{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%load_ext autoreload\n", "%autoreload 2\n", "import os\n", "import sys\n", "import panel as pn\n", "import numpy as np\n", "import pyvista as pv\n", "pv.set_plot_theme(\"document\")\n", "import glob\n", "from matplotlib.colors import ListedColormap\n", "from omegaconf import OmegaConf\n", "from torch_geometric.data import Data\n", "import random\n", "import torch\n", "\n", "pn.extension('vtk')\n", "os.system('/usr/bin/Xvfb :99 -screen 0 1024x768x24 &')\n", "os.environ['DISPLAY'] = ':99'\n", "os.environ['PYVISTA_OFF_SCREEN'] = 'True'\n", "os.environ['PYVISTA_USE_PANEL'] = 'True'\n", "\n", "DIR = os.path.dirname(os.getcwd())\n", "sys.path.append(DIR)\n", "from torch_points3d.datasets.segmentation.scannet import SCANNET_COLOR_MAP" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "VIZ_REL_DIR = \"outputs/2020-07-24/10-55-05/eval/2020-07-28_14-59-26/viz\"\n", "VIZ_DIR = os.path.join(DIR, VIZ_REL_DIR)\n", "all_viz_data = glob.glob(os.path.join(VIZ_DIR,'*.pt'))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "file_idx = 2\n", "sample_idx = 0\n", "data = torch.load(all_viz_data[file_idx])\n", "data" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data.pred_boxes[0][0].classname" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data = torch.load(all_viz_data[file_idx])\n", "confidence_threshold = 0.7\n", "def load_random_sample(event):\n", " i = np.random.randint(0, data.pos.shape[0])\n", " \n", " pl1 = pv.Plotter(notebook=True)\n", " pl2 = pv.Plotter(notebook=True)\n", " \n", " # Color by points with a label\n", " pl1.add_points(data.pos[i].numpy(), color=\"gray\", opacity=0.4) \n", " pl2.add_points(data.pos[i].numpy(), color=\"gray\", opacity=0.4) \n", " \n", " gt_boxes = data.gt_boxes[i]\n", " for k in range(len(gt_boxes)):\n", " xmin, ymin, zmin = gt_boxes[k].corners3d.min(0)\n", " xmax, ymax, zmax = gt_boxes[k].corners3d.max(0)\n", " box = pv.Box([xmin,xmax,ymin,ymax,zmin,zmax])\n", " color = np.asarray(SCANNET_COLOR_MAP[gt_boxes[k].classname]) / 255.\n", " pl1.add_mesh(box, color=color, show_edges=True, opacity=0.5)\n", " \n", " pred_boxes = data.pred_boxes[i]\n", " for k in range(len(pred_boxes)):\n", " if pred_boxes[k].score < confidence_threshold: continue\n", " xmin, ymin, zmin = pred_boxes[k].corners3d.min(0)\n", " xmax, ymax, zmax = pred_boxes[k].corners3d.max(0)\n", " box = pv.Box([xmin,xmax,ymin,ymax,zmin,zmax])\n", " color = np.asarray(SCANNET_COLOR_MAP[pred_boxes[k].classname]) / 255.\n", " pl2.add_mesh(box, color=color, show_edges=True, opacity=0.5)\n", "\n", " pan1.object = pl1.ren_win\n", " pan2.object = pl2.ren_win" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "pl1 = pv.Plotter(notebook=True)\n", "pl2 = pv.Plotter(notebook=True)\n", "pan1 = pn.panel(pl1.ren_win, sizing_mode='scale_both', aspect_ratio=1,orientation_widget=False,)\n", "pan2 = pn.panel(pl2.ren_win, sizing_mode='scale_both', aspect_ratio=1,orientation_widget=False,)\n", "button = pn.widgets.Button(name='Load new model', button_type='primary')\n", "button.on_click(load_random_sample)\n", "pn.Row(\n", " pn.Column('## Votenet visualizer',button,'Threshold = 0.7', width=200),\n", " pn.Column(pan1,'Ground truth'),pn.Column(pan2, 'Box Predictions'),\n", ")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.8" } }, "nbformat": 4, "nbformat_minor": 4 }