forked from torch-points3d/torch-points3d
-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathbase_dataset.py
576 lines (498 loc) · 20.1 KB
/
base_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
import os
from abc import ABC, abstractmethod
import logging
import functools
from functools import partial
import numpy as np
import torch
import torch_geometric
from torch_geometric.transforms import Compose, FixedPoints
import copy
from torch_points3d.models import model_interface
from torch_points3d.core.data_transform import instantiate_transforms, MultiScaleTransform
from torch_points3d.core.data_transform import instantiate_filters
from torch_points3d.datasets.batch import SimpleBatch
from torch_points3d.datasets.multiscale_data import MultiScaleBatch
from torch_points3d.utils.enums import ConvolutionFormat
from torch_points3d.utils.config import ConvolutionFormatFactory
from torch_points3d.utils.colors import COLORS, colored_print
# A logger for this file
log = logging.getLogger(__name__)
def explode_transform(transforms):
""" Returns a flattened list of transform
Arguments:
transforms {[list | T.Compose]} -- Contains list of transform to be added
Returns:
[list] -- [List of transforms]
"""
out = []
if transforms is not None:
if isinstance(transforms, Compose):
out = copy.deepcopy(transforms.transforms)
elif isinstance(transforms, list):
out = copy.deepcopy(transforms)
else:
raise Exception("Transforms should be provided either within a list or a Compose")
return out
def save_used_properties(func):
@functools.wraps(func)
def wrapper(self, *args, **kwargs):
# Save used_properties for mocking dataset when calling pretrained registry
result = func(self, *args, **kwargs)
if isinstance(result, torch.Tensor):
self.used_properties[func.__name__] = result.numpy().tolist()
elif isinstance(result, np.ndarray):
self.used_properties[func.__name__] = result.tolist()
else:
self.used_properties[func.__name__] = result
return result
return wrapper
class BaseDataset:
def __init__(self, dataset_opt):
self.dataset_opt = dataset_opt
# Default dataset path
dataset_name = dataset_opt.get("dataset_name", None)
if dataset_name:
self._data_path = os.path.join(dataset_opt.dataroot, dataset_name)
else:
class_name = self.__class__.__name__.lower().replace("dataset", "")
self._data_path = os.path.join(dataset_opt.dataroot, class_name)
self._batch_size = None
self.strategies = {}
self._contains_dataset_name = False
self.train_sampler = None
self.test_sampler = None
self.val_sampler = None
self._train_dataset = None
self._test_dataset = None
self._val_dataset = None
self.train_pre_batch_collate_transform = None
self.val_pre_batch_collate_transform = None
self.test_pre_batch_collate_transform = None
BaseDataset.set_transform(self, dataset_opt)
self.set_filter(dataset_opt)
self.used_properties = {}
@staticmethod
def remove_transform(transform_in, list_transform_class):
""" Remove a transform if within list_transform_class
Arguments:
transform_in {[type]} -- [Compose | List of transform]
list_transform_class {[type]} -- [List of transform class to be removed]
Returns:
[type] -- [description]
"""
if isinstance(transform_in, Compose) or isinstance(transform_in, list):
if len(list_transform_class) > 0:
transform_out = []
transforms = transform_in.transforms if isinstance(transform_in, Compose) else transform_in
for t in transforms:
if not isinstance(t, tuple(list_transform_class)):
transform_out.append(t)
transform_out = Compose(transform_out)
else:
transform_out = transform_in
return transform_out
@staticmethod
def set_transform(obj, dataset_opt):
"""This function create and set the transform to the obj as attributes
"""
obj.pre_transform = None
obj.test_transform = None
obj.train_transform = None
obj.val_transform = None
obj.inference_transform = None
for key_name in dataset_opt.keys():
if "transform" in key_name:
new_name = key_name.replace("transforms", "transform")
try:
transform = instantiate_transforms(getattr(dataset_opt, key_name))
except Exception:
