forked from torch-points3d/torch-points3d
-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathsparseconv3d.py
210 lines (176 loc) · 7.11 KB
/
sparseconv3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import os
import sys
from omegaconf import DictConfig, OmegaConf
import logging
import torch
from torch_geometric.data import Batch
from torch_points3d.applications.modelfactory import ModelFactory
import torch_points3d.modules.SparseConv3d as sp3d
from torch_points3d.core.base_conv.message_passing import *
from torch_points3d.modules.SparseConv3d.modules import *
from torch_points3d.core.base_conv.partial_dense import *
from torch_points3d.models.base_architectures.unet import UnwrappedUnetBasedModel
from torch_points3d.core.common_modules.base_modules import MLP
from .utils import extract_output_nc
CUR_FILE = os.path.realpath(__file__)
DIR_PATH = os.path.dirname(os.path.realpath(__file__))
PATH_TO_CONFIG = os.path.join(DIR_PATH, "conf/sparseconv3d")
log = logging.getLogger(__name__)
def SparseConv3d(
architecture: str = None,
input_nc: int = None,
num_layers: int = None,
config: DictConfig = None,
backend: str = "minkowski",
*args,
**kwargs
):
"""Create a Sparse Conv backbone model based on architecture proposed in
https://arxiv.org/abs/1904.08755
Two backends are available at the moment:
- https://github.com/mit-han-lab/torchsparse
- https://github.com/NVIDIA/MinkowskiEngine
Parameters
----------
architecture : str, optional
Architecture of the model, choose from unet, encoder and decoder
input_nc : int, optional
Number of channels for the input
output_nc : int, optional
If specified, then we add a fully connected head at the end of the network to provide the requested dimension
num_layers : int, optional
Depth of the network
config : DictConfig, optional
Custom config, overrides the num_layers and architecture parameters
block:
Type of resnet block, ResBlock by default but can be any of the blocks in modules/SparseConv3d/modules.py
backend:
torchsparse or minkowski
"""
if "SPARSE_BACKEND" in os.environ and sp3d.nn.backend_valid(os.environ["SPARSE_BACKEND"]):
sp3d.nn.set_backend(os.environ["SPARSE_BACKEND"])
else:
sp3d.nn.set_backend(backend)
factory = SparseConv3dFactory(
architecture=architecture, num_layers=num_layers, input_nc=input_nc, config=config, **kwargs
)
return factory.build()
class SparseConv3dFactory(ModelFactory):
def _build_unet(self):
if self._config:
model_config = self._config
else:
path_to_model = os.path.join(PATH_TO_CONFIG, "unet_{}.yaml".format(self.num_layers))
model_config = OmegaConf.load(path_to_model)
ModelFactory.resolve_model(model_config, self.num_features, self._kwargs)
modules_lib = sys.modules[__name__]
return SparseConv3dUnet(model_config, None, None, modules_lib, **self.kwargs)
def _build_encoder(self):
if self._config:
model_config = self._config
else:
path_to_model = os.path.join(
PATH_TO_CONFIG,
"encoder_{}.yaml".format(self.num_layers),
)
model_config = OmegaConf.load(path_to_model)
ModelFactory.resolve_model(model_config, self.num_features, self._kwargs)
modules_lib = sys.modules[__name__]
return SparseConv3dEncoder(model_config, None, None, modules_lib, **self.kwargs)
class BaseSparseConv3d(UnwrappedUnetBasedModel):
CONV_TYPE = "sparse"
def __init__(self, model_config, model_type, dataset, modules, *args, **kwargs):
super().__init__(model_config, model_type, dataset, modules)
self.weight_initialization()
default_output_nc = kwargs.get("default_output_nc", None)
if not default_output_nc:
default_output_nc = extract_output_nc(model_config)
self._output_nc = default_output_nc
self._has_mlp_head = False
if "output_nc" in kwargs:
self._has_mlp_head = True
self._output_nc = kwargs["output_nc"]
self.mlp = MLP([default_output_nc, self.output_nc], activation=torch.nn.ReLU(), bias=False)
@property
def has_mlp_head(self):
return self._has_mlp_head
@property
def output_nc(self):
return self._output_nc
def weight_initialization(self):
for m in self.modules():
if isinstance(m, sp3d.nn.Conv3d) or isinstance(m, sp3d.nn.Conv3dTranspose):
torch.nn.init.kaiming_normal_(m.kernel, mode="fan_out", nonlinearity="relu")
if isinstance(m, sp3d.nn.BatchNorm):
torch.nn.init.constant_(m.bn.weight, 1)
torch.nn.init.constant_(m.bn.bias, 0)
def _set_input(self, data):
"""Unpack input data from the dataloader and perform necessary pre-processing steps.
Parameters
-----------
data:
a dictionary that contains the data itself and its metadata information.
"""
self.input = sp3d.nn.SparseTensor(data.x, data.coords, data.batch, self.device)
if data.pos is not None:
self.xyz = data.pos
else:
self.xyz = data.coords
class SparseConv3dEncoder(BaseSparseConv3d):
def forward(self, data, *args, **kwargs):
"""
Parameters:
-----------
data
A SparseTensor that contains the data itself and its metadata information. Should contain
F -- Features [N, C]
coords -- Coords [N, 4]
Returns
--------
data:
- x [1, output_nc]
"""
self._set_input(data)
data = self.input
for i in range(len(self.down_modules)):
data = self.down_modules[i](data)
out = Batch(x=data.F, batch=data.C[:, 0].long().to(data.F.device))
if not isinstance(self.inner_modules[0], Identity):
out = self.inner_modules[0](out)
if self.has_mlp_head:
out.x = self.mlp(out.x)
return out
class SparseConv3dUnet(BaseSparseConv3d):
def forward(self, data, *args, **kwargs):
"""Run forward pass.
Input --- D1 -- D2 -- D3 -- U1 -- U2 -- output
| |_________| |
|______________________|
Parameters
-----------
data
A SparseTensor that contains the data itself and its metadata information. Should contain
F -- Features [N, C]
coords -- Coords [N, 4]
Returns
--------
data:
- pos [N, 3] (coords or real pos if xyz is in data)
- x [N, output_nc]
- batch [N]
"""
self._set_input(data)
data = self.input
stack_down = []
for i in range(len(self.down_modules) - 1):
data = self.down_modules[i](data)
stack_down.append(data)
data = self.down_modules[-1](data)
stack_down.append(None)
# TODO : Manage the inner module
for i in range(len(self.up_modules)):
data = self.up_modules[i](data, stack_down.pop())
out = Batch(x=data.F, pos=self.xyz).to(self.device)
if self.has_mlp_head:
out.x = self.mlp(out.x)
return out