-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
213 lines (203 loc) · 8.72 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import os
import shutil
import numpy as np
import pandas as pd
import networkx as nx
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, TensorDataset
from torch.optim import Adam
from sklearn.model_selection import StratifiedKFold, train_test_split
import torch_geometric
from torch_geometric.nn import GCNConv
from torch_geometric.utils import from_scipy_sparse_matrix
import copy
seed_value = 2021
torch.manual_seed(seed_value)
np.random.seed(seed_value)
lr = 0.0001
epochs = 500
alpha = 0.5
beta = 0.5
timestep = 10
maxlen = 64
portrait_dim = 32
behavior_num = 101
behavior_emb_dim = 16
behavior_dim = 32
network_dim = 32
dropout = 0.5
def data_process(timestep=10, maxlen=84):
df_U = pd.read_csv('../data/sample_data_player_portrait.csv')
df_B = pd.read_csv('../data/sample_data_behavior_sequence.csv')
df_G = pd.read_csv('../data/sample_data_social_network.csv')
df_Y = pd.read_csv('../data/sample_data_label.csv')
U = df_U.drop(['uid','ds'], axis=1).values
U = U.reshape(-1, timestep, U.shape[-1])
B_list = df_B['seq'].apply(lambda x: x.split(',') if pd.notna(x) else []).values
B_seq = torch.nn.utils.rnn.pad_sequence([torch.tensor(list(map(int, seq))) for seq in B_list],
batch_first=True,
padding_value=0)
# Fix for reshaping
leftover = B_seq.numel() % (timestep * maxlen)
if leftover > 0:
B_seq = B_seq[:-leftover]
B_seq = B_seq.reshape(-1, timestep, 84)
G = nx.from_pandas_edgelist(df=df_G, source='src_uid', target='dst_uid', edge_attr=['weight'])
A = nx.adjacency_matrix(G)
edge_index, edge_weight = from_scipy_sparse_matrix(A)
y1 = df_Y['churn_label'].values.reshape(-1,1).astype(np.float32)
y2 = np.log(df_Y['payment_label'].values + 1).reshape(-1,1).astype(np.float32)
print('U:', U.shape)
print('B:', B_seq.shape)
print('A shape:', A.shape)
print('y1:', y1.shape, 'y2:', y2.shape)
return U, B_seq, (edge_index, edge_weight), y1, y2
U, B, A_data, y1, y2 = data_process(timestep=timestep, maxlen=maxlen)
edge_index, edge_weight = A_data
N = U.shape[0]
class PortraitNet(nn.Module):
def __init__(self, input_dim, hidden_dim):
super(PortraitNet, self).__init__()
self.lstm = nn.LSTM(input_size=input_dim, hidden_size=hidden_dim, batch_first=True)
self.layernorm = nn.LayerNorm(hidden_dim)
self.dense = nn.Linear(hidden_dim, hidden_dim, bias=False)
def forward(self, x):
_, (h_n, _) = self.lstm(x)
h = h_n.squeeze(0)
h = self.layernorm(h)
h = F.relu(self.dense(h))
return h
class BehaviorNet(nn.Module):
def __init__(self, behavior_num, emb_dim, maxlen, timestep, behavior_dim):
super(BehaviorNet, self).__init__()
self.emb = nn.Embedding(num_embeddings=behavior_num, embedding_dim=emb_dim, padding_idx=0)
self.conv = nn.Conv1d(in_channels=emb_dim, out_channels=behavior_dim, kernel_size=3, padding=1)
self.layernorm = nn.LayerNorm(behavior_dim)
self.dense = nn.Linear(behavior_dim, behavior_dim, bias=False)
self.timestep = timestep
self.behavior_dim = behavior_dim
self.maxlen = maxlen
self.lstm = nn.LSTM(input_size=behavior_dim, hidden_size=behavior_dim, batch_first=True)
def forward(self, x):
N, T, M = x.size()
x = x.view(N*T, M)
x = self.emb(x)
x = x.permute(0, 2, 1)
x = self.conv(x)
x = F.relu(x)
x = torch.mean(x, dim=2)
x = x.view(N, T, self.behavior_dim)
_, (h_n, _) = self.lstm(x)
h = h_n.squeeze(0)
h = self.layernorm(h)
h = F.relu(self.dense(h))
return h
class NetworkNet(nn.Module):
def __init__(self, input_dim, network_dim, dropout=0.5):
super(NetworkNet, self).__init__()
self.gcn = GCNConv(in_channels=input_dim, out_channels=network_dim)
self.dropout = nn.Dropout(dropout)
self.dense = nn.Linear(network_dim, network_dim)
def forward(self, x, edge_index, edge_weight=None):
x = self.gcn(x, edge_index, edge_weight=edge_weight)
x = F.relu(x)
x = self.dropout(x)
x = F.relu(self.dense(x))
return x
class MSDMT(nn.Module):
