-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy path__main__.py
70 lines (61 loc) · 2.82 KB
/
__main__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# Copyright 2020 LMNT, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from argparse import ArgumentParser
from torch.cuda import device_count
from torch.multiprocessing import spawn
from learner import train, train_distributed
from params import params
def _get_free_port():
import socketserver
with socketserver.TCPServer(('localhost', 0), None) as s:
return s.server_address[1]
def main(args):
replica_count = device_count()
if args.se:
params.n_mels = 513
else:
params.n_mels = 80
if replica_count > 1:
if params.batch_size % replica_count != 0:
raise ValueError(f'Batch size {params.batch_size} is not evenly divisble by # GPUs {replica_count}.')
params.batch_size = params.batch_size // replica_count
port = _get_free_port()
spawn(train_distributed, args=(replica_count, port, args, params), nprocs=replica_count, join=True)
else:
train(args, params)
if __name__ == '__main__':
parser = ArgumentParser(description='train (or resume training) a DiffWave model')
parser.add_argument('model_dir',
help='directory in which to store model checkpoints and training logs')
parser.add_argument('clean_dir',
help='clean directory')
parser.add_argument('data_dirs', nargs='+',
help='space separated list of directories from spectrogram file generated by diffwave.preprocess')
parser.add_argument('--max_steps', default=None, type=int,
help='maximum number of training steps')
parser.add_argument('--fp16', action='store_true', default=False,
help='use 16-bit floating point operations for training')
parser.add_argument('--se', dest='se', action='store_true')
parser.add_argument('--vocoder', dest='se', action='store_false')
parser.add_argument('--fix', dest='fix', action='store_true')
parser.add_argument('--fix_in', dest='fix_in', action='store_true')
parser.add_argument('--pretrain_path', default=None, type=str,
help='pretrain model path if there is a pretrain vocoder model, load_state_dict strict=False')
parser.add_argument('--voicebank', dest='voicebank', action='store_true')
parser.set_defaults(se=True)
parser.set_defaults(fix=False)
parser.set_defaults(fix_in=False)
parser.set_defaults(voicebank=False)
main(parser.parse_args())