diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000..a09c56d
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1 @@
+/.idea
diff --git a/.idea/vcs.xml b/.idea/vcs.xml
deleted file mode 100644
index 94a25f7..0000000
--- a/.idea/vcs.xml
+++ /dev/null
@@ -1,6 +0,0 @@
-
-
-
-
-
-
\ No newline at end of file
diff --git a/.ipynb_checkpoints/Time Series Prediction-checkpoint.ipynb b/.ipynb_checkpoints/Time Series Prediction-checkpoint.ipynb
new file mode 100644
index 0000000..3d8b41e
--- /dev/null
+++ b/.ipynb_checkpoints/Time Series Prediction-checkpoint.ipynb
@@ -0,0 +1,721 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Get the dataset and prepare it for analysis and model"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Set the index to date"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Price | \n",
+ " Open | \n",
+ " High | \n",
+ " Low | \n",
+ " Change % | \n",
+ "
\n",
+ " \n",
+ " Date | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 2017-08-10 | \n",
+ " 64.165 | \n",
+ " 63.898 | \n",
+ " 64.175 | \n",
+ " 63.855 | \n",
+ " 0.48 | \n",
+ "
\n",
+ " \n",
+ " 2017-08-09 | \n",
+ " 63.860 | \n",
+ " 63.780 | \n",
+ " 63.860 | \n",
+ " 63.710 | \n",
+ " 0.26 | \n",
+ "
\n",
+ " \n",
+ " 2017-08-08 | \n",
+ " 63.692 | \n",
+ " 63.750 | \n",
+ " 63.785 | \n",
+ " 63.615 | \n",
+ " -0.23 | \n",
+ "
\n",
+ " \n",
+ " 2017-08-07 | \n",
+ " 63.840 | \n",
+ " 63.710 | \n",
+ " 63.865 | \n",
+ " 63.648 | \n",
+ " 0.26 | \n",
+ "
\n",
+ " \n",
+ " 2017-08-04 | \n",
+ " 63.675 | \n",
+ " 63.670 | \n",
+ " 63.786 | \n",
+ " 63.572 | \n",
+ " -0.05 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Price Open High Low Change %\n",
+ "Date \n",
+ "2017-08-10 64.165 63.898 64.175 63.855 0.48\n",
+ "2017-08-09 63.860 63.780 63.860 63.710 0.26\n",
+ "2017-08-08 63.692 63.750 63.785 63.615 -0.23\n",
+ "2017-08-07 63.840 63.710 63.865 63.648 0.26\n",
+ "2017-08-04 63.675 63.670 63.786 63.572 -0.05"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = pd.read_csv('USD_INR.csv')\n",
+ "df['Date'] = pd.to_datetime(df[\"Date\"])\n",
+ "df_idx = df.set_index([\"Date\"], drop=True)\n",
+ "df_idx.head(5)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Flip the dataframe"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df_idx = df_idx.sort_index(axis=1, ascending=True)\n",
+ "df_idx = df_idx.iloc[::-1]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Plot the data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEACAYAAACj0I2EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8VOXVwPHfSQgJO4SEfQkgIItshkVFURFUcMEqarVIlYq+LrVqVdC6VLRFfatVcaNaxbYqvLhgxRXEDRUBjcgi4oIS1rAHQvbz/nFvJjNkkkyS2XO+n08+ufe5d+6cDMyZZ577LKKqGGOMiX0JkQ7AGGNMcFhCN8aYOGEJ3Rhj4oQldGOMiROW0I0xJk5YQjfGmDhhCd0YY+KEJXRjjIkTltCNMSZOWEI3xpg40SCcT5aWlqYZGRnhfEpjjIl5K1eu3Kmq6dWdV21CF5HewFyvou7AHcDzbnkGsBE4X1X3VHWtjIwMVqxYUd1TGmOM8SIiPwdyXrVNLqq6XlUHqeog4GggD3gVmAYsVtWewGJ33xhjTITUtA19NPCDqv4MnA3MccvnABOCGZgxxpiaqWlCvxB40d1uq6pbAdzfbYIZmDHGmJoJ+KaoiDQEzgKm1+QJRGQqMBWgS5cuFY4XFRWRnZ1Nfn5+TS4bk1JSUujUqRNJSUmRDsUYE4dq0svldOBLVd3u7m8XkfaqulVE2gM7/D1IVWcDswEyMzMrrKaRnZ1Ns2bNyMjIQERqGH7sUFV27dpFdnY23bp1i3Q4xpg4VJMml19T3twC8Dow2d2eDCyoTQD5+fm0bt06rpM5gIjQunXrevFNxJhooqp8tz03qNfcc7AQf6u9Ze/J81seLgEldBFpDIwBXvEqngmMEZEN7rGZtQ0i3pN5mfrydxoTTZ755CfGPvQRK3+usld1wNZs2cfgGe/xt3e/8ynfkZvPyPuWcN6TnwXleWojoISuqnmq2lpV93mV7VLV0ara0/29O3RhhlZiYiKDBg2if//+TJw4kby8PL/njRs3jr1794Y5OmNMXWRtct6z2Xv8v69ravwjnwAwa8n3PuU79hcAsPLnPQy7d1FQnqumbOg/0KhRI7Kysli9ejUNGzbkySef9DmuqpSWlvLmm2/SsmXLCEVpjKmNshaQxITgf0P+bnsudy5YTWmpkl9U4infkVsQ9OcKhCX0wxx//PF8//33bNy4kT59+nDVVVcxZMgQNm3aREZGBjt37gTg+eefZ8CAAQwcOJBJkyYBkJOTw7nnnsvQoUMZOnQoS5cujeSfYowBctzk+t32A0G/9tiHPmLOZz+zavM+cvOLg379mgrrXC7V+fN/17B2y/6gXrNvh+bceWa/gM4tLi7mrbfe4rTTTgNg/fr1PPvsszz++OM+561Zs4Z7772XpUuXkpaWxu7dTmvTddddx/XXX8/IkSP55ZdfOPXUU1m3bl1Q/x5jTM18sdF5f/7zk5+4YUyvul3rJ/8tyxMeW0r/js19ylQ17PfNoiqhR8qhQ4cYNGgQ4NTQp0yZwpYtW+jatSsjRoyocP7777/PeeedR1paGgCpqakALFq0iLVr13rO279/P7m5uTRr1iwMf4Uxpiq1Ta2lpcq4Rz7mtvF9mPTMF5Wet3qzUxlNa9qQnQcKufz5FTw9eWgtn7V2oiqhB1qTDrayNvTDNWnSxO/5lX3ylpaW8tlnn9GoUaOgx2iMqaNaZvS5Kzbx7bbcKpO5t9+M6MrfF21g0Tq/Q3NCytrQa2H06NHMmzePXbt2AXiaXMaOHcusWbM85/n7kDDGxJY1W/ZVeXxs37Y+++cd3QmAts2TQxZTZSyh10K/fv247bbbGDVqFAMHDuSGG24A4JFHHmHFihUMGDCAvn37VugtY4yJPQ0SKqbJxy8eAkCz5AbMviSTZy8dyuXHd+OmU3vTsWUjJrpJPdyiqsklUg4cqHj3OyMjg9WrV/uUbdy40bM9efJkJk+e7HM8LS2NuXPnYoyJHu2ap7Btfz5DM1Jr9fj+HVv47D920RDGHdWejTPHe8pO6t2Gk3qXz0+Y2rQhu93RpOG8MWo1dGNMXBvjNol0S/N/T6w6019Z5bM/fkD7ah/TqnFDikqUPXlFtXrO2rKEboyJa80bOQ0RLRrVbpbTsX3b1fgx//rMWWBoyIz3yLznPbbuO1Sr564pS+jGmHqhtg0fAzuXN7mkNQ3sRucDEwd4tnceKPRMFxBqUdGGHokO+JEQyVnYjKmvSt23XUINh/6v/Hk35z5RPtHWN3eNpWlyYCmzfQvfrsu7DxayaXcenVMb1yiGmop4DT0lJYVdu3bFfbIrmw89JSUl0qEYU6+UpZafdh6sdKRnmR9yDvDp9870Ht7JHKBZSlLAFc9uaU3o0ML3vV5QXFLJ2cET8Rp6p06dyM7OJicnJ9KhhFzZikXGmPBRnIw+f2U281dm+/ROOdzov30IwEc3nVTn5/10+mgAMqYtBKBpcuhXKot4Qk9KSrIVfIwxYfOPj35kWLdUBnaufObUe99cW+mxmvp2xmnsySukXYvQfzuPeEI3xphQOrw19943nQnzqqqpv7Nmu2f7/vMGcO6Q2n+zTklKrNCmHiqW0I0xca2ktPb3564b3ZPzMzsHMZrQivhNUWOMCaXKEvoPOeUjxA8VlvD26q0Vzvlmc9XzuEQbq6EbY+JaaSU96D7ZsJMe6U0BOPeJT1m7teJaDH8556iQxhZsVkM3xsS1/Yf8D79fvz0XgN/NWe43md9/3oCw3MgMpoBq6CLSEnga6A8ocBmwHpgLZAAbgfNVNTjLahtjTJC8lrXFb/kLy37hpN5tKsxbPrZvW/p3bBFTbedlAq2hPwy8rapHAgOBdcA0YLGq9gQWu/vGGBM1Hlm8wWf/lD5teeF3wz37lz+/wuf4k785mtmXZPL70T3DEl+wVVtDF5HmwAnAbwFUtRAoFJGzgRPd0+YAHwC3hCJIY4ypjQff+86zXVU3xTKn9a/5RFzRJJAaencgB3hWRL4SkadFpAnQVlW3Ari/21R1EWOMiZSzB3Wo9pyrT+oRhkhCK5CE3gAYAjyhqoOBg9SgeUVEporIChFZUR+G9xtjos+CStrRy/x6WGduOvXIMEUTOoEk9GwgW1WXufvzcRL8dhFpD+D+9rsiqqrOVtVMVc1MT08PRszGGFMn391zOqf1K29eibXuiZWpNqGr6jZgk4j0dotGA2uB14GyNdgmAwtCEqExxgRZwwYJnkUnOqc2ipvpuwMdWHQt8B8RaQj8CFyK82EwT0SmAL8AE0MTojHG1E6nVo3I3nOIFy8fUeHY19nOKNAHzhsY7rBCJqCErqpZQKafQ6ODG44xxgRHSamSvecQ3dOacEyP1pWeV1wSP2sx2EhRY0xc2n2wEIAfdx70e/yJi4cAMLRbq7DFFGo2l4sxpl46/aj2AfVNjyVWQzfGxKyt+w6Rm+9/rpaiklIAGtRwLdFYZgndGBOzjvnr+4x58CO/xwqLnYQ+89wB4QwpoiyhG2Ni2rb9+X7Lv93mzKD4y+68cIYTUZbQjTEx6VBhiWc7v6ikwvFt+5xEnxgnfcwDYQndGBOT+tzxtmf7yNvfZl9eEQcKij1ljRs6fT5G96k/00xZQjfGxIWBd79L/zvf8YwAvfnlVYD/2nu8soRujIkrV/5rJarKr4Z0BGBAp5YRjih8rB+6MSaufJ29j27T3wQgJSmBhg3qT721/vylxpi4cnoAi1GkJCWGIZLoYQndGBOTirzmYGnS0H/i3pvnf9BRvLKEboyJSYvWbQfg/vMGcLCw/tz4rIoldGNMTNh1oICMaQt5eWW2T/n5mZ0rfUy/Ds1DHVZUsYRujIkJZbMm3vh/X1d6zkMXlM9t/tFNJzHvimNCHlc0sV4uxpiYkOg1yVZJqf85zJMblLeld2ndOOQxRRtL6MaYmPDBt+XLFn+w3u8SxpzQK50N955O/Rns78sSujEmqHLzi8gvKiW9WXJQr/vI+997tvPcm6DnHd3J55ymyfU7pdXvv94YE3RH3fUuQEgXjyjrX37JMV1D9hyxyG6KGmNCYn8lC08Ew+XPrwDK+5nPOLsfo3qlh+z5YkVACV1ENorINyKSJSIr3LJUEXlPRDa4v+NnYT5jTJ299tXmkD9H/44tAJh0TAZzLhsW8ueLdjWpoZ+kqoNUNdPdnwYsVtWewGJ33xhjALhjwZqgXq9jy0YVylKbNAzqc8S6ujS5nA3McbfnABPqHo4xJlaVliqllXQnDIa2zYN7kzUeBXpTVIF3RUSBp1R1NtBWVbcCqOpWEak/s8gbYyrofuubFcq+255Lr7bNgnL9AwXFJAiUfWZUNn9LfRZoQj9OVbe4Sfs9Efk20CcQkanAVIAuXbrUIkRjTLR7b+12v+V7DhYG5frzV2bz3fYDPmVDutptu8MF1OSiqlvc3zuAV4FhwHYRaQ/g/vbb019VZ6tqpqpmpqfbXWhj4tENc7P8ll8w+/OgXP+Pfob7Tzv9yKBcO55Um9BFpImINCvbBsYCq4HXgcnuaZOBBaEK0ph4kptfRMa0hWRMW8hH3+VEOpygKCwprfTY0HsXkTFtYa2vreq/Xb5Ns5RaXzNeBdLk0hZ4VZyVsxsAL6jq2yKyHJgnIlOAX4CJoQvTmPjQ49Y3feYhueSfX3BKnzb845JMJIZXpy+qIqHn5BYAUFhcWqvVgwqK/V+7ZeOkGl8r3lX76qrqj6o60P3pp6r3uuW7VHW0qvZ0f+8OfbjGxB5VpaiklHkrNnmSeZfUxlw3uicAi9btoNv0N8mYtpDcEA7GCaXDO7c08zMEv7b90r0T+nOXDgXgj2N7kZRo4yIPZ0P/jQmxsvUty9w2rg+Xn9AdgItHdGHYvYs9x466613++dtMTj6ybVhjDLav7xxbodfLzS+v4vyhlc9dXpmCImfelnsm9OfE3m1COqVArLOPOGNCyN80r2XJHJx24I0zx/PtjNM8ZZc9t4JJzywLS3yhMLBzSxISqm8+2n2w0NMcU5WyGnp9Wx+0NiyhGxMCm3bnkb0nz7O6zs2n9ebqk3qw5I8n+j0/JSmRn/46zrP/8YadvLDsl3CEGnQXVLKCUOJhSX7IjPcYeu+iav/OgmKnhp5ci/b3+sZeIWOC4MUvfuE/y34GYPnG3Rx//xJG3reEm19eBcDQjFRuOvVIuqU1qfQaIsLGmeOZcXY/AG599ZuQ94L58pc9bNieW6drHP4tpPSwXimn9mvrOS9j2kKW/biL/KLyNUBvffWbKnvB5Bc5NXRL6NWzV8iYOtqwPZfpr3zDba+uJmPaQiY++ZnnWNvmycydOoLMGgyCmXRMBhMGdQCcXjCh9KvHP2XMQx/V6WbsjDfW+uxntPb90HpqUqbP/gWzP+fWV76pcJ2f3CXmDlfW5JJsTS7VsoRuTB3s2J/PmIc+8nvsi9tGs+zWUxjevXWNuyQ+MLF8bczlG/13INu675CnP/ucTzdWe815yzex7Mddnv3rXvrKs102h3lteK8e9Ma1IxnZMw2AD286kUU3nOD3Ma/46fHyY84BP2fCtn35AKRYDb1a9goZUwfD/lLeQ+WLW0fTPKUBsycdzU9/HVengS9JiQmexRsmPvkZQ+9dxMOLNnCwoNhzzjF/fd+zfefra9ixP7/S6+3LK+Lml1d5Rm6WlCoLsrb4nOPdDFITJV5NLGXT2QJ0bd2EI9oEPo/LroOFfPXLHu5/+1ufudSvfuFLAJqlWL/z6lhCNyYI2jVPoU3zFFbddSpj+7ULyiCh6af38Wzn5Bbw0KLv6HfnOxQWl7LdT/I+/6nPKpSVGXi3bw18/6GKTSxnPPpJreIscNu4K7sZCuX9x6ty8/xVnPP4pzz+wQ8M8PONoUmyNblUxxK6MbVU7DU68v+uPCbo12/U0LfnS5lef3qL4V7fDN75g9OssXFXXkDXVVVmLCxv9/7vNSMB+H7HAfbm1XwyrSPbNwfg+F5plZ5TVf/xZbeO9lt+9X++ZPwjH3v2u7au/IaycVhCN6YWVJU/vbYagLvP7kfn1MYheR4R4fVrjqvynN7typs1FmRVbJs+fC6Uucs38cqXznnnZ3biqE7lzSR3vl7zRSkGd24JwLj+7as99+ELB3H9Kb18yto2T6Ghn1GfC7/Zypot+wFqdFO5PrOEbkwt3P/Oel5avgmA9KahXXhhQKeWbJw53vNz1sAOnmMv/G444HyoALzq52bjjsMG70zz6mEyuItvolyQtYWsTXvZkVt5e/zhHl68ASCgwURnD+rIdaf09Oz36+DU7qua3Avg2CMqr/2bcpbQjamFJz74AYCUpAROP6r6mmkwNfZa2KEs0Z3u1o4/WF+x3/o+t738xjG+NeM+7ZtzoTsU/6ELynvVTHhsqc90BKHkb/ELf2uDbtt3KBzhxDxL6MbUkHcTxrczTg/78xeVVJxOoFlK+bRMx9//Pqc8+CFZm/aSX1TCWLdbZcdWvmtyvnXd8Z6bt+cM7lQhkYZyObkyf/3VUT77KUkJjOqV7hlE9JsRzqI4wVr1KN7Z5FymXlu3dT9tm6f4XWz4/W+3c9lzKyIQVdVe/tKZTuBCr4muvEdRbtrt1GYnPLbU53FnDOjAn/+7lqO7tuKpSUdXuO6oXunMumgw17zg9E8/UFhM8xB1FTz8Bum3M07j3oXrmOrOc7PiT6dQWFxK66bJXDmqB+1bVFwg2lRkCd3UW6rK6Q9/TI/0Jiy+8USfY9e88CVvrNpa6WMHdmrB7EsyKz0eSilJCeQXlXLpcd08ZdV1k/zittE0bJDA13eOrfK8MwZ04LWvNrNo3Q7+b0U2U0Z2q/TcklKlh591RGsjJSmRGRP6e/a9+5x3ahWaG87xyBK6qZcOFhR7Bqz8kFM+5DyvsJj7317vk8yXTjuZ+976lnOGdGRUz/SAbv6F0ufTR5O1aa9P7xZwBjb97d3vuGBYZ7qmNmbV5n3MW76Jnm2a1miQ0253HdC3V2+tMqF7J/OqzjPhYwnd1EsLV231uYFY2eRQZU0Dj/x6cFjiCkTLxg05sXebCuVtmqdw33kDPPsn9W7DSX7Oq87VJx3BlDkryM0vrvSc7D2+fd47tLQmkWhgN0VNvVQ2C2JV1t19WrXnxKPRfZzZEY/yGsZ/uL15viNNdx2ofl5zE3pWQzf12hUndCcpMYFZS74n644xJCYIr2Vt4cwB7WnUsP4ONe+e3oS8KuZ2OXwN0cP7s5vIsIRu6qVmyQ3ILShm+jhnvpQ/ntrbc2zSiK6RCitqNEtJYl9e5VPqHixwkv1LU0eQmCAcbQk9KliTi6mX+ndsYcPJq7Bx50E++X4nOw8UkDFtIe+s2eZz/IA762PT5AYMzUiN+I1i4wg4oYtIooh8JSJvuPvdRGSZiGwQkbkiUrEjrzFRxHsNy/Xbc2nlp++5cZSNLs28ZxEAV/xrpefYocISzxzoTZPtS340qUkN/Tpgndf+fcBDqtoT2ANMCWZgxgRb2RqWhwpL2H2wkPfWbo90SDGlbOToyPve98xj08QSelQJKKGLSCdgPPC0uy/AycB895Q5wIRQBGhMsOUVOs0F3iMtja/Xrq44w+Med2rdXQfLp9j1nnLARF6gNfS/AzcDZbe2WwN7VbWso2o20NHfA0VkqoisEJEVOTmhXfDWmMp4r8Zz6t+dObb7VdEtr74b1Lklw7ul+pT9YW4Wq7L3+pSl2DqfUaXahC4iZwA7VHWld7GfU/3O5KOqs1U1U1Uz09PTaxmmMXVzptdqPDvdPtPHdG8dqXBiwtwrjmHjzPGeWRo/3rCTs2aVzw8z0J0H3USPQL4vHQecJSLjgBSgOU6NvaWINHBr6Z2ALVVcw5iI2rDDdwHiWRcN5og2TSMUTWy5aHgX/vbedz5l715/gs2AGIWqraGr6nRV7aSqGcCFwPuqejGwBDjPPW0ysCBkURoTRAniTEJlAtO6aTJDuji18TbNkhnYqYUl8yhVlzsatwAvicg9wFfAM8EJyZjgK5uhEOCKUT0iHE3seeWqqpfBM9GhRgldVT8APnC3fwQqLi1iTIgUFpeydd+hWi0WnNY0mew9zjzh1558RLBDMyYq2EhREzOmvbKKUQ98QG5+5UPSK3OgoJiLhnch644xNG5oXe1MfLKEbmLGR9853V7L5hGpiUOFJTRLbkDLxjY61MQvS+gmZiS4q/KUDQwKlKpSUFzqs0ybMfHIvnuamJHoTgC1dV8+3dMD63K4IGsz77pD/G2Yuol39j/cxJzXs7Zw3BFpAZ173UtZnu1uaTW/mWpMLLGEbmJGQbHT7TDDTcxZm/aSX1RC19aNOeexT9m2P5+OLRsxqHNLhma0oktr38WFh3ezkaEmvllCN1Hvg/U7aN4oybN4cUGxc1N0wmNLK5y7ee8hNu89xMJvtvqUv/2H42nROKnC+cbEE0voJur99tnlPvsvfvEL73+7w++5N47pRUpSIve+WT7T8ytXHcuR7ZqHNEZjooEldBNztu8vYPv+8kWJN84cX+Gcy0/oHs6QjIkK1o/LxLRnJmdGOgRjooYldBMznr10qM/+05dkMrpP2whFY0z0sYRuotrf3l3v2R7V03c+/VP6WjI3xpsldBM0+/OL2LQ7L6jXfPT97wGYfvqRPivLP3+ZzQtnzOHspqgJmgmzlvLjzoN+b1LW1un92/HhdzmeKW+DeW1j4o3V0E3Q/LjzIABLKulSWBulqnRu1bj6E40xltBN8H23PTdo1youUc8cLsaYqllCN0HXrkVK0K6180ABac2Sg3Y9Y+KZJXQTNJ1aNQKclYVqa8JjS7nupa8AZ9rbr7P3UVJa++sZU5/YTVFTIwuyNpOTW8Dvjq84ErO0VAG4af4q1m7dT9PkBmRmpCI4c5mLgCooSqk655eqcqiohPXbcumW1oSsTXvJ2rSXBVlbuCCzMwDd0wKbKteY+s4SuqmRsuloJx+bQVKi7xe8JK8FJJ5durHOzzV3xSYArjzRFnU2JhDVJnQRSQE+ApLd8+er6p0i0g14CUgFvgQmqWphKIM10aPnbW9xxQnd6Z7ehIlHd6b7rW8C0L5FClv35XPFqO7069CCDm57ekmpIu6KQwkCIkKClC9asWVvPi0bJ9G2eQq7DhSwevM+jjsijTbNUmyWRGMCFEgNvQA4WVUPiEgS8ImIvAXcADykqi+JyJPAFOCJEMZqosxTH/0IQG5++ZJw/ztxYMCLT3gb0Kl8u1taEzIzUuscnzH1TbU3RdVxwN1Ncn8UOBmY75bPASaEJEIT9e5Z6ExV++ez+tUqmRtjgiOgXi4ikigiWcAO4D3gB2CvqpZVzbKBjpU8dqqIrBCRFTk5OcGI2URQk4aJlR4barVqYyIqoJuiqloCDBKRlsCrQB9/p1Xy2NnAbIDMzEy/55jYcbCwhON7ppGTW8AfTulFo4aJvLtmGyO6t6ZvB1tEwphIqlEvF1XdKyIfACOAliLSwK2ldwK2hCA+E0U++2EXAD/tPMgnt5zsKR/VK72yhxhjwqjaJhcRSXdr5ohII+AUYB2wBDjPPW0ysCBUQZro8PMuZ66W7D2HIhyJMcafQGro7YE5IpKI8wEwT1XfEJG1wEsicg/wFfBMCOM0UeCINs4An9vP6BvhSIwx/lSb0FV1FTDYT/mPgE1KXY+43cg9id0YE11sLhcTMHVvadvch8ZEJ0voJmBlXZTEMroxUckSuglY2eRbCZbRjYlKltCNX8UlpeQXlfiU3fn6GsCaXIyJVpbQjV8X/WMZR97+tk/Zt9uclYgK6jDfuTEmdGz6XOPXFxt3A5AxbSHDuqX6DB7KOVAQqbCMMVWwhG6q9cVPu/nip92e/bF920YwGmNMZazJxfh1Yu+Kw/mPaNOUP43vQ8vGDSMQkTGmOlZDN341bphIm2bJfHjTSTSqYoZFY0z0sBq68UsVWjZOsmRuTAyxhG78KlW1/ubGxBhL6MavUsWzBqgxJjZYQjd+qSoJls+NiSmW0I1fTg090lEYY2rCErrxS60N3ZiYYwnd+GVt6MbEHkvoxq9Sa0M3JuZYQjd+qdo0ucbEGkvoxq9SVZsm15gYY0P/jV+f/rCLRkk2StSYWFJtDV1EOovIEhFZJyJrROQ6tzxVRN4TkQ3u71ahD9eEw7zlmwA4dNgCF8aY6BZIk0sxcKOq9gFGAFeLSF9gGrBYVXsCi919EwdufnkVAC9cPjzCkRhjaqLahK6qW1X1S3c7F1gHdATOBua4p80BJoQqSBM+m3bnebaP7ZEWwUiMMTVVo5uiIpIBDAaWAW1VdSs4SR9oE+zgTPjd+uo3AFw5qkeEIzHG1FTACV1EmgIvA39Q1f01eNxUEVkhIitycnJqE6MJo4837ATgspEZkQ3EGFNjASV0EUnCSeb/UdVX3OLtItLePd4e2OHvsao6W1UzVTUzPb3iKjgmery9ehsAx/dMo02zlAhHY4ypqUB6uQjwDLBOVR/0OvQ6MNndngwsCH54Jpyu/PdKAH4zomuEIzHG1EYg/dCPAyYB34hIllt2KzATmCciU4BfgImhCdGEw968Qs/2qf3aRTASY0xtVZvQVfUTqHTQ4OjghmPC7ZQHP+T7HQc8+/ede1QEozHG1IUN/a/Hfsw54JPM+7ZvzgVDu0QwImNMXdjQ/3ro4UUbeGjRd579MX3bMuuiwSQ3sKH+xsQyS+hxrqRU2XWwgNJS2LAjl0nPfFHhnCd/czSJNleuMTHPEnocy5i2sNJjt5x2JBcM7YyAJXNj4oQl9Dj0ypfZ3DDva7/H/jVlGMf3tPEAxsQjS+hxprRUfZL5XWf2ZfKxGbacnDH1gCX0OHPCA0s8259PH027Fjbi05j6whJ6HLn9tdVk7zkEwIZ7Tycp0XqlGlOfWEKPcUUlpfS87S2fsjeuHWnJ3Jh6yN71Me6if3zus//KVcfSv2OLCEVjjIkkq6HHqL15hQy6+z3P/uIbR9EjvWkEIzLGRJol9BiUX1Tik8zX3X0ajRraKE9j6jtrcolBn7iLUAC8dd3xlsyNMYDV0INqyfod9GrbjI4tG9Xocas376OguISGiYkc1clp/1ZV8gpLSEwQikuVpEShsLiU99Zu9/QzX/mnU2jVBxLXAAAPeklEQVTdNDnof4cxJjZZQg+SLXsPcemzywHYOHO833P25RVRqsqevEKSEhPonNqYa1/8iv9+vcXnvOHdUln20+4qn2/kEWmWzI0xPiyhB4GqcuzM9z37GdMW8sB5A/jVkE6UqpKUmEBufhED7343oOtVl8wB/v274bWO1xgTnyyh19HWfYf4n39/WaH8pvmruGn+KgCGZrRi+cY9lV7jhcuHc2yPNEpKlR63vukp/+mv4wDYn1/Ma19t5pS+bWnZKIkmyfbPZoypSFQ1bE+WmZmpK1asCNvzhdpV/1nJm99s8+zPumgw17zwVUCPbZbSgPvOHcDp/dvZPCvGmCqJyEpVzazuPKvq1dKcTzf6JPOv7xhLi8ZJjD6yLUmJwhGHjd4E+PeU4fRq25T0ZsmWxI0xQWcJvYaKSkpZvXkfd76+BoArTujO9HF9PMfLuhD269CcNVv2M2NCfy4a1sXmHDfGhFy1CV1E/gmcAexQ1f5uWSowF8gANgLnq2rljcRxYOn3OxGBGW+sY93W/QDMv/IYMjNS/Z4//8pj2XmggM6pjcMZpjGmHgukhv4cMAt43qtsGrBYVWeKyDR3/5bghxd5qkq36W9WKH/yN0MqTebg1NQtmRtjwqnahK6qH4lIxmHFZwMnuttzgA+Ig4SuqhwoKOZQUQnnPPYpm/ce8jnepGEix/RozexJmSRYE4oxJsrUtg29rapuBVDVrSLSJogxhc3BgmLmLt/E3W+srfK8Jg0T+eSWk2nVpGGYIjPGmJoL+U1REZkKTAXo0qVLqJ+uSkUlpXy8IYfLnqu+6+TVJ/Xg2pN7kpJk86QYY2JDbRP6dhFp79bO2wM7KjtRVWcDs8Hph17L56ux+9/+lsc/+CGgc1ObNOSoji14ZnImDWxhCGNMjKptQn8dmAzMdH8vCFpEQfDo4g2VJvPWTRqy62Ahq+4aS/OUpDBHZowxoRNIt8UXcW6ApolINnAnTiKfJyJTgF+AiaEMsoyqVjkgZ/fBQp755EceW1KezH97bAZTRnYjuUECbZrbgsnGmPgVSC+XX1dyaHSQY6nUpz/s5LZXV/PTzoOAM8eJd2LfsT+fY2e+T3FpeYvOsG6pzLvimHCFaIwxERcTI0Uv+scyn33vfuGdUxuxabdv98L/XjPSM6+4McbUFzFxB/CJi4cAcMtpR1Y45p3MP5t+Mhtnjrdkboypl2JutsXSUiWvqMSzgs/Pu/LonNqYFo3sBqcxJj7F7WyLCQlCU3c+8OQGifTvaLVxY4yBGGlyMcYYUz1L6MYYEycsoRtjTJywhG6MMXHCEroxxsQJS+jGGBMnwtoPXURygJ9r+fA0YGcQwwmFaI/R4qu7aI8x2uOD6I8xGuPrqqrp1Z0U1oReFyKyIpCO9ZEU7TFafHUX7TFGe3wQ/TFGe3xVsSYXY4yJE5bQjTEmTsRSQp8d6QACEO0xWnx1F+0xRnt8EP0xRnt8lYqZNnRjjDFVi6UaujHGmCpYQjfGmDgRdQldqlo0NEqISNS9bt5i4TWMBdH6OopImvs7KuMDEJFE93dUxigi7dzfURlfbUVFYhKR3iJyFIBGaaO+iAwTkdsBVLU00vEcTkT6iciJEJ2vofv6/SWaPwxFZKSIPCEiV0H0vY4iMlhE3gSuh+iLD0BEjhOROcCfRCQ12mJ0X8PFwAyIztewLiL65hKRBiLyDPA68KiI3Cgind1jUfHJKSItReRR4FFgl1sWNUlJRBJE5HHgZeBWEZkhIpllxyIbHYhIcxF5DJgFZKtqabT823oTkSHAE8BKYJyIPCQigyIcFuD5N54DPAu8oKq3RTomf0SkO/A4sAToCswQkfGRjcohjoeA54E5qnp5pGMKhUi/4bsCzVS1N/A/QDpwlYg0iqJPzlnAKFUdrqqPQ9TV0FsCTYE+wMU4Hzo3ikjTKInzVmAEMNbr9YuWf1tvw4Dlqvo08DsgDyexp0U2LM//t1bAWlX9N4CIpEfhB+PRwDpVfQ64EcgCziirpEWS+3+uKfCVqj4PICI9oqHSE0xh/2NEZIiI9HJ3k4BMEUlS1XU4NfUmwLnhjsubG2Mfd/d/gQQRSRKRM0VkuoiME5GUCMbXzev5U4FjgcaqmoNTU98NXO2eG/Y3vRtfY3f3eSAHaCMi54nI/4rIhSLSJdxxeROR80XkBhE51i36EmgqIu1UdRvwPs6cHsdFOL6RbtFkYKyI3CQiS4BHgNkiUu38HiGMcYTXexlgOdBJRDqr6h5gKbAXOCdK4rsRGC4it4vIUuAB4DkROToS8YVC2BK6+yZfCDwG/EtExqjqt8Bi4DfuaV8DXwEDRaRluGKrJMbn3BizgM+AbcDvgQPAHcC1IpIa5vgyROQt4GngPyLSV1W/Bz4CbnBP2wq8AgwWkQ7hrA0fFt+/3PjWAh8D7wBXAeuBicBNItIpXLF5xZgoIncAt7hFT4nImcBBYCMwyi3/ENgHhLUJ0E98T4jI+W6CfBin/fwu4BqgGXCxiIR1bWC3GXIh8B5wvog0dQ/lA58A57v764G1QOtwVoD8xNcEQFX347y3zwWmA7/Geb+cG8kPxmAKaUI/7E3wRyBLVY8BFgCXuOUfA8e4yecgkA10Ag6FMrYAYnwN56s3OG+iO1V1jKo+CtwGDAaaRyC+Zao6Gqed8s8i0hd4DhghIt1VtRjYjvPmahTh+Ga47aoPAHep6smq+g/gdpyvv91CHd/hVLUE6A3cqKoPAn8GrsVZMH0rMMj9ICrGSUjnuI8Lywejn/juBK4WkV6qOgPoo6ofquou4EVgghtrODXB+YC+1t0+wS3PAT4HjhKRYe7fshk4TlXzoyA+VPUR4CRV/UhVC3De55k4TWwxL9Q19BTwvOkPAkVueXNgg4h0xald7gBuco8tBjoShmRZTYwtgNXum/uAqs7ySl6fAG0Iz