def __init__(self, input_dim_portrait, portrait_dim, behavior_num, behavior_emb_dim, maxlen, timestep, behavior_dim, network_dim, dropout=0.5):
super(MSDMT, self).__init__()
self.portrait_net = PortraitNet(input_dim=input_dim_portrait, hidden_dim=portrait_dim)
self.behavior_net = BehaviorNet(behavior_num=behavior_num, emb_dim=behavior_emb_dim, maxlen=maxlen, timestep=timestep, behavior_dim=behavior_dim)
self.network_net = NetworkNet(input_dim=portrait_dim+behavior_dim, network_dim=network_dim, dropout=dropout)
self.output1 = nn.Linear(network_dim, 1)
self.output2 = nn.Linear(network_dim, 1)
def forward(self, U, B, edge_index, edge_weight=None):
H = self.portrait_net(U)
O = self.behavior_net(B)
X = torch.cat([H, O], dim=1)
V = self.network_net(X, edge_index, edge_weight)
out1 = torch.sigmoid(self.output1(V))
out2 = self.output2(V)
return out1, out2
U_torch = torch.tensor(U, dtype=torch.float32)
B_torch = torch.tensor(B, dtype=torch.long)
y1_torch = torch.tensor(y1, dtype=torch.float32)
y2_torch = torch.tensor(y2, dtype=torch.float32)
portrait_input_dim = U_torch.shape[-1]
kfold = StratifiedKFold(n_splits=5, shuffle=True, random_state=seed_value)
fold_idx = 1
for train_index, test_index in kfold.split(U, y1):
print("\nFold", fold_idx)
fold_idx += 1
train_index, val_index = train_test_split(train_index, test_size=0.1, random_state=seed_value)
mask_train = np.zeros(N, dtype=bool)
mask_val = np.zeros(N, dtype=bool)
mask_test = np.zeros(N, dtype=bool)
mask_train[train_index] = True
mask_val[val_index] = True
mask_test[test_index] = True
model = MSDMT(
input_dim_portrait=portrait_input_dim,
portrait_dim=portrait_dim,
behavior_num=behavior_num,
behavior_emb_dim=behavior_emb_dim,
maxlen=maxlen,
timestep=timestep,
behavior_dim=behavior_dim,
network_dim=network_dim,
dropout=dropout
)
optimizer = Adam(model.parameters(), lr=lr)
patience = 5
best_val_loss = float('inf')
best_epoch = 0
no_improvement = 0
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
U_torch_dev = U_torch.to(device)
B_torch_dev = B_torch.to(device)
y1_torch_dev = y1_torch.to(device)
y2_torch_dev = y2_torch.to(device)
edge_index_dev = edge_index.to(device)
edge_weight_dev = edge_weight.to(device) if edge_weight is not None else None
best_state_dict = None
for epoch_i in range(1, epochs + 1):
model.train()
optimizer.zero_grad()
out1, out2 = model(U_torch_dev, B_torch_dev, edge_index_dev, edge_weight_dev.float())
loss_churn = F.binary_cross_entropy(out1[mask_train], y1_torch_dev[mask_train])
loss_payment = F.mse_loss(out2[mask_train], y2_torch_dev[mask_train])
loss = alpha*loss_churn + beta*loss_payment
loss.backward()
optimizer.step()
model.eval()
with torch.no_grad():
val_out1, val_out2 = model(U_torch_dev, B_torch_dev, edge_index_dev, edge_weight_dev.float())
val_loss_churn = F.binary_cross_entropy(val_out1[mask_val], y1_torch_dev[mask_val])
val_loss_payment = F.mse_loss(val_out2[mask_val], y2_torch_dev[mask_val])
val_loss = alpha*val_loss_churn + beta*val_loss_payment
print("Epoch", epoch_i, "Train Loss:", loss.item(), "Val Loss:", val_loss.item())
if val_loss.item() < best_val_loss:
best_val_loss = val_loss.item()
best_epoch = epoch_i
no_improvement = 0
best_state_dict = copy.deepcopy(model.state_dict())
else:
no_improvement += 1
if no_improvement >= patience:
print("Early stopping.")
break
print("Best Val Loss at epoch", best_epoch, ":", best_val_loss)
if best_state_dict is not None:
model.load_state_dict(best_state_dict)
model.eval()
with torch.no_grad():
test_out1, test_out2 = model(U_torch_dev, B_torch_dev, edge_index_dev, edge_weight_dev.float())
test_loss_churn = F.binary_cross_entropy(test_out1[mask_test], y1_torch_dev[mask_test])
test_loss_payment = F.mse_loss(test_out2[mask_test], y2_torch_dev[mask_test])
test_loss = alpha*test_loss_churn + beta*test_loss_payment
print("Fold test loss:", test_loss.item(), "(churn=", test_loss_churn.item(), "payment=", test_loss_payment.item(), ")")
print("Done.")