forked from torch-points3d/torch-points3d
-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathvisualizer.py
380 lines (328 loc) · 16.5 KB
/
visualizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import os
import torch
import numpy as np
from plyfile import PlyData, PlyElement
import logging
import wandb
from itertools import product
from matplotlib.cm import get_cmap
from math import log10, ceil
from torch_points3d.utils.config import is_list
log = logging.getLogger(__name__)
try:
import laspy
except (ImportError, NameError, AttributeError):
log.warn("Laspy not available for visualization.")
class Visualizer(object):
"""Initialize the Visualizer class.
Parameters:
viz_conf (OmegaConf Dictionnary) -- stores all config for the visualizer
num_batches (dict) -- This dictionnary maps stage_name to #batches
batch_size (int) -- Current batch size usef
save_dir (str) -- The path used by hydra to store the experiment
This class is responsible to save visuals into different formats. Currently supported formats are:
ply -- Either an ascii or binary ply file, with the labels and gt stored as columns
tensorboard -- Visualize point cloud in tensorboard
las -- Export to an ASPRS las or laz file. gt and predictions are stored in seperate files.
wandb -- Upload point cloud to wandb. WARNING: This can become very slow, both in training and on the web.
Make sure you properly limit the num_samples_per_epoch and wandb_max_points.
The configuration looks like this:
visualization:
activate: False # Whether to activate the visualizer
format: ["ply", "tensorboard"] # 'pointcloud' is deprecated, use 'ply' instead
num_samples_per_epoch: 2 # If negative, it will save all elements
deterministic: True # False -> Randomly sample elements from epoch to epoch
deterministic_seed: 0 # Random seed used to generate consistant keys if deterministic is True
saved_keys: # Mapping from Data Object to structured numpy
pos: [['x', 'float'], ['y', 'float'], ['z', 'float']]
y: [['l', 'float']]
pred: [['p', 'float']]
indices: # List of indices to be saved (support "train", "test", "val")
train: [0, 3]
# Format specific options:
ply_format: binary_big_endian # PLY format (support "binary_big_endian", "binary_little_endian", "ascii")
tensorboard_mesh: # Mapping from mesh name and propety use to color
label: 'y'
prediction: 'pred'
wandb_max_points: 10000 # Limits the size of the cloud that gets uploaded by random sampling.
# "-1" saves the entire cloud
wandb_cmap: # Applies a color map to the point cloud. Allows custom coloring of different classes.
- [0, 0, 0] # class 0
- [255, 255, 255] # class 1
- [128, 128, 128] # class 2
compress_las: True # If true, the point cloud will be output as an "laz" file
"""
def __init__(self, viz_conf, num_batches, batch_size, save_dir, tracker):
# From configuration and dataset
for stage_name, stage_num_sample in num_batches.items():
setattr(self, "{}_num_batches".format(stage_name), stage_num_sample)
self._batch_size = batch_size
self._activate = viz_conf.activate
self._format = [viz_conf.format] if not is_list(viz_conf.format) else viz_conf.format
self._num_samples_per_epoch = int(viz_conf.num_samples_per_epoch)
self._deterministic = viz_conf.deterministic
self._seed = viz_conf.deterministic_seed if viz_conf.deterministic_seed is not None else 0
self._tracker = tracker
self._saved_keys = viz_conf.saved_keys
self._tensorboard_mesh = {}
self._viz_path = os.path.join(save_dir, "viz")
# Internal state
self._stage = None
self._current_epoch = None
# format-specific initialization
if "pointcloud" in self._format:
log.warning('Visualization format "pointcloud" is deprecated, use "ply" instead.')
is_ply = "pointcloud" in self._format or "ply" in self._format
if is_ply:
self._ply_format = viz_conf.ply_format if viz_conf.ply_format is not None else "binary_big_endian"
if "tensorboard" in self._format:
if not tracker._use_tensorboard:
log.warn("Tensorboard visualization specified, but tensorboard isn't active.")
else:
self._tensorboard_mesh = viz_conf.tensorboard_mesh
# SummaryWriter for tensorboard loging
self._writer = tracker._writer
if "wandb" in self._format:
if not self._tracker._wandb:
log.warn("Wandb visualization specified, but Wandb isn't active.")
else:
self._wandb_cmap = viz_conf.wandb_cmap
self._max_points = viz_conf.wandb_max_points if viz_conf.wandb_max_points is not None else -1
if "las" in self._format:
self._las_compress = viz_conf.compress_las if viz_conf.compress_las is not None else False
self._indices = {}
self._contains_indices = False
try:
indices = getattr(viz_conf, "indices", None)
except:
indices = None
if indices:
for split in ["train", "test", "val"]:
if split in indices:
split_indices = indices[split]
self._indices[split] = np.asarray(split_indices)
self._contains_indices = True
def get_indices(self, stage):
"""This function is responsible to calculate the indices to be saved"""
if self._contains_indices:
return
stage_num_batches = getattr(self, "{}_num_batches".format(stage))
total_items = (stage_num_batches - 1) * self._batch_size
if stage_num_batches > 0:
if self._num_samples_per_epoch < 0: # All elements should be saved.