log.exception("Error trying to create {}, {}".format(new_name, getattr(dataset_opt, key_name)))
continue
setattr(obj, new_name, transform)
inference_transform = explode_transform(obj.pre_transform)
inference_transform += explode_transform(obj.test_transform)
obj.inference_transform = Compose(inference_transform) if len(inference_transform) > 0 else None
def set_filter(self, dataset_opt):
"""This function create and set the pre_filter to the obj as attributes
"""
self.pre_filter = None
for key_name in dataset_opt.keys():
if "filter" in key_name:
new_name = key_name.replace("filters", "filter")
try:
filt = instantiate_filters(getattr(dataset_opt, key_name))
except Exception:
log.exception("Error trying to create {}, {}".format(new_name, getattr(dataset_opt, key_name)))
continue
setattr(self, new_name, filt)
@staticmethod
def _collate_fn(batch, collate_fn=None, pre_collate_transform=None):
if pre_collate_transform:
batch = pre_collate_transform(batch)
return collate_fn(batch)
@staticmethod
def _get_collate_function(conv_type, is_multiscale, pre_collate_transform=None):
is_dense = ConvolutionFormatFactory.check_is_dense_format(conv_type)
if is_multiscale:
if conv_type.lower() == ConvolutionFormat.PARTIAL_DENSE.value.lower():
fn = MultiScaleBatch.from_data_list
else:
raise NotImplementedError(
"MultiscaleTransform is activated and supported only for partial_dense format"
)
else:
if is_dense:
fn = SimpleBatch.from_data_list
else:
fn = torch_geometric.data.batch.Batch.from_data_list
return partial(BaseDataset._collate_fn, collate_fn=fn, pre_collate_transform=pre_collate_transform)
@staticmethod
def get_num_samples(batch, conv_type):
is_dense = ConvolutionFormatFactory.check_is_dense_format(conv_type)
if is_dense:
return batch.pos.shape[0]
else:
return batch.batch.max() + 1
@staticmethod
def get_sample(batch, key, index, conv_type):
assert hasattr(batch, key)
is_dense = ConvolutionFormatFactory.check_is_dense_format(conv_type)
if is_dense:
return batch[key][index]
else:
return batch[key][batch.batch == index]
def create_dataloaders(
self,
model: model_interface.DatasetInterface,
batch_size: int,
shuffle: bool,
num_workers: int,
precompute_multi_scale: bool,
):
""" Creates the data loaders. Must be called in order to complete the setup of the Dataset
"""
conv_type = model.conv_type
self._batch_size = batch_size
if self.train_sampler:
log.info(self.train_sampler)
if self.train_dataset:
self._train_loader = self._dataloader(
self.train_dataset,
self.train_pre_batch_collate_transform,
conv_type,
precompute_multi_scale,
batch_size=batch_size,
shuffle=shuffle and not self.train_sampler,
num_workers=num_workers,
sampler=self.train_sampler,
)
if self.test_dataset:
self._test_loaders = [
self._dataloader(
dataset,
self.test_pre_batch_collate_transform,
conv_type,
precompute_multi_scale,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
sampler=self.test_sampler,
)
for dataset in self.test_dataset
]
if self.val_dataset:
self._val_loader = self._dataloader(
self.val_dataset,
self.val_pre_batch_collate_transform,
conv_type,
precompute_multi_scale,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
sampler=self.val_sampler,
)
if precompute_multi_scale:
self.set_strategies(model)
def _dataloader(self, dataset, pre_batch_collate_transform, conv_type, precompute_multi_scale, **kwargs):
batch_collate_function = self.__class__._get_collate_function(
conv_type, precompute_multi_scale, pre_batch_collate_transform
)
num_workers = kwargs.get("num_workers", 0)
persistent_workers = num_workers > 0
dataloader = partial(
torch.utils.data.DataLoader,
collate_fn=batch_collate_function,
worker_init_fn=np.random.seed,
persistent_workers=persistent_workers,
)
return dataloader(dataset, **kwargs)
@property
def has_train_loader(self):
return hasattr(self, "_train_loader")
@property
def has_val_loader(self):
return hasattr(self, "_val_loader")
@property
def has_test_loaders(self):
return hasattr(self, "_test_loaders")
@property
def train_dataset(self):
return self._train_dataset
@train_dataset.setter
