sidebar.radio("Bootstrap samples when building trees", ('True', 'False'), key='bootstrap')
100+
metrics = st.sidebar.multiselect("What metrics to plot?", ('Confusion Matrix', 'ROC Curve', 'Precision-Recall Curve'))
101+
102+
if st.sidebar.button("Classify", key='classify'):
103+
st.subheader("Random Forest Results")
104+
model = RandomForestClassifier(n_estimators=n_estimators, max_depth=max_depth, bootstrap=bootstrap, n_jobs=-1)
105+
model.fit(x_train, y_train)
106+
accuracy = model.score(x_test, y_test)
107+
y_pred = model.predict(x_test)
108+
st.write("Accuracy: ", accuracy.round(2))
109+
st.write("Precision: ", precision_score(y_test, y_pred, labels=class_names).round(2))
110+
st.write("Recall: ", recall_score(y_test, y_pred, labels=class_names).round(2))
111+
plot_metrics(metrics)
112+
113+
if st.sidebar.checkbox("Show raw data", False):
114+
st.subheader("Mushroom Data Set (Classification)")
115+
st.write(df)
116+
st.markdown("This [data set](https://archive.ics.uci.edu/ml/datasets/Mushroom) includes descriptions of hypothetical samples corresponding to 23 species of gilled mushrooms "
117+
"in the Agaricus and Lepiota Family (pp. 500-525). Each species is identified as definitely edible, definitely poisonous, "
118+
"or of unknown edibility and not recommended. This latter class was combined with the poisonous one.")
119+
120+
if __name__ == '__main__':
121+
main()

0 commit comments

Comments
 (0)