if stage_num_batches > 0:
self._indices[stage] = np.arange(total_items)
else:
self._indices[stage] = None
else:
if self._num_samples_per_epoch > total_items:
log.warn("Number of samples to save is higher than the number of available elements")
self._indices[stage] = self._rng.permutation(total_items)[: self._num_samples_per_epoch]
@property
def is_active(self):
return self._activate
def reset(self, epoch, stage):
"""This function is responsible to restore the visualizer
to start a new epoch on a new stage
"""
self._current_epoch = epoch
self._seen_batch = 0
self._stage = stage
if self._deterministic:
self._rng = np.random.default_rng(self._seed)
else:
self._rng = np.random.default_rng()
if self._activate:
self.get_indices(stage)
def _extract_from_PYG(self, item, pos_idx):
num_samples = item.batch.shape[0]
batch_mask = item.batch == pos_idx
out_data = {}
for k in item.keys:
if torch.is_tensor(item[k]) and (k in self._saved_keys.keys() or k in self._tensorboard_mesh.values()):
if item[k].shape[0] == num_samples:
out_data[k] = item[k][batch_mask]
return out_data
def _extract_from_dense(self, item, pos_idx):
assert (
item.y.shape[0] == item.pos.shape[0]
), "y and pos should have the same number of samples. Something is probably wrong with your data to visualise"
num_samples = item.y.shape[0]
out_data = {}
for k in item.keys:
if torch.is_tensor(item[k]) and (k in self._saved_keys.keys() or k in self._tensorboard_mesh.values()):
if item[k].shape[0] == num_samples:
out_data[k] = item[k][pos_idx]
return out_data
def _dict_to_structured_npy(self, item):
item.keys()
out = []
dtypes = []
for k, v in item.items():
v_npy = v.detach().cpu().numpy()
if len(v_npy.shape) == 1:
v_npy = v_npy[..., np.newaxis]
for dtype in self._saved_keys[k]:
dtypes.append(dtype)
out.append(v_npy)
out = np.concatenate(out, axis=-1)
dtypes = np.dtype([tuple(d) for d in dtypes])
return np.asarray([tuple(o) for o in out], dtype=dtypes)
def save_visuals(self, visuals):
"""This function is responsible to save the data into .ply objects
Parameters:
visuals (Dict[Data(pos=torch.Tensor, ...)]) -- Contains a dictionnary of tensors
Make sure the saved_keys within the config maps to the Data attributes.
"""
if self._stage in self._indices:
stage_num_batches = getattr(self, "{}_num_batches".format(self._stage))
batch_indices = self._indices[self._stage] // self._batch_size
pos_indices = self._indices[self._stage] % self._batch_size
for idx in np.argwhere(self._seen_batch == batch_indices).flatten():
pos_idx = pos_indices[idx]
for visual_name, item in visuals.items():
if hasattr(item, "batch") and item.batch is not None: # The PYG dataloader has been used
out_item = self._extract_from_PYG(item, pos_idx)
else:
out_item = self._extract_from_dense(item, pos_idx)
if "tensorboard" in self._format and self._tracker._use_tensorboard:
self.save_tensorboard(out_item, visual_name, stage_num_batches)
out_item = self._dict_to_structured_npy(out_item)
gt_name = "{}_{}_{}_gt".format(self._current_epoch, self._seen_batch, pos_idx)
pred_name = "{}_{}_{}".format(self._current_epoch, self._seen_batch, pos_idx)
if "wandb" in self._format and self._tracker._wandb:
self.save_wandb(out_item, gt_name, pred_name)
is_ply = "pointcloud" in self._format or "ply" in self._format
if is_ply or "las" in self._format:
dir_path = os.path.join(self._viz_path, str(self._current_epoch), self._stage)
if not os.path.exists(dir_path):
os.makedirs(dir_path)
if is_ply:
filename = "{}_{}_{}.ply".format(self._current_epoch, self._seen_batch, pos_idx)
path_out = os.path.join(dir_path, "ply")
self.save_ply(out_item, visual_name, path_out, filename)
if "las" in self._format:
las_path = os.path.join(dir_path, "las")
self.save_las(las_path, out_item, out_item["p"], pred_name)
self.save_las(las_path, out_item, out_item["l"], gt_name)
self._seen_batch += 1
def save_ply(self, npy_array, visual_name, path_out, filename):
if not os.path.exists(path_out):
os.makedirs(path_out)
path_out = os.path.join(path_out, filename)