def train_dataset(self, value):
self._train_dataset = value
if not hasattr(self._train_dataset, "name"):
setattr(self._train_dataset, "name", "train")
@property
def val_dataset(self):
return self._val_dataset
@val_dataset.setter
def val_dataset(self, value):
self._val_dataset = value
if not hasattr(self._val_dataset, "name"):
setattr(self._val_dataset, "name", "val")
@property
def test_dataset(self):
return self._test_dataset
@test_dataset.setter
def test_dataset(self, value):
if isinstance(value, list):
self._test_dataset = value
else:
self._test_dataset = [value]
for i, dataset in enumerate(self._test_dataset):
if not hasattr(dataset, "name"):
if self.num_test_datasets > 1:
setattr(dataset, "name", "test_%i" % i)
else:
setattr(dataset, "name", "test")
else:
self._contains_dataset_name = True
# Check for uniqueness
all_names = [d.name for d in self.test_dataset]
if len(set(all_names)) != len(all_names):
raise ValueError("Datasets need to have unique names. Current names are {}".format(all_names))
@property
def train_dataloader(self):
return self._train_loader
@property
def val_dataloader(self):
return self._val_loader
@property
def test_dataloaders(self):
if self.has_test_loaders:
return self._test_loaders
else:
return []
@property
def _loaders(self):
loaders = []
if self.has_train_loader:
loaders += [self.train_dataloader]
if self.has_val_loader:
loaders += [self.val_dataloader]
if self.has_test_loaders:
loaders += self.test_dataloaders
return loaders
@property
def num_test_datasets(self):
return len(self._test_dataset) if self._test_dataset else 0
@property
def _test_datatset_names(self):
if self.test_dataset:
return [d.name for d in self.test_dataset]
else:
return []
@property
def available_stage_names(self):
out = self._test_datatset_names
if self.has_val_loader:
out += [self._val_dataset.name]
return out
@property
def available_dataset_names(self):
return ["train"] + self.available_stage_names
def get_raw_data(self, stage, idx, **kwargs):
assert stage in self.available_dataset_names
dataset = self.get_dataset(stage)
if hasattr(dataset, "get_raw_data"):
return dataset.get_raw_data(idx, **kwargs)
else:
raise Exception("Dataset {} doesn t have a get_raw_data function implemented".format(dataset))
def has_labels(self, stage: str) -> bool:
""" Tests if a given dataset has labels or not
Parameters
----------
stage : str
name of the dataset to test
"""
assert stage in self.available_dataset_names
dataset = self.get_dataset(stage)
if hasattr(dataset, "has_labels"):
return dataset.has_labels
sample = dataset[0]
if hasattr(sample, "y"):
return sample.y is not None
return False
@property # type: ignore
@save_used_properties
def is_hierarchical(self):
""" Used by the metric trackers to log hierarchical metrics
"""
return False
@property # type: ignore
@save_used_properties
def class_to_segments(self):
""" Use this property to return the hierarchical map between classes and segment ids, example:
{
'Airplaine': [0,1,2],
'Boat': [3,4,5]
}
"""
return None
@property # type: ignore
@save_used_properties
def num_classes(self):
return self.train_dataset.num_classes
@property
def weight_classes(self):
return getattr(self.train_dataset, "weight_classes", None)
@property # type: ignore
@save_used_properties
def feature_dimension(self):
if self.train_dataset:
return self.train_dataset.num_features
elif self.test_dataset is not None:
if isinstance(self.test_dataset, list):
return self.test_dataset[0].num_features
else:
return self.test_dataset.num_features
elif self.val_dataset is not None:
return self.val_dataset.num_features
else:
raise NotImplementedError()
@property
def batch_size(self):
return self._batch_size
@property
def num_batches(self):
out = {
self.train_dataset.name: len(self._train_loader),
"val": len(self._val_loader) if self.has_val_loader else 0,
}
if self.test_dataset:
for loader in self._test_loaders:
stage_name = loader.dataset.name
out[stage_name] = len(loader)
return out
def get_dataset(self, name):
""" Get a dataset by name. Raises an exception if no dataset was found
