forked from torch-points3d/torch-points3d
-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathminkowski.py
196 lines (163 loc) · 6.84 KB
/
minkowski.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
import sys
from omegaconf import DictConfig, OmegaConf
import logging
import torch
from torch_geometric.data import Batch
from torch_points3d.applications.modelfactory import ModelFactory
from torch_points3d.modules.MinkowskiEngine.api_modules import *
from torch_points3d.core.base_conv.message_passing import *
from torch_points3d.core.base_conv.partial_dense import *
from torch_points3d.models.base_architectures.unet import UnwrappedUnetBasedModel
from torch_points3d.core.common_modules.base_modules import MLP
from .utils import extract_output_nc
CUR_FILE = os.path.realpath(__file__)
DIR_PATH = os.path.dirname(os.path.realpath(__file__))
PATH_TO_CONFIG = os.path.join(DIR_PATH, "conf/sparseconv3d")
log = logging.getLogger(__name__)
def Minkowski(
architecture: str = None, input_nc: int = None, num_layers: int = None, config: DictConfig = None, *args, **kwargs
):
""" Create a Minkowski backbone model based on architecture proposed in
https://arxiv.org/abs/1904.08755
Parameters
----------
architecture : str, optional
Architecture of the model, choose from unet, encoder and decoder
input_nc : int, optional
Number of channels for the input
output_nc : int, optional
If specified, then we add a fully connected head at the end of the network to provide the requested dimension
num_layers : int, optional
Depth of the network
config : DictConfig, optional
Custom config, overrides the num_layers and architecture parameters
in_feat:
Size of the first layer
block:
Type of resnet block, ResBlock by default but can be any of the blocks in modules/MinkowskiEngine/api_modules.py
"""
log.warning(
"Minkowski API is deprecated in favor of the SparseConv3d API. It should be a simple drop in replacement (no change to the API)."
)
factory = MinkowskiFactory(
architecture=architecture, num_layers=num_layers, input_nc=input_nc, config=config, **kwargs
)
return factory.build()
class MinkowskiFactory(ModelFactory):
def _build_unet(self):
if self._config:
model_config = self._config
else:
path_to_model = os.path.join(PATH_TO_CONFIG, "unet_{}.yaml".format(self.num_layers))
model_config = OmegaConf.load(path_to_model)
ModelFactory.resolve_model(model_config, self.num_features, self._kwargs)
modules_lib = sys.modules[__name__]
return MinkowskiUnet(model_config, None, None, modules_lib, **self.kwargs)
def _build_encoder(self):
if self._config:
model_config = self._config
else:
path_to_model = os.path.join(PATH_TO_CONFIG, "encoder_{}.yaml".format(self.num_layers),)
model_config = OmegaConf.load(path_to_model)
ModelFactory.resolve_model(model_config, self.num_features, self._kwargs)
modules_lib = sys.modules[__name__]
return MinkowskiEncoder(model_config, None, None, modules_lib, **self.kwargs)
class BaseMinkowski(UnwrappedUnetBasedModel):
CONV_TYPE = "sparse"
def __init__(self, model_config, model_type, dataset, modules, *args, **kwargs):
super(BaseMinkowski, self).__init__(model_config, model_type, dataset, modules)
self.weight_initialization()
default_output_nc = kwargs.get("default_output_nc", None)
if not default_output_nc:
default_output_nc = extract_output_nc(model_config)
self._output_nc = default_output_nc
self._has_mlp_head = False
if "output_nc" in kwargs:
self._has_mlp_head = True
self._output_nc = kwargs["output_nc"]
self.mlp = MLP([default_output_nc, self.output_nc], activation=torch.nn.LeakyReLU(0.2), bias=False)
@property
def has_mlp_head(self):
return self._has_mlp_head
@property
def output_nc(self):
return self._output_nc
def weight_initialization(self):
for m in self.modules():
if isinstance(m, ME.MinkowskiConvolution):
ME.utils.kaiming_normal_(m.kernel, mode="fan_out", nonlinearity="relu")
if isinstance(m, ME.MinkowskiBatchNorm):
nn.init.constant_(m.bn.weight, 1)
nn.init.constant_(m.bn.bias, 0)
def _set_input(self, data):
"""Unpack input data from the dataloader and perform necessary pre-processing steps.
Parameters
-----------
data:
a dictionary that contains the data itself and its metadata information.
"""
coords = torch.cat([data.batch.unsqueeze(-1).int(), data.coords.int()], -1)
self.input = ME.SparseTensor(features=data.x, coordinates=coords, device=self.device)
if data.pos is not None:
self.xyz = data.pos.to(self.device)
else:
self.xyz = data.coords.to(self.device)
class MinkowskiEncoder(BaseMinkowski):
def forward(self, data, *args, **kwargs):
"""
Parameters:
-----------
data
A SparseTensor that contains the data itself and its metadata information. Should contain
F -- Features [N, C]
coords -- Coords [N, 4]
Returns
--------
data:
- x [1, output_nc]
"""
self._set_input(data)
data = self.input
for i in range(len(self.down_modules)):
data = self.down_modules[i](data)
out = Batch(x=data.F, batch=data.C[:, 0].long().to(data.F.device))
if not isinstance(self.inner_modules[0], Identity):
out = self.inner_modules[0](out)
if self.has_mlp_head:
out.x = self.mlp(out.x)
return out
class MinkowskiUnet(BaseMinkowski):
def forward(self, data, *args, **kwargs):
"""Run forward pass.
Input --- D1 -- D2 -- D3 -- U1 -- U2 -- output
| |_________| |
|______________________|
Parameters
-----------
data
A SparseTensor that contains the data itself and its metadata information. Should contain
F -- Features [N, C]
coords -- Coords [N, 4]
Returns
--------
data:
- pos [N, 3] (coords or real pos if xyz is in data)
- x [N, output_nc]
- batch [N]
"""
self._set_input(data)
data = self.input
stack_down = []
for i in range(len(self.down_modules) - 1):
data = self.down_modules[i](data)
stack_down.append(data)
data = self.down_modules[-1](data)
stack_down.append(None)
# TODO : Manage the inner module
for i in range(len(self.up_modules)):
data = self.up_modules[i](data, stack_down.pop())
out = Batch(x=data.F, pos=self.xyz, batch=data.C[:, 0])
if self.has_mlp_head:
out.x = self.mlp(out.x)
return out