el = PlyElement.describe(npy_array, visual_name)
if self._ply_format == "ascii":
PlyData([el], text=True).write(path_out)
elif self._ply_format == "binary_little_endian":
PlyData([el], byte_order="<").write(path_out)
elif self._ply_format == "binary_big_endian":
PlyData([el], byte_order=">").write(path_out)
else:
PlyData([el]).write(path_out)
def save_tensorboard(self, out_item, visual_name, stage_num_batches):
pos = out_item["pos"].detach().cpu().unsqueeze(0)
colors = get_cmap("tab10")
config_dict = {"material": {"size": 0.3}}
for label, k in self._tensorboard_mesh.items():
value = out_item[k].detach().cpu()
if len(value.shape) == 2 and value.shape[1] == 3:
if value.min() >= 0 and value.max() <= 1:
value = (255 * value).type(torch.uint8).unsqueeze(0)
else:
value = value.type(torch.uint8).unsqueeze(0)
elif len(value.shape) == 1 and value.shape[0] == 1:
value = np.tile((255 * colors(value.numpy() % 10))[:, 0:3].astype(np.uint8), (pos.shape[0], 1)).reshape(
(1, -1, 3)
)
elif len(value.shape) == 1 or value.shape[1] == 1:
value = (255 * colors(value.numpy() % 10))[:, 0:3].astype(np.uint8).reshape((1, -1, 3))
else:
continue
self._writer.add_mesh(
self._stage + "/" + visual_name + "/" + label,
pos,
colors=value,
config_dict=config_dict,
global_step=(self._current_epoch - 1) * (10 ** ceil(log10(stage_num_batches + 1))) + self._seen_batch,
)
def gen_bb_corners(self, points):
points_min = np.min(points, axis=0)
points_max = np.max(points, axis=0)
points_min_max = np.stack([points_min, points_max], axis=0)
bb_points = []
for x, y, z in [i for i in product(range(2), repeat=3)]: # 2^3 binary combination table
bb_points.append([points_min_max[x, 0], points_min_max[y, 1], points_min_max[z, 2]])
return bb_points
def apply_cmap(self, val):
out = np.zeros((val.shape[0], 3), dtype=int)
for label, color in enumerate(self._wandb_cmap):
out[val == label] = color
return out
PRED_COLOR = [255, 0, 0] # red
GT_COLOR = [124, 255, 0] # green
# https://docs.wandb.ai/guides/track/log/media#3d-visualizations
def save_wandb(self, out_item, gt_name, pred_name):
if self._max_points > 0:
out_item = out_item[self._rng.permutation(len(out_item))[: self._max_points]]
if self._wandb_cmap is None:
assert (out_item["p"].max() + 1) <= 14, "Wandb classes must be in 1-14"
assert (out_item["l"].max() + 1) <= 14, "Wandb classes must be in 1-14"
pred_points = np.stack([out_item["x"], out_item["y"], out_item["z"], out_item["p"] + 1], axis=1)
gt_points = np.stack([out_item["x"], out_item["y"], out_item["z"], out_item["l"] + 1], axis=1)
else:
pred_colors = self.apply_cmap(out_item["p"])
gt_colors = self.apply_cmap(out_item["l"])
pred_points = np.stack(
[out_item["x"], out_item["y"], out_item["z"], pred_colors[:, 0], pred_colors[:, 1], pred_colors[:, 2]],
axis=1,
)
gt_points = np.stack(
[out_item["x"], out_item["y"], out_item["z"], gt_colors[:, 0], gt_colors[:, 1], gt_colors[:, 2]], axis=1
)
corners = self.gen_bb_corners(pred_points)
pred_scene = wandb.Object3D(
{
"type": "lidar/beta",
"points": pred_points,
"boxes": np.array( # draw 3d boxes
[
{
"corners": corners,
"label": pred_name,
"color": self.PRED_COLOR,
}
]
),
}
)
gt_scene = wandb.Object3D(
{
"type": "lidar/beta",
"points": gt_points,
"boxes": np.array( # draw 3d boxes
[
{
"corners": corners,
"label": gt_name,
"color": self.GT_COLOR,
}
]
),
}
)
gt_scene_name = "{}/gt".format(self._stage)
pred_scene_name = "{}/pred".format(self._stage)
wandb.log({pred_scene_name: pred_scene, gt_scene_name: gt_scene, "epoch": self._current_epoch})
def save_las(self, out_path, out_item, label, fname):
if not os.path.exists(out_path):
os.makedirs(out_path)
format = ".laz" if self._las_compress else ".las"
path_out = os.path.join(out_path, fname + format)
new_hdr = laspy.LasHeader(version="1.2", point_format=3)
new_hdr.scales = [0.01, 0.01, 0.01]
pred_las = laspy.LasData(new_hdr)
pred_las.x = out_item["x"]
pred_las.y = out_item["y"]
pred_las.z = out_item["z"]
pred_las.classification = label.astype(np.ubyte) + 1
pred_las.write(path_out)