Parameters
----------
name : str
"""
all_datasets = [self.train_dataset, self.val_dataset]
if self.test_dataset:
all_datasets += self.test_dataset
for dataset in all_datasets:
if dataset is not None and dataset.name == name:
return dataset
raise ValueError("No dataset with name %s was found." % name)
def _set_composed_multiscale_transform(self, attr, transform):
current_transform = getattr(attr.dataset, "transform", None)
if current_transform is None:
setattr(attr.dataset, "transform", transform)
else:
if (
isinstance(current_transform, Compose) and transform not in current_transform.transforms
): # The transform contains several transformations
current_transform.transforms += [transform]
elif current_transform != transform:
setattr(
attr.dataset, "transform", Compose([current_transform, transform]),
)
def _set_multiscale_transform(self, transform):
for _, attr in self.__dict__.items():
if isinstance(attr, torch.utils.data.DataLoader):
self._set_composed_multiscale_transform(attr, transform)
for loader in self.test_dataloaders:
self._set_composed_multiscale_transform(loader, transform)
def set_strategies(self, model):
strategies = model.get_spatial_ops()
transform = MultiScaleTransform(strategies)
self._set_multiscale_transform(transform)
@abstractmethod
def get_tracker(self, wandb_log: bool, tensorboard_log: bool):
pass
def resolve_saving_stage(self, selection_stage):
"""This function is responsible to determine if the best model selection
is going to be on the validation or test datasets
"""
log.info(
"Available stage selection datasets: {} {} {}".format(
COLORS.IPurple, self.available_stage_names, COLORS.END_NO_TOKEN
)
)
if self.num_test_datasets > 1 and not self._contains_dataset_name:
msg = "If you want to have better trackable names for your test datasets, add a "
msg += COLORS.IPurple + "name" + COLORS.END_NO_TOKEN
msg += " attribute to them"
log.info(msg)
if selection_stage == "":
if self.has_val_loader:
selection_stage = self.val_dataset.name
else:
selection_stage = self.test_dataset[0].name
log.info(
"The models will be selected using the metrics on following dataset: {} {} {}".format(
COLORS.IPurple, selection_stage, COLORS.END_NO_TOKEN
)
)
return selection_stage
def add_weights(self, dataset_name="train", class_weight_method="sqrt"):
""" Add class weights to a given dataset that are then accessible using the `class_weights` attribute
"""
L = self.num_classes
weights = torch.ones(L)
dataset = self.get_dataset(dataset_name)
idx_classes, counts = torch.unique(dataset.data.y, return_counts=True)
dataset.idx_classes = torch.arange(L).long()
weights[idx_classes] = counts.float()
weights = weights.float()
weights = weights.mean() / weights
if class_weight_method == "sqrt":
weights = torch.sqrt(weights)
elif str(class_weight_method).startswith("log"):
weights = torch.log(1.1 + weights / weights.sum())
else:
raise ValueError("Method %s not supported" % class_weight_method)
weights /= torch.sum(weights)
log.info("CLASS WEIGHT : {}".format([np.round(weight.item(), 4) for weight in weights]))
setattr(dataset, "weight_classes", weights)
return dataset
def __repr__(self):
message = "Dataset: %s \n" % self.__class__.__name__
for attr in self.__dict__:
if "transform" in attr:
message += "{}{} {}= {}\n".format(COLORS.IPurple, attr, COLORS.END_NO_TOKEN, getattr(self, attr))
for attr in self.__dict__:
if attr.endswith("_dataset"):
dataset = getattr(self, attr)
if isinstance(dataset, list):
if len(dataset) > 1:
size = ", ".join([str(len(d)) for d in dataset])
else:
size = len(dataset[0])
elif dataset:
size = len(dataset)
else:
size = 0
if attr.startswith("_"):
attr = attr[1:]
message += "Size of {}{} {}= {}\n".format(COLORS.IPurple, attr, COLORS.END_NO_TOKEN, size)
for key, attr in self.__dict__.items():
if key.endswith("_sampler") and attr:
message += "{}{} {}= {}\n".format(COLORS.IPurple, key, COLORS.END_NO_TOKEN, attr)
message += "{}Batch size ={} {}".format(COLORS.IPurple, COLORS.END_NO_TOKEN, self.batch_size)
return message