# Copyright 2020 LMNT, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import numpy as np import os import torch import librosa import torchaudio import random from argparse import ArgumentParser import pdb from torch.utils.tensorboard import SummaryWriter from params import AttrDict, params as base_params from model import DiffWave from os import path from glob import glob from tqdm import tqdm random.seed(23) models = {} def load_model(model_dir=None, args=None, params=None, device=torch.device('cuda')): # Lazy load model. if not model_dir in models: if os.path.exists(f'{model_dir}/weights.pt'): checkpoint = torch.load(f'{model_dir}/weights.pt') else: checkpoint = torch.load(model_dir) model = DiffWave(args, AttrDict(base_params)).to(device) model.load_state_dict(checkpoint['model']) model.eval() models[model_dir] = model model = models[model_dir] model.params.override(params) return model def inference_schedule(model, fast_sampling=False): training_noise_schedule = np.array(model.params.noise_schedule) inference_noise_schedule = np.array(model.params.inference_noise_schedule) if fast_sampling else training_noise_schedule talpha = 1 - training_noise_schedule talpha_cum = np.cumprod(talpha) beta = inference_noise_schedule alpha = 1 - beta alpha_cum = np.cumprod(alpha) # print("alpha_cum",talpha_cum) # print("gamma_cum",alpha_cum) # sigmas = [0,0,0,0,0,0,0] # for n in range(len(alpha) - 1, -1, -1): # sigmas[n] = ((1.0 - alpha_cum[n-1]) / (1.0 - alpha_cum[n]) * beta[n])**0.5 # print("sigmas",sigmas) T = [] for s in range(len(inference_noise_schedule)): for t in range(len(training_noise_schedule) - 1): if talpha_cum[t+1] <= alpha_cum[s] <= talpha_cum[t]: twiddle = (talpha_cum[t]**0.5 - alpha_cum[s]**0.5) / (talpha_cum[t]**0.5 - talpha_cum[t+1]**0.5) T.append(t + twiddle) break T = np.array(T, dtype=np.float32) return alpha, beta, alpha_cum, T # def _write_summary(self, step, features, loss): # writer = SummaryWriter(self.model_dir, purge_step=step) # writer.add_scalar('valid/pesq', , step) # writer.add_scalar('valid/stoi', , step) # writer.flush() # self.summary_writer = writer def predict(spectrogram, model, noisy_signal, alpha, beta, alpha_cum, T, device=torch.device('cuda'),noisy_in=False,noisy_out=False, noisy_inout=False): with torch.no_grad(): # Expand rank 2 tensors by adding a batch dimension. if len(spectrogram.shape) == 2: spectrogram = spectrogram.unsqueeze(0) spectrogram = spectrogram.to(device) audio = torch.randn(spectrogram.shape[0], model.params.hop_samples * spectrogram.shape[-1], device=device) noise_scale = torch.from_numpy(alpha_cum**0.5).float().unsqueeze(1).to(device) noisy_audio = torch.zeros(spectrogram.shape[0], model.params.hop_samples * spectrogram.shape[-1], device=device) noisy_audio[:,:noisy_signal.shape[0]] = torch.from_numpy(noisy_signal).to(device) if noisy_in or noisy_inout: audio = noisy_audio for n in range(len(alpha) - 1, -1, -1): c1 = 1 / alpha[n]**0.5 c2 = beta[n] / (1 - alpha_cum[n])**0.5 audio = c1 * (audio - c2 * model(audio, spectrogram, torch.tensor([T[n]], device=audio.device)).squeeze(1)) if n > 0: noise = torch.randn_like(audio) sigma = ((1.0 - alpha_cum[n-1]) / (1.0 - alpha_cum[n]) * beta[n])**0.5 audio += sigma * noise elif n == 0: if noisy_out or noisy_inout: audio = audio * 0.8 + noisy_audio * 0.2 audio = torch.clamp(audio, -1.0, 1.0) return audio, model.params.sample_rate # def snr_process(audio,noisy_signal,device=torch.device('cuda')): # noisy_signal = torch.from_numpy(noisy_signal).to(device) # # pdb.set_trace() # noise = noisy_signal - audio # noise_amp = np.average(np.power(noise.cpu(), 2)) # audio_amp = np.average(np.power(audio.cpu(), 2)) # snr = audio_amp/noise_amp # print("snr:",snr) # audio = (1/(snr+1))* audio + (snr/(snr+1)) *noisy_signal # return audio def main(args): if args.se: base_params.n_mels = 513 else: base_params.n_mels = 80 specnames = [] print("spectrum:",args.spectrogram_path) print("noisy_signal:",args.wav_path) for path in args.spectrogram_path: specnames += glob(f'{path}/*.wav.spec.npy', recursive=True) model = load_model(model_dir=args.model_dir ,args=args) alpha, beta, alpha_cum, T = inference_schedule(model, fast_sampling=args.fast) output_path = os.path.join(args.output, specnames[0].split("/")[-2]) if not os.path.exists(output_path): os.makedirs(output_path) for spec in tqdm(specnames): spectrogram = torch.from_numpy(np.load(spec)) noisy_signal, _ = librosa.load(os.path.join(args.wav_path,spec.split("/")[-1].replace(".spec.npy","")),sr=16000) wlen = noisy_signal.shape[0] audio, sr = predict(spectrogram, model, noisy_signal, alpha, beta, alpha_cum, T, noisy_in= args.noisy_in, noisy_out= args.noisy_out, noisy_inout= args.noisy_inout) audio = audio[:,:wlen] # audio = snr_process(audio,noisy_signal) output_name = os.path.join(output_path, spec.split("/")[-1].replace(".spec.npy", "")) torchaudio.save(output_name, audio.cpu(), sample_rate=sr) if __name__ == '__main__': parser = ArgumentParser(description='runs inference on a spectrogram file generated by diffwave.preprocess') parser.add_argument('model_dir', help='directory containing a trained model (or full path to weights.pt file)') parser.add_argument('spectrogram_path', nargs='+', help='space separated list of directories from spectrogram file generated by diffwave.preprocess') parser.add_argument('wav_path', help='input noisy wav directory') parser.add_argument('--output', '-o', default='output/', help='output path name') parser.add_argument('--fast', dest='fast', action='store_true', help='fast sampling procedure') parser.add_argument('--full', dest='fast', action='store_false', help='fast sampling procedure') parser.add_argument('--se', dest='se', action='store_true') parser.add_argument('--vocoder', dest='se', action='store_false') parser.add_argument('--voicebank', dest='voicebank', action='store_true') parser.add_argument('--noisy_in', dest='noisy_in', action='store_true') parser.add_argument('--noisy_out', dest='noisy_out', action='store_true') parser.add_argument('--noisy_inout', dest='noisy_inout', action='store_true') parser.set_defaults(se=True) parser.set_defaults(fast=True) parser.set_defaults(fix_in=False) parser.set_defaults(voicebank=False) parser.set_defaults(noisy_in=False) parser.set_defaults(noisy_out=False) parser.set_defaults(noisy_inout=False) main(parser.parse_args())