3+CsvjKamFrAFR1Fk6774XAFpyvu/e7x1bj3J8oiHB8RwNTgSaqOqfsAW6tvR3wSxjiQ0QuEZFRXt/6tgOtRKSBqs4HfgBOwfm/lw/c457XEVge6hpwNfG9AnwDXCQioqr7vB7aA1gmbhfBMMXYXFU34wyPn4fzeg0TkY5uAv8c51v2Q27NvR/wi1cTXCTiGy4iHcrOdb/tlDkapxJZEsr4wiUkCV1ExojIe8AD7tdFxUmCPUXkK+A0nBrRXOBI4BngFHHuQn+D0/SSG4rYahhjIjBHRMaKSIKqqjh37d/B+Sq5P4zxFeO0jQ8WkYEiMhBYjVPLTcRJQp1E5FERWY0z7/y+UDUV1CC+TkBbr8edJU63sS3A7hDGJyLSXpz25sk4N4wfc5PMTuAonG8J4DRlTAJ2qOqfgb3uV/YLgadDUQOuYXyP4nxTKOs7PVpElgEnA/9wE2nQVRLjEyKSpqr5qpoHLMK5YXsygKpuU9WHgWXAP3GaU+9zz414fO7jkkXkRBFZAZwKzAzzN4jQUdWg/gBH4Pxjno3TLPEC8Ef3WG/gFa9z7wAecbczgDOBXwU7pjrGeDvwEM6H33ic2sfZYY7vRZz252ZuPG/gfPhkurH/wX1cW5wbpGdFWXzXuI87Fqdb4IQQx5fo/u4F/NvdboDTpe4ZnJ5B7+B8FW/sHp8HXO9uJwHpURbfXK/X8SzgnAi9ho96vz/c8utxKhQtcHqtgVPJaBaF8TXy+r8Y0v+HkfgJ1oubACS42xcDj3sduwznTndbnG6JD+O0AwKMBOaXPTakf2jdYxSgQYTim+LGl+7ud/c6djXwO3dbojC+a8riC8O/cQPgL8B9ODc3z8Tpc+z9N+zAaQaY7CbQC9xj/wGG1+f4AoxRcO41jPIqawr8HfgCp7moQ5TGtzzU8UX6p85NLiJyKU4b1Ay36Bvg1yKS4e4nAT+6x3Nxutn9XkSuA57C+UoU0htOQYhxMYCG6OZTAPE1wGnnfcjd/8l93FScZPqlG19IXsc6xndZWXyhJCKjcGr/rYDv3ViLgJNEZBh4+nP/GXhAnTb9d4FL3Ca2Bu7fVS/jq0GMCtyN09OmzHicb2hfA0ep6pYojS8rlPFFhTp+WjbFuUt8Hc6b9ki3/O84X8OXAv/GaQ98C+eOcx+cu89zgBGh/sSK9hhrGN9CoK17/A84NY6h9Tk+rziPByZ57T+OM1jtt8BKtywBpx16PtDZLWuH1zeK+hpfLWKcB2S4ZWcDJ9T3+KLhJxgvchf390xgrrudiFPLHenud3aTY8OI/JFRHmMN4nsOSHb3G1t8PjE2BpIpb1u9GPiru50FXOtuZwIvRuDfOKrji4UYoz2+aPipc5OLqpZ1Pfs70E1ETlXnrvs+Vf3EPXYlTpfAiHQNivYYaxBfHlDsPiZs/WajPb6y51PVAi3v8TEGp180wKVAHxF5A+dbRcibgGItvtrGGKpeSrEYX1QI8ifoFcCHXvvDcAYRvQm0i/SnVyzEaPHVOb5EnK/dbwFHuGVH4PQcGQl0tPhiO8Zojy+SP0Fbgs7tp10qIvNx7jIX4Nzw3KCqPwTlSeoo2mO0+OrOrZE1xJl+4FWcm7K7cL6Oh2zcQKCiPT6I/hijPb6ICvInZ2OckZ87gd9H+tMqFmO0+IIS4wigFKcv/JRIxxNr8cVCjNEeX6R+gj2k+Sqctqsx6syTEI2iPUaLr+6ycebbeTBKY4z2+CD6Y4z2+CIiaE0uUP6VPGgXDIFoj9HiM8bUVlATujHGmMiJq9U6jDGmPrOEbowxccISujHGxAlL6MYYEycsoZu4JSIlIpIlImtE5GtxFl2u8v+8OOuiXhSuGI0JJkvoJp4dUtVBqtoPZ96PcThrdFYlA7CEbmKSdVs0cUtEDqhqU6/97jhT+qbhrLn6L5zpksFZDehTEfkcZ/rkn3Bm33wEZ5bJE3Fm+ntMVZ8K2x9hTA1YQjdx6/CE7pbtwVnHNhcoVdV8EemJM91qpoiciLMc4Rnu+VOBNqp6j4gk48z/PlFVfwrrH2NMAEK6mrkxUahsOtUkYJaIDMKZMrlXJeePBQaIyHnufgugJ+6qTMZEE0vopt5wm1xKcNbtvBNnfcmBOPeSKlv1XXBm8XsnLEEaUwd2U9TUCyKSDjwJzFKnnbEFsNWdl2YSzhzb4DTFNPN66DvA/4hIknudXiLSBGOikNXQTTxrJCJZOM0rxTg3QR90jz0OvCwiE4ElOKtVAawCikXka5wl9R7G6fnypTsPdw4wIVx/gDE1YTdFjTEmTliTizHGxAlL6MYYEycsoRtjTJywhG6MMXHCEroxxsQJS+jGGBMnLKEbY0ycsIRujDFx4v8BgKt+wbQYX2YAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "data = df_idx[['Price']]\n",
+ "data.plot(y='Price')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Total data: 37 years\n",
+ "80 percent data = 1980 to 2009\n"
+ ]
+ }
+ ],
+ "source": [
+ "diff = data.index.values[-1] - data.index.values[0]\n",
+ "days = diff.astype('timedelta64[D]')\n",
+ "days = days / np.timedelta64(1, 'D')\n",
+ "years = int(days/365)\n",
+ "print(\"Total data: %d years\"%years)\n",
+ "print(\"80 percent data = 1980 to %d\"%(1980 + int(0.8*years)))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Create training and testing data"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAKHCAYAAACl7s3RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xd4HNXd9vH77KrLcu+9YDBggzHCmGK6AQOhhfCEQCDVCUmAPAkJBgKBhOKEhDReAjyUkBBCr7EhlNCbsbHBDXDFvcmWbVlty7x/zFZpJa22zezq+7kuX9NnfzZCunXmzDnGsiwBAAAgNR6nCwAAAMhnhCkAAIA0EKYAAADSQJgCAABIA2EKAAAgDYQpAACANBCmAAAA0kCYAgAASANhCgAAIA1Fufywvn37WiNHjszlRwIAAKRk/vz52y3L6tfReTkNUyNHjtS8efNy+ZEAAAApMcZ8kcx5POYDAABIA2EKAAAgDYQpAACANOS0z1QiPp9P69evV2Njo9OlZFVZWZmGDh2q4uJip0sBAAAZ5HiYWr9+vaqqqjRy5EgZY5wuJyssy1JNTY3Wr1+vUaNGOV0OAADIIMcf8zU2NqpPnz4FG6QkyRijPn36FHzrGwAAXZHjYUpSQQepsK7wdwQAoCtyRZgCAADIV10+TNXW1urOO+/s9HWnnXaaamtrs1ARAADIJ4SpNsJUIBBo97o5c+aoZ8+e2SoLAADkCcff5ot14/NLtHTj7oze84DB3fXLLx3Y5vGZM2dq5cqVmjhxooqLi9WtWzcNGjRICxcu1NKlS3X22Wdr3bp1amxs1BVXXKEZM2ZIik6NU1dXp+nTp+voo4/Wu+++qyFDhujZZ59VeXl5Rv8eAADAnTpsmTLG7GeMWRjzZ7cx5sfGmN7GmJeNMctDy165KDjTZs2apTFjxmjhwoW67bbbNHfuXN18881aunSpJOn+++/X/PnzNW/ePP35z39WTU1Nq3ssX75cP/zhD7VkyRL17NlTTz75ZK7/GgAAwCEdtkxZlvWZpImSZIzxStog6WlJMyW9alnWLGPMzND2VekU014LUq5Mnjw5biyoP//5z3r66aclSevWrdPy5cvVp0+fuGtGjRqliRMnSpIOPfRQrVmzJmf1AgAAZ3W2z9SJklZalvWFpLMkPRja/6CkszNZmFMqKysj66+//rpeeeUVvffee/r44491yCGHJBwrqrS0NLLu9Xrl9/tzUisAAHBeZ8PUVyX9K7Q+wLKsTZIUWvZPdIExZoYxZp4xZt62bdtSrzRLqqqqtGfPnoTHdu3apV69eqmiokKffvqp3n///RxXBwAA3C7pDujGmBJJZ0q6ujMfYFnWPZLukaTq6mqrU9XlQJ8+fXTUUUdp/PjxKi8v14ABAyLHTj31VN1111066KCDtN9++2nKlCkOVgoAANyoM2/zTZf0kWVZW0LbW4wxgyzL2mSMGSRpa+bLy42HH3444f7S0lK98MILCY+F+0X17dtXixcvjuy/8sorM14fAABwr8485rtA0Ud8kvScpEtC65dIejZTRQEAAOSLpMKUMaZC0jRJT8XsniVpmjFmeejYrMyXBwAA4G5JPeazLKteUp8W+2pkv90HAADQZXX56WQAAADSQZgCAABIA2EKAAAgDV0+TNXW1urOO+9M6do//vGPqq+vz3BFAABkSMAnNe91uoqCR5giTAEACtVDX5ZuGex0FdIzP5A+eazj8+46WnphZvbrybDODNqZfS/MlDYvyuw9B06Qprc9asPMmTO1cuVKTZw4UdOmTVP//v312GOPqampSeecc45uvPFG7d27V+eff77Wr1+vQCCg6667Tlu2bNHGjRt1/PHHq2/fvnrttdcyWzcAAOla/YbTFdgW/tP+c9D57Z+3eZH9p52f227krjDlgFmzZmnx4sVauHChXnrpJT3xxBOaO3euLMvSmWeeqTfffFPbtm3T4MGDNXv2bEn2nH09evTQ7bffrtdee019+/Z1+G8BAIBL1blvXt5Mc1eYcjiJvvTSS3rppZd0yCGHSJLq6uq0fPlyTZ06VVdeeaWuuuoqnXHGGZo6daqjdQIAkDf+eZ7TFWSdu8KUwyzL0tVXX63vfe97rY7Nnz9fc+bM0dVXX62TTz5Z119/vQMVAgCQZzYtTO68gC+6fkMP6X/+Ke1/RnZqyrAu3wG9qqpKe/bskSSdcsopuv/++1VXVydJ2rBhg7Zu3aqNGzeqoqJCF110ka688kp99NFHra4FAABp8DfGbz96oTN1pKDLt0z16dNHRx11lMaPH6/p06fra1/7mo444ghJUrdu3fTQQw9pxYoV+tnPfiaPx6Pi4mL99a9/lSTNmDFD06dP16BBg+iADgBAS8FAdL1qUPvn+hpb7wsGJY/72326fJiSpIcffjhu+4orrojbHjNmjE455ZRW11122WW67LLLslobAAB5a29M5/MBB0bXfY3Sxo+kEUdG9zXXtb7e3yCVVGavvgxxf9wDAAD56a3fR9djW6nmXCk9MF2qWRnd52tofX1TgoDlQoQpAACQHXFhyIqubv7EXjbuiu4LxnRAD/Plx8DYrghTlmV1fFKe6wp/RwCAS9XvcOhza6Lr4Zap126RNn1srxsTPR7wt74+kCBguZDjYaqsrEw1NTUFHTYsy1JNTY3KysqcLgUA0BVt+MiZz+3WL7oeDIWlN34T3bdlSczxmODUb397GWjKXm0Z5HgH9KFDh2r9+vXatq2wR0gtKyvT0KFDnS4DAIDcGXyItOAhqahMWvte60mXn/2hNPZkqVv/+Fao8OO/2JYtF3M8TBUXF2vUqFFOlwEAQAFz6OlPeLiD8BhSb97W+pw1b0vjz422TI2cKu17qvTStdIT35Z+vrL1NS7j+GM+AACQZU50pVn8lLTgH/H7Gmpbn/fEN6W7pkb7TJ10o91SJSUeLsGFHG+ZAgAABeiJb7be5/EmPnfzJ9KeTfa6t0ja5yR7veWo6C5FyxQAAEifZUnLX7GX/jY6jq96ve3rn7/cXnqKpaLSjJeXTYQpAAAKXg4e891zrPTPL0sLH5bevzP+2JQf2MuaFR3fx1sseWIenC17PnM1ZglhCgCAQpeLPlPhsaN2rZP2bIk/NumS5O9jPHbrVNijF6VfW5YRpgAAQOZYwfi+UaOPT9xXyrQRQYyxJzc+6H+yU18WEKYAAEDm1KyQ3rsjur1zTeKWsQPOkq5LMI6UCQWvs/9qLw/+WsZLzDTe5gMAoODlcGiExU/Gb+9cLVmB+H3n3C2NO91+c6+lcIuVxyt1H9J2C5aLEKYAACh0Tk/Z1n//+O0J59uP8hKJDU9FZZK/IXt1ZQhhCgAA5FZskLrsI7sVKhiQPnlM6j44eqy4QvK5P0y5v+0MAACkxwo699nH/Mxenvt/9vLyBfHH+4yReo20l8dfbXdADysuz4swRcsUAACFrq2Rx3Nh0ER7edD59p/OyJMwRcsUAACFrqgs+5/RfWiLzyyXLn1X2v+M1O9ZXC756tOrKwcIUwAAFLpcTM/S8lHiyb+WBhyY3j2Ly/Nifj7CFAAAhcobClG5eJuv5fAHmWgNowM6AABwVEUfe9ky6GRDXYspZIrL07/nmrfs6WkCvvTvlUWEKQAAClV4zKZsv83nb2q9r8fQ1vs6q3atvdy7Lf17ZRFhCgCAQpWrMFW/o/W+qoHp3/fYq+ylyx/1EaYAAChU4TGbglkOUytfbb3PW5L+fQeMt5dbFqd/rywiTAEAUKhy1TI1cIK93Hd6dF8mwlS4r9djF6d/rywiTAEAUKhyFabC9x81NbovEx3QY+u+oYf0xm+l5S+nf98MYwR0AAAKVSRMZfltvnDoKe8V3VdSmf59x5wYv/3azfbyhl3p3zuDaJkCAKBQ5aplKtwnq7Kfvew5PDP3Le+ZeH8uxs3qBFqmAAAoVNs/s5fBHLVMGY90zUbJU5zdz2vaLZX1yO5ndAItUwAAFLpc9ZkyHvvxXlEGOp+3Z8kz2b1/JxGmAAAodLkMU7nw/OW5+Zwk8ZgPAIBCl40wtWO1tO0zaf1c6a3f2/tyFaYkaccqqffo3H1eOwhTAAAUumyEqT9PbL3P483853znVene0Ft93/qPdP8p9nrDzsx/Vop4zAcAQKHL9mO+sGy0TA2ttqeVGXyINPSw6H6Pe9qDCFMAABS6bL/NF2Gyc9vjr5FmvB7f8uWi4REIUwAAFDorKH30D2nRE6ldv2OVtH1FzP3aCDLeHLYW7VyTu8/qgHvayAAAQHZYgegbcBPO69y1zfXSnw+x16/fKXk80qLHE58bnpg4F0YcmbvP6gAtUwAAFLqAL/Vr/Y3R9Y8ftpfrPmh9XtVgqag09c9J1uULpIuekrr1z/5nJYmWKQAACt0LP0/92thHenu3t94XNmRS6p/RGb1Hu2ZIhDBapgAAQNtiJ0kuLg/vbH3eyKNzUo4bEaYAAOhqNi9Kfpym2EeEFX3sPlQ1oc7olf2lE6+31w/7bmZrzCM85gMAoGAZJWxFuutoacAE6dK3O75F0B9zOyPdMii63bRHmvpT+08XRssUAACFqqxH633+Znu5ZVFy94gNU57i+GNn3ZFaXQWGMAUAQKFK1FF8z6bO3SN2wM/YYCVJ/Q/ofE0FiDAFAEChSjSNjL+pc/cIxvSZahmm+o3rfE0FiDAFAEChshJMI+Nv6Nw9YgNUoDn+mIcYIRGmAAAoXIlappr3xhxPYn672DDVUJt+TQWIMAUAQKFKFKYemB5dT2Z4hNg+Uy9dm35NBYgwBQBAoUoUpmJt+KjjeySaOgZxCFMAABSqYII+U7EePr/je7z0i8zUUsAYtBMAgEJkWUo4YGfcOe2EraY9krek7eOlCcaw6qIIUwAAFKJkOpe359ah7R8/fEZ69y8gPOYDAKAQddRfKh2jj5OOpzN6GGEKAIBC1N4jvHRNutiepw+SCFMAABSmQGjk8p4jEh/vNkCq6Nt6//blUv2O+H0XPxu/vd/p6ddXQOgzBQBAIQpPG1NUmvj4sMnSmrdb77+jWuo+JH7fliXR9au+kIrLMlNjgaBlCgCAQhQIhanqb7U+9pNldstUw05p0ROtj+/eEL89eJJkvPa6x5vZOgsAYQoAgEK0eZG9TNQy1X2w9MW79vqT347ub2sS5BFHSDO/kL71H6m0KrN1FgDCFAAAhSg8IOeG+YmPb10aXX/6+/Zy+/K271daJQ2fkpnaCgxhCgCAQuYNtUxV9JV6jZJ6DG99zsf/spfF5a2PXb4ge7UVCDqgAwBQyKyA9IMPpKqBUnnP6P6ew6XatfHneotbX997dHbrKwC0TAEAUGiWPR9dL+km9R8XH6Qk6aw7W1/XctT0c+/NfG0FiDAFAEChefSi6PqYExKfM2pq6yEQWo6aPu60zNZVoAhTAAAUsn1ObPuYp0Vvn5ZhqqQy8/UUIMIUAACFqrii/eOxYSoYkIL+7NZToJLqgG6M6SnpXknjJVmSviXpM0mPShopaY2k8y3L2pmVKgEAQOe17APVkq8+un77AVLd5uzWU6CSbZn6k6QXLcsaJ+lgScskzZT0qmVZYyW9GtoGAACu0UGY2rMpuh4bpPqNk468LDslFaAOw5QxprukYyTdJ0mWZTVbllUr6SxJD4ZOe1DS2dkqEgAApKCjlqm29BwhnXxTZmspYMm0TI2WtE3SA8aYBcaYe40xlZIGWJa1SZJCy/5ZrBMAAHRaimHqlJszW0aBSyZMFUmaJOmvlmUdImmvOvFIzxgzwxgzzxgzb9u2bSmWCQAAOi3QnNp1fcdmto4Cl0yYWi9pvWVZH4S2n5AdrrYYYwZJUmi5NdHFlmXdY1lWtWVZ1f369ctEzQAAoC2debQ3c53040XZq6WL6DBMWZa1WdI6Y8x+oV0nSloq6TlJl4T2XSLp2axUCAAAkhfwJX9uWXeprMXI6Bc+kdl6uoBk5+a7TNI/jTElklZJ+qbsIPaYMebbktZK+kp2SgQAAElb+27nzvd4o+tTfiiNnZbZerqApMKUZVkLJVUnONTOsKoAACDnGnd17nwTE6a8ybaxIBYjoAMAUEhMJ3+0x7ZMffJ4ZmvpIghTAAAUkn7jOnd+bMsUUkKYAgCgkHR2oE5PTBSY8Vpma+kiCFMAABSUmDDlKe7cpZWMv50KwhQAAIVk40J7OeIo6crPO3eth1iQCv7VAAAoJLVf2MumPVJFb2dr6SIIUwAAFJJRx9jLE37hbB1dCGEKAIBCEgzYy6JSZ+voQghTAAAUks2hufYY8iBnCFMAABSSF6+yl811ztbRhTBuPAAAhagzwyLMXBt9PIhOI0wBAFCIrGDy55b1yF4dXQCP+QAAKERbFjtdQZdBmAIAoBB1G+B0BV0GYQoAgELEgJ05Q5gCAABIA2EKAIBCUjXYXg6c4GwdXQhhCgCAQjLudKm8t9RjqNOVdBmEKQAA3MqypIC/k9cEJA+jn+cSYQoAALf69/9Kv+7TuWuCfsnDMJK5RJgCAMCt5j9gL5vrk78m4O/c6OdIG2EKAAC3Co9MXr89+Wt8e6Xi8uzUg4QIUwAAuFVpKEw11CZ/TUNt56aSQdp4qAoAgFt5Qm0eVicmIV79RnZqQZtomQIAwK1M6Md0kJYmNyNMAQDgViaFlinkHI/5AABwq0jLVCfCVGU/adwZ2akHCdEyBQCAGzXukrZ/bq8/cKrUtCe564J+ycvQCLlEmAIAwI3+/ZP47XUfJHddMMCgnTlGmAIAwI0WPxG/velj+09Hgn6mk8kxwhQAAPng1V9Jdx/T/jkBv+Srl+q25qYmSCJMAQCQf5Y+K71/V+v96963l588mtt6ujgeqgIAkG8eu9heTvm+s3VAEi1TAAAUDm+JvTzwXGfr6GIIUwAAFIpAs7089BuOltHVEKYAAMhXH/1D8jdFt/2N9rK43Jl6uijCFAAAecPYg3mGPfcj6bVbotvhYFVUmtuyujjCFAAAblRS1Xqfp0jasiR+X/12ac8WybKiLVNFZdmvDxGEKQAA3Khb//jtQ78pBX3SZ3Pi96/7UPr9vtJfJklbltr7CFM5RZgCAMCNKvtF14dOlroPttd9DfHnbf/MXu5YJb31O3udMJVThCkAANwo6JOKK+1144nOt9e8t+NrK/pkry60QpgCAMCNAr7oHHvGI3mL7fVPZ7d/XfchkpcxuXOJMAUAgBsF/XaIkkItU6Ew1bS7/esYFiHnCFMAALhRoDmmZcpE1ztSsyJ7NSEhwhQAAG7ka4x2JDceactiZ+tBm3ioCgCAG/nqpf2/ZA/EedxM6ZELna4IbaBlCgAAN/I3SqVV0rl3S71HRftPhV34pDN1oRXCFAAAbmNZdstUcUV0nzHx54w9Kbc1oU2EKQAA3CY8lpSvPrrvpF+2f82VdDx3CmEKAAAn7dkibfokft9nL9jL9+6I7qvo2/Y9+oyVuvVr+ziyijAFAICT7jxcuntq/L7eo+3l4ZdG97V8zCdJx11tL/uOtZdf+pP0ww8zXyPaxdt8AAA4qWFn633z77eXsdPCxM7Jd8jX7WX/A+KvO/QbGS0NyaFlCgAAN1jxanR91Rv2cufq6D5vSXR97Mn20gray8YORkVHVhGmAABwg4fOja5bVuvjQyZF18PDJITn6fvi7ezVhQ4RpgAAyDfhMLXPifaytIdztYAwBQCA+4RaphJ1Opek2i/s5ejj7OWJ12W7ILSDMAUAgNsEA/ay5ajnYeHHe1UDpeu2S4d9Jzd1ISHCFAAAbhN+K+/IKxIfP/6a6Lq3uO0WLOQEYQoAALd5Y5a9rOyT+PiII3NXCzpEmAIAwCl7trR/PBjMTR1IC2EKAACnPPnt9o9X9M5NHUgLI6ADAOCUxtroet/9ouuDD5Eq+9EXKk/QMgUAgFP8TdF1KxBd9zXEj3gOV6NlCgAAp2z/PLoeaI6ub/tU2vZZ7utBSmiZAgB0DXVbpRt6SAsfdrqSqKLy6HrAF39s+BG5rQUpI0wBALqG7cvt5TOXOltHrLEnRddjH/mV95IGHJj7epASwhQAAE6piBlHKrZlKhiUPN7c14OUEKYAAF2Dv8HpClqzYsaRCoRapgJ+qWmXtPip1uf/eJH0o3m5qQ1JowM6AKBrKK5wuoLWLCu6Hmi2t3ets7f3bm19fs/huakLnULLFACgayjt7nQFrcWGKUlq3CUte86ZWpAywhQAoGsI+p2uoDWrxXQxjbXSy9fb6+fcnft6kBLCFACga4gdFLN2rXN1xIqtSZKCMdt99sltLUgZYQoA0DXEThr8tEuGR/CEui7vM81exrZUVQ3MfT1ICWEKANA1xLYCuWXOO8uSegyTJl5gb8e2THlLnakJnUaYAgB0DbFBxbjkx1/Qb7dOmdCYUrEtU95iZ2pCp7nkqwkAgCyL7YDutjAVHqAztvWMiY7zhku+mgAAyLLYoOKW0cUjLVOe6HYYLVN5gzAFAOgaYjugt5xU2CnBQPxjvti6PIyrnS8IUwCAriG2ZWr1G9KCh5yrJSzos1vJwi1lL11nL4+/1j2d5NGhpMKUMWaNMWaRMWahMWZeaF9vY8zLxpjloWWv7JYKAEDnPLtwg5Zt2m1vBFuM6fTsD3NfUEsBn/04b+82e3vd+/by3Tucqwmd1pmWqeMty5poWVZ1aHumpFctyxor6dXQNgAArnHFIws1/U9vKRC03DkCetAveYqlLUvi95d2c6YepCSdx3xnSXowtP6gpLPTLwcAgMxr8gek125xuozWAj7JWyQdfEH8/jP/4kw9SEmyYcqS9JIxZr4xZkZo3wDLsjZJUmjZP9GFxpgZxph5xph527ZtS79iAAA6yRewpG3LnC4j3tZP7cd63hKpx5D4Y2U9nKkJKUn2VYGjLMvaaIzpL+llY8ynyX6AZVn3SLpHkqqrq60OTgcAICMuuOf9yLovEGznTIc8dnFoxUglLR7rFTH6eT5JqmXKsqyNoeVWSU9LmixpizFmkCSFlluzVSQAAJ313qqayHqbYcpy6Hf8gF/a/ll027QY96r/gbmtB2npMEwZYyqNMVXhdUknS1os6TlJl4ROu0TSs9kqEgCAdPj8bYSm5r25LSTs/46PrhsjeWJ+HPcYHr8N10vmv9YASW8bYz6WNFfSbMuyXpQ0S9I0Y8xySdNC2wAAuE5zbMvU99+JrluB1ifnwuZPoustp7bZtTa3tSBtHfaZsixrlaSDE+yvkXRiNooCACCTmv0xYSq2P1LLsaec4G9yugKkiXZEAEDBCQbjH+v5AkGp3zh7o9eo6AErFLKa9kjLns9RdS2ses2Zz0XGEKYAwEG19c3619y19qCSyJhAi47lZevekrZ9KvXZxx7XKSzcMvX8FdKjF0lbXTZ8AvICYQoAHPL1+z7QxF+9rKufWqQx18xxupyC0jKc7vfSRaG10Hx3U68MndgsffR3aVOoD1PjrtwUiIJCmAKAHAsELb2zYrveWr49bv8fXv7coYoKT5stfTXL7WWvEfby7T9Iz10W3R/wZb+4lsaeHL/91YdzXwPSQpgCgBxq9AU05po5uvDeDyRJf71wkmadO0GS9KdXl2vhulonyysYjb5ox/LzvQn6JHlCj/rm3Re/v25LFquKMe6M6PqYE1ocOz03NSBjCFMAkENXPv5xZH1030pNnzBIX508XIeO6CVJOvv/vdPWpeiELbujb8gd71nY+oTwIJmDJ8Xvf/LbWawqRmyfLkY7z3uEKQDIodIi+4f4KQcO0Ks/PTay//HvHRFZHzlzds7rKjSxj/k8SvDIzxMKUxs/ylFFLVlSt4HS5O9JB3/N3nXmHdLJNzlUD9JBmAKAHFm8YZee/Gi9JOnur1fLGBM55vEYLbx+WmR75MzZuuT+ua1e8UdyNu1qiKyXKKYf1I/m2cuWA2XmmmVJ3fpJp/1WKi6z9036unTkZc7WhZQQpgAgR874y9vtHu9ZUaK7v35oZPuNz7dp9DVzCFQpmPGP+ZH1ctMcPdB3rL30tJgLL+csRd4sRN4jTAFAFr24eLPWbI+f/+0Xp+/f5vmnHDhQb/38ePWqKI7su523/NJSpgQjjLecWDhWLiY/Dvgkb0n2Pwc5QZgCgCz5eF2tvv/QfB33u9cj/aBOGNdf35k6ut3rhvWu0ILrT1b3MvuNszteW0HrVBqeDBwjSQr0GBHd2V7L1Bc5eAkg0Cx5izs+D3mBMAUAWXJWgjfzSrzJf9v95IZTIuujr5mjXfUOjIFUAP4ROFk/bL5c3u+9Ht3ZXsuUvzHrNSnojw7PgLxHmAKAHNpR39zxSTH+fMEhkfWDf/VSpsvpMmYHp0gVvaM72muZ8uUgTPGYr6AQpgAgSw4e1lOStPrW03TiuP6SpBkdPOJr6cyDB+v5Hx0d2R45c7b8gWDmiixQ51cPbf+E9sJULh6/7VglBWlpLBSEKQDIksbmgE45cICMMbr3kmrNuXyqTjpgQKfvc+Dg7nHbTy3YkKkSC1ZZcQdv6yV6zHfqb+xlcXnb1wUDkj9Bh/bOatghrX4z/fvAFQhTAJAlexp9qiqzWzmMMTqgRShKlsdjdNbEwZHt7XUZ+GFe4Nqcmy8sUctUjyH2smlP29c9+nXppv6pF4aCRJgCgCzZUd+s3pWZ6Rfzp68eopW3nCZJ+u2Ln2nOok0ZuW+hCnY0vIGV4FFpRV972VTX9nWfMTo9WiNMAUAG+ANBfb7FbtGwLEv1zX41+oLqVZG5TsZeT3SQxx/806lpUPJDhy1TQX90/fhr7WVlP3vZsKPjD3jjt9INPVIbkypIn7dCQ5gCgAz4/cuf6+Q/vKm/v7dGo66eowOu/48kaXDPsox+zvKbp0fWP1yTxA/9LsoftDS4R5kWXDct8QmxYeron0g37IpOOPziTOm/HcyR99rN9nL3BsnfuTc0Ix3PT7iuc9fBtQhTAJCmj9bu1F9fXylJuv7ZJXHHjtsvs/1rir0e3XbeQZKkr9z1XkbvXUiCQUtFXo96tfWYNRiIrntD4z3Fztf35m3JfdAfDpQeuaCTxYWCHIN2FgxGDAOAJNU1+fXUR+tVU9es/522b2T/L55e3OrclbecFvdYLpNG96vMyn2zIRC0tGJrnfYbWJWzz7QsS9uokFQSAAAgAElEQVTqmtr/949tmQpr2Sn9hh7Sz1dLjbuk3qPavteKVzpXYCDUMsWgnQWD/5IAkKTxv/xPZL3JH9RVp+4nY4xKi6MtGredd5DOPmRI1oKUJA3qEX11v9kfVEmRex8yHHTDf7S3OaAnLz1Sh47olZPPfHz+er2zoqb9k7oNbL0v0XAJvw2FqOu2Z64lKdwq5qFlqlAQpgAgBXe9sVJVZUVasnGXFqytjez/SvWwrH/24J7RMLV2R7326d8t65+Zqr3NdnBYsnFXzsLUuyu2x23fdPZ4jW35bzT0UOnwS6WRR0X3mXZCaSbn0gv3mWpv4FDkFff+OgMALnfbfz7TnEWbI9trZp2es8/+aegx40m3v5Gzz0zF1LH2cAPXP7uk4zfssuSiKSN0+Og+rQ9MnyXt/6XotqeDMJUp9JkqOIQpAEjC5l2N6lFerEnDeyYMTRdMHp7Tei6cMiKt61duq8vJtDQ9yqOBYcw1c7L+eZLkMSk+Ym2vZWrPltTumQh9pgoO/yUBoANra+p1zG2vSZKWbtrd6viSG09RZWluv532rizR4B5lqm3wybIsmU4EiG17mnTi7+0Wrf5VpZp77Ukp17Gr3qfiIqOKkvi/f0NzQPe/s1r//sSBwUVT7q7WzoV3Hm4Pn5AJ9JkqOLRMAUAHPlq7M7L+k9DjtTmXT9W4gVX66LppOQ9SYTOOGa365oAufSj5ATx37m3WRfd+ENneuie9qWkO/tVLmnZ76znm/vDK57rtP5+lde+cSyaQFrUxblhjJ4LW3q32kj5TBYMwBQDt2Lq7UT9+dGFk+/jQuFEHDO6uF398TMami0mF12t/C39xyWZt3d2Y1DXfevBDfbYlfu65mjTn+ttQ29Bq3469ifsYrd6+N63PSoZJtWmqNInhGwYcmHh/fScGUH0gNPBqW8EMeYcwBQDtqGkRCkb0cc8YTxOG9Iisf/fv87RofcetI7FvHl5+wj6SpENv6uQ4SUloaA4k3H/3Gysz/lkthUel6NstC0E30Zx+kuSrj64Hg1Ldto7vVZbaxNdwH8IUALTjNy9+GrftpjGdJg7rqZ+fup8k6eP1u/SlO97W0o27NXLmbD0yd22H1/eImTewyZ84/LTn7eXb2zy2pyl+UMzvHG2P1/TIh+s6/TmpKmrv7by2HPZdqfeYto8H2/h38jVIezZLW5dJb98u/W4faffG9j+rxD3BHOlxz3cFAHCh1z+LtjA8MmOKg5Ukdumx8T/4H5tnh5VnFm7o8NolG6MtWb9sMQ1OMi6674M2j8U+OrzlnAk6/aBBnb5/qvyhIRiKi1J43Hf676TLP2q7s3nsxMZfeVD60p/sdV+9dOcR0p1TpM9esPfVdNAKV1zR+frgSoQpAEhSN4c6mrfHGKMHvnFYZPtv766RJL2/aoeeXrC+3Wt/+aUDIyO1v7hkc7vndsSy4seQim3B+9rhw+Omk6lrSjCVSwb5QkM+FKfSMtWR2GloDjxbGjDBXm+ulxpC/aY2zLOXCx5q/17J9NFCXiBMAUA7Dh/VO7Lev3upg5W07fhx/TVz+rhW+//30Y/jtu99a1Vk/cLDh6tHebFW3nKaJKm23pdWDS0H5Az357rzwkmSFDd0wu6G9D6rI/6AXUuRN8NT+jx0nrRtmb3+7VA/s3Agaq5rff4nj7R/v+6DM1cbHEWYAoB2BIKWjhzTR5/ddKr6V7n37avJMaEv1v+9GQ1QN81eFlm/+ZwJGf18f4sw9ff3vpAknTah9eM9X5YHC60qs4PblESjnqdjxcvR9WGh1sDS0DQ1Ta3HH5Nkt1jFagydN/q4TFYGhxGmAKAduxp86l5WrNIid48J5PMnDig3z1mmkTNna2+GH60FQ+GpssT+d0lmqpgpo+3Ad+xtr7c5dEImDOxhh97rzjggMzf8zn/bPlYcmiexrbf3dqySmuqkG3pInzwmrQ6NybWr4z5tyB+EKQBox+5GX9yUKG7VsmVqxc3T47Z/9kT8I79Y5x4yRJLU6Ev+jb53V9ZIksIZ6vF5Hb+ld9PZ0dawKx9vu550+YOWSrweFXvT/BF31I/t5dBDpUETE59TFApT6+cmPv7KL6Utoc79r90SfSw4/Tfp1QZXIUwBQDt2N/jVvdx9Hc9bMsbomR8epXsvrtacy6eqyOvRfZdUR46XtdOy9skG+821r9z1XtKfF36TryEUwG54fqkke4T1kTNnJ7xmn/7dIus767PXMhUIWu3OWZy0aTdG3+or65H4nKJSSab147ywFa9Ij3/DXt+5WtowP3S/nhkoEG5BmAKANuxq8KnBF1C3Uve3TEn2uFMnHTBABwy2B4M8cf8BWjPrdI3qW6ndjW13+p5xzGhJ0qINnZ97rntZfNDcsie5kdjbGtQzEwJBK7UxptpT3kb4MUYq6Sapncece2LGm3r1RntZ5M6XGZAawhQAtOHUP9r9W/6VxACYblZa5NH6ndEpX351VvyUKOdXD0v53u9dfaIkab8B9uOr8uLk+pZ9unlPxyelKBC0IkM+ZExsy1R5i87+JRVSw874fe0N/CkxlUyBIUwBQAIjZ87Wpl12K8v51UMdriY9JUWeSHipHtFLFx8xstU551cP1cDunf8BX1lapKlj+6qyNPmO6GFbk2zF6qyd9c0Z73AfF6bOuz/+mKdYamoRDk+5pf370TJVUAhTANBCbYv+PF87fIRDlWRGSUxH7LY6ZVeUFGnz7sakO6H3qyrVuZPsjuulRR41+oLaXteka59eHDnnwsOHt7ru+P36RdYn3/xqUp/VWc8u3NhqqIa0lcbMo9erxdfD7vXS7tDbeT1Dx0oqpEO/0fb9aJkqKIQpAGhh2aZoK8O/vjsl8qp9viotjn6rH9a7POE5n4Varn7976VJ3bPRF1D3MrsvWWmRV03+gKpvekXvrbLf8vvNlyckHMuqe4s3I99fVaNdDb6sjz2Vtr0x8xC2Nw3MOXdLJ/xCGnG0dMRlbZ9Hy1RBIUwBQAt7Qp21/33Z0TpiTIYHfnRAbMvU1dP3T3hOcyjMrKnZm9Q9G5oDqgiNMVVabLdMxUo0WKckXXxEfKvOV+95Xwff+JKueWpRUp/rmLqY6Xbaa1WqGiAd8zPJ44kO6JkILVMFhTAFAC2EX/cvL3H3QJ3Jip0nr6I08d+pLNR61TIUJdLsD8oftCJhas32vdpQ2xB3TlVZ4jcgDx3ROzKFTazH57c/j6DjTMy/W3Hi1j1J8SGp24AW94j5kevNjzdEkRzCFAC0cPvLn0tSJCzku5KYMaZK2ugzFR7hPZk+U+GJiitDEz9/tLY27viQnu2EDUlej4lM+ZI3esa88djeI7rYMGVi3ig84kfSDz9MfAx5jzAFAC18UWMPwJjx1+sdsmZ79NGdaeOHeHhIg47C1M69zbr+WbuTeZ9uiUPFlafs22FNJ4zr3+E5rnL8L6Tjrpauq2l97LhrouttPb47+Sap7z7ZqQ2Oy7NfDQAgd9w8sXFnJDMYZ2noUeDKbXu1ZXejBrQxTMK1zyzSnEV2/6Fw8Koo8ao+NAjnyltOSyqE/va8g3T8fv3140cXJvV3SJZlZfgtvrCiEum4mYmPHXOl9HpoKISWYWrGG1JFn2hL1Lf+Y8/Xh4JCyxQAxAhm+pV6F/j20aM6PKfIGw1Ah9/yqr5y17t6a/k23f3Gyrjz1u2I9o06a+JgSdLfvjlZHiPdfv7BSbfmlRZ5dXZoTsBMagpN+HzB5NbDMmSNxyt99zXp2KvUah6bwRPjHxEOnyJN/FruakNO0DIFoMvZuqcxrtWpyR/QE/PXa+Kwnnpruf0K/GUnFM4jmWQG0vS0ePz34Zqd+vp99uS9t77wqXpVFGvB9SdHWrkOGtoj0s9q8qjeWnXr6SnVtvKW0/SHlz/XHa+tkGVZbT6GTFZ4sM79B1WldZ9OGzLJ/oMuiTAFoMt4fN46/eyJTyRJv//KwTr9oEFav7NBJ93+RqtzC6O3lO0f738hqf0Wqo5CzM56X9wExs/96OiM1Ob1mMhAokFL8qb5D3//O6slScu31KVbGpA0whSAvBMMWnpz+TYdu2+/pFoy9jb5df/bq/X70Ft6kvTTxz/WTx//OOH55x06VJceV3gtU7FDJLTk5JuL4RcMMzGn3uufbZMkbdrV0MGZQOYQpgDknb+/t0Y3PL9U/+9rk3T6QYkHhwwLBi0d+Mv/dHjPVbecJk+BvL3XlkuPa3vy3f+dtq/ue3t13L6rTh2n37z4aatz7/n6oRmt62/v2i1nD7yzWt87toMJgjvQ0BweI4wfb8gdOqADyDvLt9qPcGr2NnV47iUPzI3bXvarU3XFiWMj23++4BCtmXV6QQep74cCSmU7AaNbaZHOPHhwZPt3XzlYlx43JtKRe82saJ+okw8cmNH6ttfZ/x3/8t8VKd+joTmgkTNnR16au+CwYe1fAGQQ0R1A3gm/ht9eOAgLdygPKy/x6n+n7av/ndbxWEiFYub0cZo5fVyH591w5oHad0A3/eC4fSLh8tZzJ+jWc6Nz7E0d2zfj9Z158GA99/HGtIY1mLNokyR7aAdJ2ndgjjugo0sjTAHIO3sa40fgTsascydoehvzxcHWu7JEPzphbJvHP/31qSrKQgvehCE99NzHG7W3uePR19vS0GKw0eI2RnoHsoEwBSBv7NjbrCfnr1ddkz0RcXtz5wWClt5fFR2t+pxJQyKv8iM1ZcXZ+fdLdw7E5Vv26BfPLI7bV9pOZ3sg0whTAPLGtU8v0guLN0e223ssdNG9H+i9mDBFkHKvdN/gm/aHN1vto2UKucRXG4C8EX68FxabpbbtaYosT/jd63FB6htHjsxFeUhReCT1TCqUeRWRH2iZApA3Wo6T9M2/fag3f3a8HnxvTavX+sOuPHnftF+3R3ZVMIwB8hxfwQDyRqJpUY657bU2zy/2mnY7VMM9Lpg8TK8u2+p0GUBKeMwHIG+88fm2yPr51UNbHS8rjv+W5gsU3qTFharI45G/ACeZRtdAyxSAvPSrs8brkOG9dPVTiyQpMhp6MGhp6abdmvH3efr9+RMdrhLJKvZ65PMH07yHIUDDEYQpAHnnw2tPUlmxVxdMHq6+3UrVv6pUBw/rKUnyeIzGD+mhd68+0eEq0RnFXiNfML0wte+AKi3ZuDtDFQHJ4zEfgLzTr6o0sj7tgAGRIIX85fUYNfo6H6b8Afua7x0zWr84/YBMlwUkhZYpAHmhOc1HQHC3e9+y38Zcv7NeQ3tVJH1d+LFez4oSHTGmj24//2CGRUDOEaYA5IWNtQ1Ol4Asag61MG3Y2dC5MBV6NFjstQPUuZNav5gAZBuP+QDkhbome8DO2El3UThG962U1Pkxp8Kd1hnxHE7iqw9AXmgMTWQ7tFe5w5UgG648ZT9JUpG3c4/owsMpdPY6IJMIUwDyQn2zHabKszTZLpwVblnyd3Jog2ZapuACfPUByAsNoZap8hLCVCEKtyx1dniEcMtUMS1TcBBhCkBeaKBlqqAVe+wfR3e+tiKy7/63V+uzzXvavc4XoGUKzuNtPgB5IdwyxaS4hSncMvVKzPx8v/r3UknSmlmnt3kdYQpuwHclAHmBlqnCFhuGNu9qjHts19AcaPPxbnicKR7zwUmEKQB5IdwyVVZCC0RhinY8n3LrqyqJCVfN/mCbYcpPyxRcgK8+AK60NzSuVFhDc0Bej4n7IYvCsacx/r93eBBPSfr7e2sSXvPK0i3asbdZklTk4esCzuGrD4DrvLtyuw785X/0zortkX13vLZCgaAlY3icU4jae3xbUtT6R9Xamnp95+/zdNm/FkiSSov5cQbn8NUHwHXmrt4hSfogtEThmzyqd5vHFq6rbbVvW12TJKkpNM5U/5jJr4FcI0wByBvMX1u4jDGaOrZvwmMvLN7cat+tc5bFbXcrpQswnJN0mDLGeI0xC4wx/w5tjzLGfGCMWW6MedQYU5K9MgF0JVaCQbBH963UaRMG5b4Y5MzO+uakz533xc64bQZzhZM60zJ1haTYXwV+I+kPlmWNlbRT0rczWRgAxApYlrw0TRW0v3/r8JSuqyjxqrSIMAXnJBWmjDFDJZ0u6d7QtpF0gqQnQqc8KOnsbBQIAJIUtCx56Hxe0HpXluiNnx2n//702Mi+E8b11/gh3ePOa/mmZ68KHozAWck+ZP6jpJ9Lqgpt95FUa1lW+Ct6vaQhiS40xsyQNEOShg8fnnqlALqMXQ0+SZIV87wvGBRhqgsY0adSUnTU8x/8c76afPHz9YXn4wvbUNuQm+KANnTYMmWMOUPSVsuy5sfuTnBqwqm+Lcu6x7Ksasuyqvv165dimQC6kofnrpUkbaxtlCQt3rBLG2obtHVPo5NlwQGlRd7IG3th/kDnJkMGsi2Zx3xHSTrTGLNG0iOyH+/9UVJPY0y4ZWuopI1ZqRBAl9LoC0TezDpyTB+9+fk2nfGXtyVJdS0e76Dw7W7wae2Oek27/Q2NnDlbu+p9uvvNVXHnTBnd9rAKQC50+JjPsqyrJV0tScaY4yRdaVnWhcaYxyWdJztgXSLp2SzWCaCLuPbpxZFRrYuLPLrm6UWRY4997winyoJDXv3Unvh4+dY6SdLBv3op7viyX50amSQZcEo640xdJeknxpgVsvtQ3ZeZkgB0ZUs27oqsPzJ3rdbvtPvDfPWwYcy/1gWN6lvZ5rGF109TeYmXrws4rlNfgZZlvW5Z1hmh9VWWZU22LGsfy7K+YllWU3ZKBNCVfLp5T2T93ZU1kqTvTh2lWV8+yKmS4KBZ505o81hP3uKDSxDnAbjaAYO669rTD3C6DDgkkGgEV8BlCFMAXK2qjGlCurJDhvVyugSgQ4QpAK5WVVbsdAlwUHmJV/deXB3Zfu5HR+mSI0ZExqEC3IBf+QC4mo8xhbq8kw4YoNW3nibLkjweo4OG9nS6JCAOYQqAayQajLGhOeBAJXAbY4wYAB9uxWM+AK7RHApTM6ePi+wb2rvcqXIAICmEKQCu0RyaNqS0KPqt6ZZz2n41HgDcgDAFwDXCc7CVxISpsmKvU+UAQFIIUwBcI9wyVcKI1gDyCN+xALhGuGWqlNYoAHmEt/kAuEaT335zr8Tr0ftXn8gEtgDyAmEKQNIsy5IvYMX1acqk2A7oA3uUZeUzACDTeMwHIGmzXvxU+/7ihUgLUqY1JXibDwDcju9YAJL28AdrJWVvIM3mBG/zAYDb8R0LQNK8HrsPU9DKzv3DU8cU8zYfgDzCdywASQt3Bw9a2UlTvoB933BoA4B8QJgCkDQTmhwtmKWmqUDovrRMAcgnfMcCkLRwg5E/S2HKH7Qf8zEkAoB8QpgC0Al2yAlkKUyFH/MVe/jWBCB/8B0LQNJMtlumArRMAcg/hCkASdvV4JMkbdrVkJX7+0IhjTAFIJ8QpgAkLTwO1OINu7J6fx7zAcgnfMcCkLRDR/SSJA3vXZnR++7Y2yx/IKiauiYVeYx6lBdn9P4AkE2EKQCdNm/Njozdq9EX0KRfv6wrH/9YW3Y3qV9VqTyMMwUgjxCmAHTavW+vzti93lq+XZL0zMKN2lZnhykAyCeEKQBJG9yzXJI0fkj3jN3zvrdXRdbf/HybPlmfnf5YAJAthCkASQuPfD6oR3nG7hkOaACQrwhTAJIWnog4PB5UZu4ZP2bVbecdlLF7A0AuEKYAJO2lpVskJT9o58frajX/i/Y7q/v8wUg/qfOrh+or1cPSKxIAcqzI6QIA5IdGXyCy3nI6mbU19Zq9aJO+edRISVKTP6grHlmg1z/bFnfeyD4V+vXZ49W7skQHDu4hyW7tGtC9VB9ee1J2/wIAkCWEKQBJOfOOtyPrLVumvvHAXK3avle/efFTSdLM6eNaBSlJWlNTr6/fNze7hQJAjvGYD0BS/DF9m1q2TO1p8sdtz3rh07jtAwZl7u0/AHAbWqYAtGn+Fzt01xur9If/magT9++vVW+t1pFj+mhvcyDuvL0twlSslbecJm/MIJx/emW5Rver1DFj+2nKra+qwRfQr886MGt/BwDINsIUgDY9/ME6vbx0i95bWaMGX0B9KktUXuzV7kZf3Hn1MeFq1rkT1L97qY7dt7+M1Go08ytOGhtZX/brU7NaPwDkAmEKQJvqmuzQ5A8E1dAcVFmxV16PiTzyW1tTr8seWRB3zVcnD895nQDgJMIUgDZZoa5Rxkj1zX6Vl3hV5DX6dPMeXfv0IjX7g/p4XW3k/M9vmu5QpQDgHMIUgA4FgtLm3Y3qU1kir8d+b+WfH6xtdV5JEe+0AOh6+M4HoE3hd/Y2727UgrW1qiorVlGLPlBhF/B4D0AXRZgC0KFf/3upJOmIMX3i3syL9eiHrVuqAKArIEwBaJPVYtaYbx01ss2Wqfu/cVgOKgIA96HPFICk/N/F1TLGJGyZeuUnx2if/lUOVAUAzqNlCkA7ok1TJ47rL0kJW6YIUgC6MsIUgDbFPuYLD74ZfpsvbED30lyWBACuQ5gC0KbmQLDVvm5l8b0D7vjapFyVAwCuRJgC0KZEc+5VlHjjtntVlOSqHABwJcIUgDZVlRVLkl796bGRfS8v3RJ3zog+FTmtCQDchjAFIKGHP1irNz7fptH9KjWmX7fI/tr65rjzir18GwHQtTE0AoCErnl6kSRp1ba9cfu7ldrfNp7+wZE6ZHivnNcFAG7Dr5QA2jVuYPywB5cet48kaUz/bolOB4Auh5YpAO2ac/nUuO1Txw/UmlmnO1QNALgPYQpwkUZfQP6gFXmU5qQDB3fXwO5lkfGlAACJ8ZgPcJGjZv1X43/5H6fLkGQP2GnIUQDQIcIU4CI1e5s7PilH7MHPSVMA0BHCFICELMuiZQoAkkCYAlxoy+5Gp0uQRLsUACSDMAW40M2zlzldAn2mACBJhCnAhd5dWeN0CbJkydA2BQAdIkwBLjRxWA+nS5A/YKnIS5gCgI4QpgAXip0Lzym+YJB59wAgCXynBFzIDS1C/oClIgbsBIAOEaYAFxnco0ySFLScraPZH9SmXY36Yke9s4UAQB4gTAEu4gulqKDDaeqT9bWSpLmrdzhaBwDkA8IU4CL+QNBeOhymyku8kqQqF8wRCABuR5gCXMQXsENUwOkwVWyHqRvOPNDROgAgHxCmABfxhVqmglZuwtR/P92il5ZsTlCH/fmlxXyLAICO0IYPuEj48V6uHvN962/zJElrZp0et/+ZhRskSb0rS3JSBwDkM37tBFwiGLQij/deWLQpp59ttWgJq61vliQdNrJ3TusAgHxEmAJcwhcMRtZ31vty+tnPLtwYt/2vueskiUE7ASAJPOYDsuiG55bob++u0apbTpOngwEwv6iJH9Np5MzZ+ts3D9M3HvhQ+w7opqd/cJSMkeoa/Sopig8563Y06L1V23V+9bA2779ia52+94/5mjyqtyYM7aHqEdFWpx8/ulA/fnShvX7S2M7+NQGgSzMtm/ezqbq62po3b17OPg9w2siZsyVJ//zO4Tpqn77tnvvQ+1/oF88szkVZSZl17gR9dfJwp8sAAMcYY+ZbllXd0Xm0TAE50OwPdnjOvgOqJEl3XXSovv/Q/LhjZxw0SAcN7aGtu5u0aVejqkf2ijvuD1hasnGXDh7Ws837r9/ZoOVb69SnskTFXqP+VWUaO6Cbxg3sruueWSyvx2j51j0a0rNcN58zQeOHOD/ZMgDkA8IUkAMz/jFPy28+rd1z/KE+Uz0riiP7Wr5lly2Pff+InHwOABQiwhSQA8kMwhk+p8hjchaiAADp41UdIIuqyqK/r4ycOVv/eP8L7Urwpt4D76zWzx7/RJJUFhp9HACQH2iZArJoaK8KLdu0W+GGqeueWazZn2zUwUN7akz/bjq/eph27m3Wjc8vjVwzqm+lQ9UCAFJBmAKyqMkfaLVvxdY6vb9qhyTp/Oph2tUQ31JVyeTCAJBXeMwHZFGTr/VbfN4W403tafRLki4+YoRW3tJ+J3UAgPsQpoAsavIHNG5gVdy+Lbub4rYXrtspSTp8VJ9WQQsA4H4dhiljTJkxZq4x5mNjzBJjzI2h/aOMMR8YY5YbYx41xjAjKtBCky+oKaP7tHtO+C2+ffp3y0VJAIAMS6ZlqknSCZZlHSxpoqRTjTFTJP1G0h8syxoraaekb2evTCA/NQeCraZ+ifWTRxfqhlDn8wHdS3NVFgAggzoMU5atLrRZHPpjSTpB0hOh/Q9KOjsrFQJ5LGhZKmrn0d1TCzZE1qvKits8DwDgXkn1mTLGeI0xCyVtlfSypJWSai3L8odOWS9pSHZKBPKXP9h+mIpFfykAyE9JvYNtWVZA0kRjTE9JT0vaP9Fpia41xsyQNEOShg9n0lR0HcGgJcuSvJ7431n+euEk7Wrw6Xcvfa7tdU2aOKyn9h/U3aEqAQDp6tSANpZl1RpjXpc0RVJPY0xRqHVqqKSNbVxzj6R7JKm6urrjOTWAAuEPTw/jNbrja4fonRU1uuWc8TLGboH66mR+uQCAQpDM23z9Qi1SMsaUSzpJ0jJJr0k6L3TaJZKezVaRQD4Kv6XnMUZnHDRYt547IRKkAACFI5mWqUGSHjTGeGWHr8csy/q3MWappEeMMTdJWiDpvizWCeQdf9AesDPZPlMAgPzUYZiyLOsTSYck2L9K0uRsFAUUglCWomM5ABQ4RkAHsuSpBeslqdXcewCAwkKYArLkH+9/Icme2BgAULgIU0CWlBZ5JUlN/taTHQMACgdhCsiS8DQyzQHCFAAUMsIUkCXFoY7nfsIUABQ0whSQJVPH9pMkfe/YMQ5XAgDIJsIUkCW9K+2Jiw9gqhgAKGiEKSBLwnMnMeg5ABQ2whSQZWQpAChshCkgSyym9QaALoEwBWSJFUpTTG4MAIWNMAVkSaTPlKNVAACyjTAFZBkNUwBQ2AhTQJbQZwoAugbCFJAl0cd8NE0BQCEjTAFZEu6ATpYCgMJGmAKyjD5TAFSv49sAACAASURBVFDYCFMAAABpIEwBWcJTPgDoGghTQJYxaCcAFDbCFJAllhgbAQC6AsIUkCVPL9goicd8AFDoCFNAlizbtFsSb/MBQKEjTAFZxqCdAFDYCFNAClZs3aObZy+NDswJAOiyCFNACr75tw/1f2+t1sZdjR2ey2M+AChshCkgBeFHd/5A0OFKAABOI0wBKSjy2mHKF+j4MV+Rh6YpAChkhCkgBcUe+3+dk25/Q7fOWdbq+Nn/753IepGX/80AoJDxXR5IQbeyosj63W+u0siZs/XSks3atqdJC9bu1MJ1tQ5WBwDIpaKOTwHQkjfBo7sZ/5jvQCUAAKfRMgWk4Nh9+yV13u3nH5zlSgAATqNlCkhBy07lR4zuo5+fup9q6306eFhPVZR4VeL1yEPncwAoeIQpIE0XHzFCvzprvNNlAAAcQpgCUhAeEOHv35qsw0f3drQWAICz6DMFpOGwkb1VWuR1ugwAgIMIUwAAAGkgTAEAAKSBMAWkwOp4FhkAQBdBmALSYBj5AAC6PMIUAABAGghTQAos8ZwPAGAjTAEAAKSBMAUAAJAGwhSQAt7mAwCEEaaANPA2HwCAMAUAAJAGwhQAAEAaCFNAGox4zgcAXR1hCgAAIA2EKQAAgDQQpoAUWIyNAAAIIUwBaWBoBAAAYQoAACANhCkgBTzlAwCEEaaAFARDYcrLcz4A6PIIU0AKgqGmKbIUAIAwBaQgaFkyRjKkKQDo8ghTQAqCliUPQQoAIMIUkJKgRX8pAICNMAWkIPyYDwAAwhSQAssSj/kAAJIIU0BKAkFLHrIUAECEKSAlQcuShzQFABBhCkgJj/kAAGGEKSAF9tAITlcBAHADwhSQAsaZAgCEEaaAFASCjH4OALARpoAUWJYlL//3AABEmAJSwmM+AEAYYQpIwZqaejX7g06XAQBwgSKnCwDyjS8Q1NzVO5wuAwDgErRMAZ300PtfOF0CAMBFCFNAJ934/FJJ0pcnDXW4EgCAGxCmgBTNnD7O6RIAAC5AmAI6wR+IdjrvV1XqYCUAALcgTAGdsLPeJ0k6YFB3hysBALgFYQrohEvunytJOm3CQIcrAQC4BWEK6IRPN++WJJ136DCHKwEAuEWHYcoYM8wY85oxZpkxZokx5orQ/t7GmJeNMctDy17ZLxdwzva6JgUte31gjzJniwEAuEYyLVN+ST+1LGt/SVMk/dAYc4CkmZJetSxrrKRXQ9tAwdq5t9npEgAALtRhmLIsa5NlWR+F1vdIWiZpiKSzJD0YOu1BSWdnq0jADXwBu1nqrosmOVwJAMBNOtVnyhgzUtIhkj6QNMCyrE2SHbgk9W/jmhnGmHnGmHnbtm1Lr1rAQe+tqpEklZcwCxMAICrpMGWM6SbpSUk/tixrd7LXWZZ1j2VZ1ZZlVffr1y+VGgFX+PW/7ZHPG30BhysBALhJUmHKGFMsO0j907Ksp0K7txhjBoWOD5K0NTslAu5SPYJ3LQAAUcm8zWck3SdpmWVZt8ccek7SJaH1SyQ9m/nyAHcIhF7jK/Ya9enGyOcAgKhkOn8cJenrkhYZYxaG9l0jaZakx4wx35a0VtJXslMi4LxNuxokST87ZT+HKwEAuE2HYcqyrLclmTYOn5jZcgB3+vEj9u8R63c2OFwJAMBtGAEd6EAgaMnrsX+fuOTIkc4WAwBwHcIU0IE/vfK5Pli9Q5I0pl83h6sBALgNYQrowNJNe5wuAQDgYoQpoANj+ldKkhZcN83hSgAAbkSYAjrw8PtrJUm9KkscrgQA4EaEKaAd9c1+7WnyO10GAMDFCFNAOzbW2kMhDO1V7nAlAAC3IkwB7Zj2hzclSb8+a7zDlQAA3IowBbShvtkvy55FRkft09fZYgAArpXMdDJAl3Hj80v0/qodWrZpd2Tf1LF9VVLE7x0AgMQIU0CMB95Z02rfJ+t35b4QAEDe4NdtIKTJH2i1r3pEL7191fEOVAMAyBe0TAEhd/x3RWT94+tPVvfyIhnT1hzfAADYCFNAyF9CYeq+S6rVo6LY4WoAAPmCx3xAC0eP5c09AEDyaJlClxUMWhp9zZxW+0uLvA5UAwDIV7RMoctaU7O31b7RfSsdqAQAkM9omUKXdNYdb+vjBEMe+IJBB6oBAOQzwhS6nKufWhQXpF796bEa1qtCH67ZocmjejtYGQAgHxGm0GU0+4PyGOlfc9dKkn7z5QmqawpoTL9ukpgyBgCQGsIUCtZD73+hXzyzWJLUv6pUW/c0RY5Vj+il/zlsuFOlAQAKCGEKBefZhRt0xSML4/bFBilJ+teMKbksCQBQwAhTKDgtg1S30iJdMHmYNtY26rfnHaTKUr7sAQCZw08VFIzNuxr1zw++iNt310WTdOr4QQ5VBADoCghTKAibdzVqyq2vxu1bM+t0h6oBAHQlDNqJgvD1+z6I237qB0c6VAkAoKshTKEgLN9aF1m//MSxmjS8l4PVAAC6EsIU8t6G2obI+g+OG6NLjx3jYDUAgK6GPlPIez9/4mNJ0k1nj9dFU0Y4XA0AoKuhZQp5r7LE/p3gwsMZhBMAkHuEqf/f3p2HSVVeeRz/HrqbfRcRlKVBRVEBkXZDxQ0YBNdRicYQ45rEaGKiTtQomqCJiTMSRTEaneAycWI0ap5Bg4oGUUABBRfigizKKrKDNNDdZ/54b3d1A71Addet5fd5nn761q17q06drq576n3f+17JaGs3b+PleSsZdmgnzCzucEREJAepmJKM1n/MKwC0bqYeaxERiYeKKclYi1dvrlj+1VmHxRiJiIjkMhVTkrGenBFmO//ewEKaFuTFHI2IiOQqFVOSkWYvXsMfpy4E4LYzDok5GhERyWUqpiTjlJU55z44HYBTD+6ogeciIhIrjdqVjDF78ZqKIqrcQ6MGxBSNiIhIoJYpyQivzFu5UyE197ah5OfpLSwiIvHSkUgywhWPz6pye87oIbRpVhBTNCIiIgnq5pO05+4Vy9cOPpAfnLi/zt4TEZG0oWJK0t53Hn0bgGGHduLawb1ijkZERKQqdfNJWispLeOt+asBuPT4HjFHIyIisjMVU5LWDvjFSxXLR/VoH2MkIiIiu6ZiStLWhuLtFcuzbhkcYyQiIiLV05gpSTvbS8voc/skireXVazr0LJJjBGJiIhUTy1TknY+WbGxSiH15GVHxxiNiIhIzVRMSdrZWpIopCZcciTHH9ghxmhERERqpm4+STvPvrsk/P7hQAZ0bxdzNCIiIjVTy5SknU3FJQD07twq5khERERqp2JK0oq78/e5ywBo3lgNpyIikv5UTEla2RC1SomIiGQKFVOSVv4w5XMAxl90RMyRiIiI1I36UXLAq/NWUlTYjrbNGzfI428s3k7Tgjy2bC+loFEjmjXes4sQ97hpIuXXNNZs5yIikilUTGW55eu3cPnjswBYdNeIen/8Xre8xLZKUxns6nmemL6IW1/4iMuP78Hzc5ZyyXE9+HzVJn46uBen3TuVTVtLeOYHx1YUUqBJOkVEJHOomMpyX67ZUrG8dN0W9mvbrN4e+9OVG3cqpAAKb5zIc1cNpH+3drg7t77wEQCPvLkQgLsnfQLA395dWrHPeX+YXrHcEEWfiIhIQ9GYqSw38qFEkbJ287Y9fpy3F6xm/ZbtVdYNHfsGANcN6bXT9ueMn8Z9kz+jx00v7tbz/O68vnsco4iISBxUTGW5/EZWsfzyRyvqvN/7S9ZReONEZi9ew6atJXzr4Rlc/ed3K+6/bMLMiuUfnXwAi+4awZ+vOJqu7RMtX/e88mnF8pQbTmJw7458f1BPDuncuspzPf+j4wBo27yA8wd0qfuLExERSQPq5stiZ4x7k5KyxECk+16bT3FJGTcP713rvm/O/xqAl+etZGt0nbypn33NtM+/Zq8WTZj88VcAfH9QTxpFBdvA/Tsw6dpBHDJ6UpXHGtRrb7rv1YJHLj4SgOtKythWWsaZ495k1aatHN61La9ffxI9OrRI/kWLiIikmHnlUb8NrKioyGfNmpWy58t1hTdOBKCRQaWain5d2vCnS46ifYtdn923Yn0xQ8ZOYWM051On1k1ZsaF4p+1+d25fRh7ZtcbnBljw6+EVBVdlJaVlOFCQpwZSERFJP2Y2292LattOR7EsN7xPJ+bfObzKurlL1nPEmFcAeHz6Ip6e9WWV+y9/fGZFIQXsspA6ukf7agspgD9dciSdWjdl+k2n7LKQAsjPa6RCSkREMp66+bKQu3PdX+cC0LV982qLmXnLNjA6OtNuZFGiMPpw6YYaH3/hb4ZjtuvHLHfyQR2ZcfOpuxO2iIhIRlIxlWXcnZmL1lZMO3DZcT2q3fbDpesrluct28ADr89n4gfLq93+gW8fQbPGjWotpERERHKJiqksU3kqgjFnHUrH1k132uZ/rzyGCx6ewXPvJeZ5Gn7f1Bof9/NfDyevmhYuERGRXKZiKku4e8U4qHKjji2sWF501wg+XrGBg/ZpxeZtpQBMX7C62scbf9ERLFu3hW8d2ZVWTQsaJGYREZFsoGIqS5SWOWu/SUyqOfr0Q3ba5uBOYX6nlk12/Wfv2r4ZPxvSi+MO6EDHVju3aImIiMjOVExliZc+TEzIOf/O08jfzbPk9mvbjKn/cUp9hyUiIpL1dF56lnj9kzCJ5uxbBtepkLo0GpheuFdzAK44ofqB6iIiIlI9tUxlgcoTZO7Vskmd9mnXPIyDGtG3MyP67Evvzq0aJDYREZFsp2Iqwy1Ytali+efDDq7zfk0L8gBo26wxh+zbupatRUREpDoqpjJc+TX0HrzoCE7r07nO+108sBDHuXhgYQNFJiIikhtUTGWw7aVljH7hI/p3a8uwwzrt1r6N8xtx5aD9GygyERGR3KFiKkNVHifVd782mpVcREQkJjqbLwNtLy2rcvsng3vFFImIiIioZSqDlJSWUVxSxs+ffb9i3fcH9aR9i8YxRiUiIpLbVExlgFfmreSKx2fttP7TO06jcb4aF0VEROKkI3EG2FUh9dJPTlAhJSIikgbUMpXmHpm6oGL54zHDeGL6Ys7qv6+unSciIpImVEylsWdmL+GOif8C4ICOLWlakMcVg3rGHJWIiIhUVmsxZWb/DZwOfOXuh0Xr2gN/AQqBRcBId1/bcGHmjqmfreLZ2UsYuH8H/iMaaD64d0ceufjImCMTERGRXanLoJsJwLAd1t0ITHb3A4HJ0W1JwpZtpTz4z88Z9eg7PD9nWUUhNebsw1RIiYiIpLFaW6bc/Q0zK9xh9VnASdHyY8A/gZ/XY1xZrXh7KZu2llB0x6s1bjeib2dGHdM9RVGJiIjIntjTMVP7uPtyAHdfbmYdq9vQzK4ErgTo1q3bHj5d5istc7aXltE4rxEH3/qPare7ZURvLj9B46JEREQyRYMPQHf3h4GHAYqKiryhny8dlZU5+9/8IgDfq+bCwucP6MLd5/dLYVQiIiJSH/a0mFppZp2jVqnOwFf1GVSmW7ZuC2s2b2PF+mIu32GOqAnTFgFqgRIREckWe1pM/R24GLgr+v1CvUWU4b7etJWBd71W4zbDDu2kQkpERCRL1GVqhKcIg807mNkS4DZCEfW0mV0GfAGc35BBZoLJ/1rJ9tIy3vty3U73/fbcPpzZbz9mLFzN0rVbGHroPjFEKCIiIg2hLmfzXVjNXafWcywZadPWEv73nS8qJtcs13PvFrRsks+vzjqMw7u2BeDkg6odpy8iIiIZSjOg18H1f51Lr31aMnfJeia+v5xnf3gsh3dtx/tL1nHO+Gk7bf+toq789ry+MUQqIiIiqaZiqhbfbCvhmdlLqqw798HpO2037sL+XPPUewAqpERERHKIiqlaXP/XubVuM+uWwXRo2YTT+3bGzFIQlYiIiKQLFVM1cHde/GDFTuvfuvEU2jdvzIoNxfTo0KJivQopERGR3KNiqgZjX/2sYvnOcw6jX5e2FG8vZb+2zQCqFFIiIiKSm1RM1WDG56sB+N25fRl5ZNeYoxEREZF01CjuANLVI1MX8M6iNQAM69Mp5mhEREQkXamY2oVvtpVUmTeqddOCGKMRERGRdJa13XylZc4Lc5ZyZr99yc+rvWZ0d25+7kOeeueLKuvfuOHkhgpRREREskDWFlOXTpjJlE9XMXvxWu48p0+t218yYSb//GRVlXXv3z5UrVIiIiJSo6wqprZsK+W1j79i2botTPk0FEYfLF1f635lZb5TIfXcVQNVSImIiEitsqqY6j36Hzute3/JejYWb6dJfh6N83fu7rvw4RlMXxDO2htyyD7cec5hdGzVtMFjFRERkeyQVQPQzz583yq3TziwAwB9bn+ZXre8xNTPVjHl01Ws2bwNd2fOl+sqCimAUcd0VyElIiIiuyWrWqZ+f0F/3l64huXri3nmB8fSp0sbho59g8WrvwFg1KPv1Lh/efElIiIiUldZVUwBTL/p1Cq3//CdAZx279Qa93njhpNp16JAl4MRERGR3ZZ1xdSOenduzdzRQ2nTPDGYvKzM+XrTVl78YDkXHt2NJvl5MUYoIiIimSzriymgSiEF0KiR0bF1U753XI+YIhIREZFskVUD0EVERERSTcWUiIiISBJUTImIiIgkQcWUiIiISBJUTImIiIgkQcWUiIiISBJUTImIiIgkQcWUiIiISBJUTImIiIgkQcWUiIiISBJUTImIiIgkQcWUiIiISBJUTImIiIgkQcWUiIiISBJUTImIiIgkQcWUiIiISBJUTImIiIgkQcWUiIiISBJUTImIiIgkQcWUiIiISBJUTImIiIgkQcWUiIiISBJUTImIiIgkQcWUiIiISBLM3VP3ZGargMUN/DQdgK8b+DkyifKRoFxUpXwkKBcJykVVykdCLuaiu7vvXdtGKS2mUsHMZrl7UdxxpAvlI0G5qEr5SFAuEpSLqpSPBOWieurmExEREUmCiikRERGRJGRjMfVw3AGkGeUjQbmoSvlIUC4SlIuqlI8E5aIaWTdmSkRERCSVsrFlSkRERCRlVEyJiIiIJEHFlIiIiEgSMraYMjOLO4Z0YmYZ+7esb3pvSE30/gAz6xD9zvlcAJhZXvQ75/NhZp2i3zmfi92RUQdgMzvIzPoAuEbOY2ZHmdmtAO5eFnc8cTKzQ83sJNB7AyreG79WkQ1mdryZPWhmV0Fuvz/MrL+ZvQj8FHI7FwBmdpyZPQbcYmbtczkf0XtjMjAG9N7YXRnxQWtm+Wb2KPB3YJyZXWdmXaP7cq56NrO2ZjYOGAesjtZlxN+yvplZIzMbDzwL3GxmY8ysqPy+eKNLPTNrbWYPAPcDS9y9LBf/R8qZ2RHAg8BsYLiZjTWzw2MOK+Wi/5PHgD8Bf3b3X8QdU9zMrCcwHngd6A6MMbMR8UaVehaMBR4HHnP3K+KOKRNlysGmO9DK3Q8CfgjsDVxlZs1ytHq+HzjR3Y929/GQ0y1TbYGWQG/gIkJxeZ2ZtczRnNwMHAMMrfTeyMX/kXJHATPd/RHgcuAbQlHVId6wUiv6X2gHzHP3JwHMbO9cLrSBAcC/3H0CcB0wBzi9/It6rog+H1oC77n74wBmtn8ufhlNRtomy8yOMLNe0c0CoMjMCtz9X4QWqhbAubEFmGJRPnpHN/8TaGRmBWZ2hpndZGbDzaxpnDGmipn1qPRa2wMDgebuvorQQrUG+FG0bdYfLKJ8NI9uPg6sAjqa2Xlm9p9mdoGZdYsxxJQxs5Fm9jMzGxitehdoaWad3H0F8BrhYq3HxRZkilTKxfHRqouBoWZ2g5m9DtwHPGxmtV7ENRuY2TGVjikAM4EuZtbV3dcCbwHrgHNiCTCFdpGL64CjzexWM3sLuBuYYGYD4okw86RdMRUdGCYCDwBPmNkQd/8YmAx8J9psLvAe0M/M2sYUakrskI8JUT7mANOBFcCPgU3AaOAaM2sfX7QNy8wKzewl4BHgf8zsEHefD7wB/CzabDnwN6C/me2bza0yO+TjiSgf84CpwCTgKuAT4HzgBjPrEl+0DcvM8sxsNPDzaNVDZnYGsBlYBJwYrZ8CrAeydpjALnLxoJmNjAqGewnjpW4HrgZaAReZWX4swaZANCxiIvAKMNLMWkZ3FQNvAiOj258A84C9svWL6S5y0QLA3TcQjjHnAjcBFxI+S8/NlWI7WWlRTO3wgXY9MMfdjwVeAL4brZ8KHBsdIDcDS4AuwJaUBpsCNeTjeUJXBYQPxNvcfYi7jwN+AfQHWqc02Aa2i1y87e6nEsY5/NLMDgEmAMeYWU93LwFWEj4om6U63oZWSz7GRONA7gZud/dT3P2PwK2EZvweKQ84Rdy9FDgIuM7d7wF+CVwD5BMOCodHxWYJ4aB5TrRf1hXbu8jFbcCPzKyXu48Berv7FHdfDTwFnB3lJVu1IHy5uCZaHhStXwXMAPqY2VFR3pYCx7l7cSyRNrzqcoG73wec7O5vuPtWwvGmiNA1LrVIi2IKaAoVB4rNwPZofWvgMzPrTmh9+Aq4IbpvMrAfWVY8RKrLRxvgw+igsMnd7690cH0T6Ej2vfHLc1H+zfkjAHe/nzAe5gJgGaHJ/nfRfR8SxtltTXWwKVBTPgYAVwIt3P2x8h2i1qpOwBepDbVhmdl3zezESq3TK4F2Zpbv7s8AnwODCZ8VxcAd0Xb7ATOzqTWmllz8DfgA+LaZmbuvr7Tr/sDbFk0NkC0q5aO1uy8lXFPuacL74Cgz2y8qnmYQejnGRi1WhwJfVOo2z3i15OJoM9u3fNuo9bLcAEKjRWlKA85QsRZTZjbEzF4B7o6aoZ1QFBxoZu8BwwjfLP8CHAw8Cgy2cObBB4Tuvo3xRF//6piPPOAxMxtqZo3c3S2cgTKJ0ES9IbYXUI92kYsSwlio/mbWz8z6AR8SWlvyCAfKLmY2zsw+BBYD67OlG2c38tEF2KfSfmdaON15GbAm0/NhQWcLY34uJpx08EB0IPwa6ENohYPQpTUK+Mrdfwmsi7o4LgAeyfTWmN3MxThCa1z5HEKnmtnbwCnAH6PCIqNVk48HzayDuxe7+zfAq4SB+KcAuPsKd78XeBv4b8JQkt9G22asPclFtF8TMzvJzGYB/wbclcWtdPXL3WP5AQ4gvIHPInRP/Rm4PrrvIOBvlbYdDdwXLRcCZwD/HlfsaZCPW4GxhGJ4BOGb1Vlxv4YGzMVThPE/raLX/n+EIrMoytO10X77EAajnxn3a4g5H1dH+w0kTAlwdtyvoZ7ykBf97gU8GS3nE05vf5RwZuckQtdF8+j+p4GfRssFwN5xv44Yc/GXSu+NM4Fz4n4dKcjHuMqfndH6nxK+fLUhnCUO4QtZq7hfR8y5aBatG5gtnxmp/ElpM7dFp1p6OE33aGC2u78Q3fcqcI+ZPUH4xv2lmfX2cPbea8C1UUvMIsKA0oyXRD5eB64FHJjk7hNjeQH1qA65+C/gr+4+JhobtSC67y0S3XlfufvK1Edf/5LIxzRC8z3uPo3QVJ/Rou64XwF5FiacbE3U9eDuJWZ2NeFkjHsIxeQFQGdC8bAdmBZtu50wTiZjJZmLEkJ3OO7+99RHX//qkI8fA8vM7ER3nxLt9kdCAfEK0N3M+rv7MjK8lyPJXLwKdItyMS2G8DNeyrr5zOwSQv/rmGjVB8CFZlYY3S4AFkT3bySc8v5jM/sJ8BDhj501g0XrIR+TIfyTpC7qhlGHXOQTxr+MjW4vjPa7EriMcPo7Hn2tynRJ5uNSonxkAzM7kdC61g6YT8jJduBkMzsKKgrOXwJ3exgr9jLw3ahrPJ+Qv4ynXFRVx3w4ocC4vdKuIwgtu3OBPlEhldHqIRdzyJJcxCYVzV+EfvvngZ8QPugPjtb/ntBl8RbwJKGP/yXCWQa9CWccPAYcE3cTnvKRFrmYCOwT3X8t4Vv2kXG/BuWjQfNxAjCq0u3xhIl7v0dorYPwpbAT8AzQNVrXCegZd/zKRdrk42mgMFp3FjAo7viVi+z6SeUfu1v0+y7gL9FyHqHF5fjodteoWGgcd2KUj7TMxQSgSXS7edxxKx8pyUVzoAmJcSAXAb+JlucA10TLRcBTccerXCgfykVu/qSsm8/dy0/L/j3Qw8z+zcMZJOvd/c3ovh8QpgLI+DNLaqN8JOxGLr4hjPvAM/xsm5ooHwnu/o27b/XE2WZDSIx7ugTobWb/R2i1y5ruzV1RLqrak3xk+tms1VEu4mdRtZraJzX7PvBtdz8xun0UYdLJAuBSD5d9yBnKR4JyUZXyEViYB8kJXZvXuPt8MzuAMAXAYcBCD3PoZD3loirlI0G5iE/Ki6nojLwyM3uGMDPxVsLg8s/c/fOUBpMGlI8E5aIq5SMh+hbdmHDpnOcIA+1XEw4YWTG3Wl0pF1UpHwnKRXxSPgNwdHBoTpit+yTgV+7+j1THkS6UjwTloirlI8Hd3cz6E8aC9AD+5O6PxhxWLJSLqpSPBOUiPnFdTuEqQr/tEA/XAMp1ykeCclGV8pGwhNDFeY9yoVzsQPlIUC5iENeYqUYe5kMRlI/KlIuqlA8RkfQXSzElIiIiki1ivdCxiIiISKZTMSUiIiKSBBVTIiIiIklQMSUiIiKSBBVTIpKWzKzUzOaY2UdmNtfMfmZmNX5mmVmhmX07VTGKiICKKRFJX1vc/XB3P5RwrbHhwG217FMIqJgSkZTS1AgikpbMbJO7t6x0uycwE+gAdAeeAFpEd1/t7tPMbAbQG1gIPAbcB9xFmEG+CfCAuz+UshchIjlBxZSIpKUdi6lo3VrgYGAjUObuxWZ2IPCUuxeZ2UnA9e5+erT9lUBHd7/DzJoAbwHnu/vClL4YEclqcV1ORkRkT1j0uwC438wOB0qBXtVsPxToa2bnRbfbAAcSWq5EROqFiikRyQhRN18p8BVh7NRKoB9h7GdxdbsB17j7pJQEKSI5SQPQRSTtmdnewB+A+z2MTWgDLI+uWzgKyIs23Qi0qrTrJOCHZlYQPU4vM2uBiEg9z8y+2QAAAHxJREFUUsuUiKSrZmY2h9ClV0IYcH5PdN944FkzOx94HdgcrX8fKDGzucAE4F7CGX7vmpkBq4CzU/UCRCQ3aAC6iIiISBLUzSciIiKSBBVTIiIiIklQMSUiIiKSBBVTIiIiIklQMSUiIiKSBBVTIiIiIklQMSUiIiKShP8HeTgKDy9ms/oAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "split_date = pd.Timestamp('01-01-2009')\n",
+ "\n",
+ "train = data.loc[:split_date]\n",
+ "test = data.loc[split_date:]\n",
+ "\n",
+ "ax = train.plot(figsize=(10,12))\n",
+ "test.plot(ax=ax)\n",
+ "plt.legend(['train', 'test'])\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Normalize the dataset"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from sklearn.preprocessing import MinMaxScaler\n",
+ "sc = MinMaxScaler()\n",
+ "train_sc = sc.fit_transform(train)\n",
+ "test_sc = sc.transform(test)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\ipykernel_launcher.py:14: FutureWarning: Method .as_matrix will be removed in a future version. Use .values instead.\n",
+ " \n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\ipykernel_launcher.py:15: FutureWarning: Method .as_matrix will be removed in a future version. Use .values instead.\n",
+ " from ipykernel import kernelapp as app\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\ipykernel_launcher.py:17: FutureWarning: Method .as_matrix will be removed in a future version. Use .values instead.\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\ipykernel_launcher.py:18: FutureWarning: Method .as_matrix will be removed in a future version. Use .values instead.\n"
+ ]
+ }
+ ],
+ "source": [
+ "train_sc_df = pd.DataFrame(train_sc, columns=['Y'], index=train.index)\n",
+ "test_sc_df = pd.DataFrame(test_sc, columns=['Y'], index=test.index)\n",
+ "\n",
+ "for s in range(1,2):\n",
+ " train_sc_df['X_{}'.format(s)] = train_sc_df['Y'].shift(s)\n",
+ " test_sc_df['X_{}'.format(s)] = test_sc_df['Y'].shift(s)\n",
+ "\n",
+ "X_train = train_sc_df.dropna().drop('Y', axis=1)\n",
+ "y_train = train_sc_df.dropna().drop('X_1', axis=1)\n",
+ "\n",
+ "X_test = test_sc_df.dropna().drop('Y', axis=1)\n",
+ "y_test = test_sc_df.dropna().drop('X_1', axis=1)\n",
+ "\n",
+ "X_train = X_train.as_matrix()\n",
+ "y_train = y_train.as_matrix()\n",
+ "\n",
+ "X_test = X_test.as_matrix()\n",
+ "y_test = y_test.as_matrix()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Train size: (7451 x 1)\n",
+ "Test size: (2245 x 1)\n"
+ ]
+ }
+ ],
+ "source": [
+ "print('Train size: (%d x %d)'%(X_train.shape[0], X_train.shape[1]))\n",
+ "print('Test size: (%d x %d)'%(X_test.shape[0], X_test.shape[1]))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Setup baseline model of SVM Regressor"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from sklearn.svm import SVR\n",
+ "regressor = SVR(kernel='rbf')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\sklearn\\utils\\validation.py:761: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
+ " y = column_or_1d(y, warn=True)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\sklearn\\svm\\base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.\n",
+ " \"avoid this warning.\", FutureWarning)\n"
+ ]
+ }
+ ],
+ "source": [
+ "regressor.fit(X_train, y_train)\n",
+ "y_pred = regressor.predict(X_test)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "[]"
+ ]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXd4VFXawH8nvQdC6C30DoKIoiKoqCgqrh372ldX3XXVtdd1dW3r+lmxV9Rdu2LFggWQgID03kIJkJBC6mTO98eZO3OnZSbJpEzy/p5nnrn33HPvPfdm8t73vuctSmuNIAiC0LqIae4BCIIgCJFHhLsgCEIrRIS7IAhCK0SEuyAIQitEhLsgCEIrRIS7IAhCK0SEuyAIQitEhLsgCEIrRIS7IAhCKySuuU6cnZ2tc3Jymuv0giAIUcnChQv3aK07hurXbMI9JyeH3Nzc5jq9IAhCVKKU2hxOPzHLCIIgtEJEuAuCILRCRLgLgiC0QkS4C4IgtEJEuAuCILRCRLgLgiC0QkS4C4IgtEJEuAtCA1m4uYBVO4ubexitliqHk/ziikY/j9aaeRv2Ul3jbPRzNQUi3AWhgZz2zFymPP5jcw+j1fL4N2sY98/ZFJVXN+p5luUVc/aMeTz29ZpGPU9TIcJdEIQWS5XDydPfrwdgd0llo55re1E5AM+4zhftiHAXBKHFMvD2z93LFdU1jXquPaWeh0djn6spaLbcMoIgCHWhvJEFrv3NoKTCQWW1kz+9uZBKh5O3LjuYxLjYRj1/pBHNXRCEFkdxRTWvzd3k1VZW1XTCvbiimlH3fsUv6/eycHMhg27/gm9W7GrU80caEe6CILQ4Hpi1kjs/Wu7VVt7Iwn1HkccjZ31+qd/2S1+Lriy2ItwFQWhRVFTXMPPXrX7t5dWOsPZ/9of1PDF7bZ3Pu2J7MQM7pwFw+esL67x/S0OEuyAILYof1+7xWj92aGcAyqvC8z9/8PNVdXZn3F/pYGdxBYf3D14Do2/H1Dods7kR4S4IEaK0MjzNUqid699Z7LV+z7RhQO0Tqk99t47FW/dRUlE/X/hthcYNslNGot+2B04dwfmH9KZwf1W9jt1chBTuSqmXlFL5SqllIfodpJSqUUqdHrnhCUL08Oovm5p7CK2CM8b29FrvkGoEbnlV4IdnpaOGh79czSlP/ezlo/7E7LVordFahzyn9eCwzDIAj5wxik0PTmX6uF60T01gX3k1Nc7Qx2ophKO5vwJMqa2DUioW+BfwZQTGJAhRSZWjdYStNzdKme//Xjmed68YT0KcEVOPfLWGt+Zv8ev/3sI89/LTNuH+2Ndr6HPLLB75anXIc1qTtcnxHu/wzjYtvkNqAlrDnDW763YxzUhI4a61ngMUhOh2DfAekB+JQQlCNOJwinCvL1prnC6tuKyqhuy0BA7KyWJcnyyvfrd+8LvfvsUhTDFPfbeeKoeTJ79dG9TjxpqsTU6I5Zebj+L/po/m8P7Z7u1ZqQkA/PGVBeFfVDPTYJu7Uqo78Afg2TD6Xq6UylVK5e7eHT1PQEEIB0dN9LyytzSOevQHzpoxFzDml+SE8AOGwokmfX3eZh75ag1D7vyCnJs/83tIWJO1yfGxdGuXzEmjuqGsVwhgUJd09/LP67wnfFsqkZhQfRz4u9Y65B3WWs/QWo/VWo/t2DH4rLQgRCPVItwDUumoXTSsyy9h4579LNhUCMCHi7eztaA8aP/Ne/d7rZdU+Nvi73VNwgL0zU5l7a4Sr+1vzd9CdY2TKoeTL5btYL/Lnp8cH/ihMrBzOh1c2vu5L8zHEQWZIyMh3McCbyulNgGnA08rpU6JwHEFIarQiHC3sy6/lAc+X8mg27/gq+U7A/aZv2Evkx+b417/bUthwH6XH9HXvTzx4e/dnklaa178aaNX3zcuOZhTRnd3r2/Ys5+3F/j7zf/l7cUMvP1zrnxjETf9bykASQnBReJem7fMsLu+bPECvsHCXWvdR2udo7XOAf4HXKW1/rDBIxOEKMMZRZ4UTcGUx+fw3A8bAPhmZeDQ/TU+GvXKHWa9e7tkr/ZbTxjCnyb1c68Pv+tLrn9nMSc9+ZPfMdunxpORFM8txw+udXyf/b7Dry0tMXi6rf6dPJ40lQ5niw90CscVciYwFxiklNqmlLpEKXWlUurKxh+eIEQPNWG43LUlHLaH3bu52wL2qfTxMLKCj96+/BC/vr7eSO//lseyPFMk5bxDehEbY2zk1uTnFRP7ccVEo/HfNGUQG/55QsgxBzPLAHx49WG8e8V49/q3q1q2/0jIrJBa6+nhHkxrfVGDRiMIUYwo7rVTUV1Dkkt4FldUM/Lur/z6WGl3fTV3gLIgfu4Af5rUn9IKBx8u3k77lAR3+81TBnPTcYPdgj8Qv999LCNcY7FPovqSlhjHuD5Z5N4+mSMf/p5+Nk2+JSIRqoIQIcIJlmnL3PPJcrcr4s4i77J5Fx/Wx2s9JoAwDpYa4PIj+tK9XTL/On0kP950pPsBAkZY1ybYv7l+IulJ8WFfA0B2WiKH9c9mfwuPSBbhLggRQtzca2fmr1uZMcfY4H3dFy3zSW1MHdmV72+Y5NXWu0MK1x8zEIDEuFh6ZqXUeowzDuzBZRP6MP/Wo/n8ugluO3pOh9r38yU9KS6gl05LQop1CEKEcIrmHpJYlzppr4ealZpA54wk97rdru1LTrYnedeonu149rwxXpp6KB4+Y5R72X7Or/46sU5/v/Sk+HrnsWkqRLgLQoSoxVzbJkmOj6W8uoarJvVzpwWwqhkVl3u03gvG9wZMiP/e/VUclNO+1uMuufNYEuJi6hToFAorxUG4pCfFsb+qhhqnrtXs05yIWUYQIkRdNMi2wKiemXTJSOJvxw5yt1n+6VbKgAGd0rjiCOPi+Om1h/PpNYfXOqkJkJkSH1HBXh/Sk4xeXNqCTTMi3AUhQrRM/a35qK7R9O+U5qXZvulK/FVYZgKCPrz6MLeg7pqZzPDumU0/0HqQ4ZqEDZXXpjkR4S4IDcDuIVMtvpButNYs3FxIlSuK88ebjgQ8ro7PfL+euBhFSjNr4PUlI9kI93dz/SNfWwoi3AWhAdjleUsPR29KrDwxv240CWXtXiwV1TWUVJjkYKFMMC0V66H1f9+uY19ZyyziIcJdEBqA3cPCEmQCLMsr8mu7cHxvMpPj3Xb3Sw7v49cnWpgyrIt7eV9ZyzTNiHAXhAZgF+6ZyXULhmnN3PfZCr+2zJQEisqrGfuPb4Da87i0dBLiYnj2vAMBo723RES4C0IDsLtGO8Tm7uYsV6m8j64+zN3Wz6fA9OyVLTs3SygsP/f3Fm1zzyWASZPQEnzgRbgLQgOwa+5SrMNDXKyiQ2oCo3q2c7f5esLcffIw392iihNGdHUvW6aZvaWVDL3zS3euGoD/m72WS19t+gpOItwFoQHYlfVqyT/gprzK6ef336O9JxnYsUM7e1U3ikZSE+O46NAcACY/9gPfr87nn7NWubdXOmrQWvPo12v4ZmU+hfubduJVhLsgNIA9JZ7XcdHcPZgMkN7iJTEulv9dOZ6s1ASvNADRzOkH9nAvX/TyAt5b5EltPOXxH+lzyyz3+gs/bWjSsYlwF4QGYK/FWSM2dzcV1TUBo0jH5mSx6I5jWs3ksxWpGoiNe7zLAT713XpyNzWdR5UId0FoAPbMgNXi5+6mvLqm1sIXrYVw0iBMO6AbI1zzDac/Ozesgt6RQIS7IDQAe3WgtuIts3x7ER/8ZswPRWXVnPvCPPJLTH7237YUknPzZ/yyfm+byLXTLjmBhNgYJg/p5NX+8Okj3cv/OXs0My440L0++I4vmPnrlkYfW/Q6mgpCC6DKpq23Bc1da83UJ0zd0q6ZyZw9Yx4Ar/6yiRuPG8wb8zxCqy0I94S4GNbcfzxb9pbxjc21s3+nNBbcNtltquuamcx/rxzPGc/OBWBXcUXA40USEe6C0ADsmntbsLlXVHuu1xLs4AngqnQ0jcmhpdGrQwor753CjqJyZv66heHdM4mP9TaMHJST5V626rw2JmKWEYQGYBdmgbxlisqrWbi59aQl2FZYFrB9+fZiyqocXg+4prIttxSSE2Lp2zGN26YO9RPsvuwtbXy3SNHcBaEBVNo090B+7le8nsu8DQWsum9KizNTXPLKAmavyidGwfxbJ9MxPbHW/lv2lnHMv+cE3PbR4u1s3lvmZW6YNKhTwL4C9PWJ1m0MRHMXhAZgN8to7W+aWb69GPAUqWhJzF5lbMRODQfd/00Y/Xf5tcXZcrUv3rqPHa7C159eczgXH5YTmYG2Im48bhCDu6Rz8qhujX6ukMJdKfWSUipfKbUsyPZpSqmlSqnFSqlcpdThkR+mILRMqnwmUc99YZ7XuqesXPPnGmkoMQHS8y675zjOP6S3V9vdJw1lePfMqE3n25hcfWR/vvjLEU1yb8LR3F8BptSyfTYwSmt9AHAx8EIExiUIUYFvTeV5G7zt64mu2pwlLbgcW7jY5dFlE/q4TU33nTLcq9/Z43o18ciEQIQU7lrrOUDQGSGtdan2lKNJBVq/y4Ag+GD3a7aT6ArBLwqguVdU13DVmwvZWhB4krK5Katy8NjXa9ympzs/Wu7edtvUoV5zCEvuPJaLD+vD/64c3+LmFtoqEbG5K6X+oJRaBXyG0d4FoU3QOcNMQh4xsGPA7e1TjMvbCz9t9Ns2Z81uZv2+k3s+8c993hJ47ocNPDF7rV/ATSB7cWZKPHeeNJSxNnc/oXmJiHDXWn+gtR4MnALcF6yfUupyl10+d/fu3ZE4tSA0K10ykzliYEcve7TTNqlq1Qids2a3VztAvMtk42u3bwqskoCDOqczdWTXgLVMC1xZDO/6eDkrXBPDAP85+4CmGaTQICLqLeMy4fRTSmUH2T5Daz1Waz22Y8fAmo4gRBNOpyZWQXaaJyjl9XmbA/bd52OaSXD5Qs9Z0/SKjvVAOXVMd/plp1JeXeNV7Bu8r+MSVz7y2BglE6VRQoOFu1Kqv3L9tZVSY4AEYG9DjysI0UCNU/sJvLs+Xh6w7/Z95X77WizaUtg4AwxCpSvSNDEuhqSEWLT29tn3paK6hu7tkpl2QOO78AmRIRxXyJnAXGCQUmqbUuoSpdSVSqkrXV1OA5YppRYDTwFnaV8VQBBaKU6tA7oIWtGZ9uLJt3/o7U1sF6anPv2Ln9mmMbH87pMTYt3ZGyuqa3A6NT+t3eM3lsKyavL2lZOaIHGP0ULIv5TWenqI7f8C/hWxEQlCFGFp7r4UllWRlZrA73lF7rbFW/exv9LB1sIypjz+I1cc0ddrn69X7uK4YV0afczgsadnpSYCpuBIaaWD/+Zu4/5ZK7njxKEB9/t2VX7wSTWhRSERqoLQAGp0YOFeUe10uxBeNamfu33YXV8y5fEfAXhujndlniteX9iII/Xw7A/rmfbUzwB0SEugQ6rx+NlVXMG6/FIA7vvUePD4FrV+8LQRTTJGoeGIcBeEBuAMormXVFRT7Uok1iUzKWCfQNzy/u+hOzWQGbaHSnZqIlmuyeDTnpnLO7lbvfo+eNpIDuvfwWwf04MJA8QRIloQ4S4IDaBGa2ID2NxPfvJnd8bI+NgY3rz04KDHuOHYge7lSBZxmL9hr6twxh7yXJO5/83d6jbJAGSlJXgVrvYlIymesw8yEafHD28ak5EQGUS4C0IDcDohJohW/vf3jBbucGrapQSvGXrk4MbJnvjNSpPo65zn53PYg98CcOP/lnr1SU2IpVN6kls79yU9KY6TRnXjy78cweShnRtlnELjIMJdEBqAw+l0a+4zLzuEM8f2cG+z/NeX5xV5FYRWCkb3agdAz6xkhnXLZPk9x3Fg7/bmmBEKakpNrN1f4plzx7hdOC27uy/d2hmtflCX9IiMSWg6xK9JEOqJ1prCsmrapRrBPb5fB2qcmndzt3n1u/6YgaQneYT7xgemMu1JU6quT3YaYATxMUM7s3BzIVU1TuJCFHvw5ce1u1mwsYDrjx3kbvONOr36rUUAHDmoIy//cZzXNnsx64dOH8mwbhnkl1TWaQxCy0I0d0GoJ7uKK6lyON35YwC6tkvy69cpI4mkeO9/tfv/YLxOHj1jlLvNyiA589etQSseBeP8F3/liW/XeUWZLtla5NXns6U7ANi7378K0D3ThrmXzxzbk2HdMjlSim1ENSLcBaGe/OlN47pon6Ds1zEtYF/fkP3h3TPZ9OBUr+pHCS7hft+nKzjTVUi5ruwu9Wjbn/2+w2/7hAHZPHXOGL/2pPhY7ps2jGuO6l+v8wotDxHuglAPCvdX8duWfQBM98lfnpHksXa+c/khYR/TKuwBsN1V0ei1uZu4/cPa3SPt2vo9Hxv/9Blz1gfs+/olB9MzKyXgtvPH5/A3m1lHiG5EuAtCPXjX5g/eLtnbE+bQfiZv3g83TuLgvh4vlK6ZSX5BQXb6ZPtvu/Oj5bwxr3b3SK+cMMpEzf5z1iq/fivuPa7W4witC5lQFYR6YDd5+Hql/PusA/hrQRm9O3gL619uPsqvcpOdDqke2/3w7hlhj8Uu3BdsLPBKeTCieya3Tx3C8O6ZpEhemDaF/LUFIUxOe+YXdhZVcOdJQ1m6zSNALVu5RXJCbEDXQaUUtWXL7d0hheuPGchHi/OI9/GW0VoHTbVrBUsB5JdUcvWbi9zr904bxuhe7Wu9LqF1ImYZQQiThZsLydtX7pUDpjYzS11RSnHt0QMY2Dmd0gqHV2bGta6cL4Gw0veO6ml85/NsqYVFsLddRLgLQj0Y1Nlo5l/+5YiIHzstMY7SSgd79ns8X2qrs2qZZS4+LMerfc6NR0Z8bEL0IMJdEOpBt3ZJjOyRWedgo3BITYxjR1EFZz03z9328zpP/Zsvlu1kxN1fUrC/ivziCu78yOSJT4yL5cLxvW3HkULVbRmxuQtCPXAEyQYZCV75ZRMAG/fsd7e99PNG7jzJ5Fh/9of1lFQ4GHPf1177JcbFcM+04QzumsHj36zxSnkgtD1EcxeEelDjDJwNMhJcMbFvwPYPfjNpDRLjAv/bWhOr08f1Yv6tkxvlrUKIHuSvLwhhUONTdq6ovLrRNPeR3du5l3Nvn0z/Tibq9a/vLAEC+8Mnx8dyzFBJySt4EOEuCGGwamex1/ry7cV+Aj9STBpkCmLcO20Y2WmJvHfloQCcOqY7ACWVDnrZokzfuvRgVt43pdEeNkJ0IjZ3QQiDNbtK/NrW7w7untgQUhPj2PTgVPd6Zko82WmJJLkyN5ZWOGiXEs+WArP9gF7tAh1GaOOI5i4IYXD/Z/7h/I5G0twDsae0krfmmzQE+ysdpCXGMefGI1l57xSJPBUCIsJdEMJgT6l/bvPGMssEwvJ8+WbFLnI3F7K7pJJeHVJIThB3RyEwItwFoQ5MO6Cbe7kphfvZB/UkMS6GS1/LBWqPWBUECEO4K6VeUkrlK6WWBdl+rlJqqevzi1JqVKB+ghDNWO6J/zl7NP+9cjxArUnAIk1iXIxXgrC3LgtecFsQIDzN/RVgSi3bNwITtdYjgfuAGREYlyC0KLT2lKLr3cF4qqQ0YQRooq0M3rVHD3CnFRaEYIScidFaz1FK5dSy/Rfb6jygR7C+ghCtzJizwb2cnZrIHw/L8SvS0ZjYA5eOGdK5yc4rRC+Rnma/BPg8wscUhBZFTIzirpOGhe4YQeya+4gemU16biE6iZhwV0odiRHuh9fS53LgcoBevZpO6xGEhpKeFEdJhaPZzl9Q6l/UWhBqIyLCXSk1EngBOF5rvTdYP631DFw2+bFjxzbhdJQgNIycDqlexaybmuKK6mY7txCdNNgVUinVC3gfOF9rvabhQxKElsXrczfxe14R5VU1Ifs2Fgf3yWq2cwvRSUjNXSk1E5gEZCultgF3AfEAWutngTuBDsDTrjJgDq312MYasCA0NTN+NJOppZXNZ5Y5dlgXzj6oJ4f1Fy8ZITzC8ZaZHmL7pcClERuRILQwqh3Ggticwh3gwdNGNuv5hehCIlQFIQQ7iysA7+IZgtDSEeEuCCFIkfwtQhQiwl0QQjDZFTTUSIWXBKFREOEuCCGIizVSPSVeNHghehDhLghh8v5VhzX3EAQhbES4C0IIHDWaPtmpDOqS3txDEYSwEeEutFj+881aDvnn7OYeBjVOLfVJhahD6nMJLZZ/f2MCngv3V9E+NaHZxlFcUS0eM0LUIZq70GJpn2JKy81Zu7tZx7GjqIJumcnNOgZBqCsi3IUWyzhXPpW8feXNNoZKRw3r8kubtDCHIEQCEe5Ci8UqUepswlqlvryzYCsA7y/Ka7YxCEJ9EOEutFi0q0hpjTNEx0ZkX5lJtWsvjC0I0YAId6HFUuO0hHvzSfficiPcHzpdknYJ0YUId6HF8fGS7Szdto8yV/70Gq15fe4mLnzp1yYfy87iCvpmp5IYJzZ3IboQV0ihRVFeVcO1M38DoG/HVAAcTs0dHy0HjP09pgl9zvdXOkhNlH8TIfoQzV1oUVzw0nz3cn5xJQDvuiY1ARZtKQRg4eYCjv/Pj41eHWlrYTmJcfJvIkQf8qsVWhQLNhW6l63iGIVlnvqhpz87l+fnbOC0Z+ayckcxq3YWBzyO1pqf1+1xT8rWh/2VDtbll5K7uTB0Z0FoYYhwF6KO+2etdC87gwjvC176lXNfmM+nS3fU+zzL8orqva8gNDci3IWoZlth4ACnH9fuAWBLQVm9j21VYOqZJdGpQvQhwl2Iaq57e3Gt27tmJtX72MUVxiz07hXj630MQWguRLgLrQ57RKuV8GvF9mLu+WR5nWzwJRXG1t8uufmSlglCfRHhLrQoOmckupf7d0oL2u+9P40nIYgXy6Nfr3YvVzqcvL9oGyc88SMv/7yJPaVVYY+lpMJBXIwiKV7+TYToQ361QouifUoC/Vz+7Qmx3j/PFy8cS4fUBL67YRIH9s7i0sP7EB/r7/P+1Hfr3ct7Squ4/t0l7vXiCo/nTY1Tc+N/l/DNil0A7C6p9HKt3FdWRWZyPEqKpwpRSEjhrpR6SSmVr5RaFmT7YKXUXKVUpVLqhsgPUWhLVDqcDOmawZUT+/H0uWPc7d/fMImjh3Rm4R3H0CfbJfzjYqiu0bUmFrvv0xVe6+e94PGj37C7lP8u3MYdH5mf9kH3f8OZz80FIL+kgpm/bm3WPPKC0BDC0dxfAabUsr0AuBZ4JBIDEto2FdU1JMfHcvPxg8lxCXGA7PREv77xLs2+ug65Z3YUVbiX97u09B1FFe4HxO8u98fFW/YB0EGEuxClhBTuWus5GAEebHu+1noBUB2sjyCES3l1DUnx/nlckgO0WWab6hqP5v6AzQc+GFZCslKXNwzAvI173cu/bSl0e8pIwjAhWhGbu9Bi0FpTXlUTcAIzUA1Ta0K1yuHR3J+bswGAm48fHPQ8llA/70WPieac5z3LZ82Yx0JXVGq7FNHcheikSYW7UupypVSuUip39+7mLZ0mtDxW7Syh0uGkW7vwgoYss8yK7f4pCGrLB1NSWc0rP28Mur3K4WTmr1uIUZAuScOEKKVJhbvWeobWeqzWemzHjh2b8tRCFJBfYhKFDe+e6W7rkhE8CMnylLFr4Bbda3lAVDqc3P3JiqDbLZyaJs1AKQiRRMwyQouhotpMcNrt619dfwTzbz06YH9fU83c9R67+TFDO7Phnydw4siuPHnOaNbef7zb++boR38IeLwrJvZt0PgFoSUR8p1TKTUTmARkK6W2AXcB8QBa62eVUl2AXCADcCql/gIM1VoHTtcnCEF4+nvjn243qWQkxZORFB+wv93WDvD2gi3uZaUUSsGT53jcKQNNygL8dfJA+ndKY+rIrjz3wwZ3+wkjutT9IgShhRBSuGutp4fYvhPoEbERCW2WJVuN+2G4QUOHD8gGYGzv9uwrq+Kjxdtr7R/IxNIhNYE/TernnpxdcuexjPnH19Q4Ne1lMlWIYsQsI0QUR42Th79cRcH+8MP8fakt7YCdHu1T6JOdSu7mQiodoX3dh3bN8Fq/+fjBLLzjGK80Bpkp8Zw+xugqfxjdvQ6jFoSWhQh3IaIs2rKPp75bz43/XRK6s419ZfV7GGzcsx+ABZs8oRgzLzskYN+O6YncfdJQ9/qgLukB+91x0lCePGc0B/ZuX68xCUJLQIS7EFEsy8eukgp3SbxwuO3DgNktwsbyXb9iYl/G9+sQtN+onu3cy2lB3BzTEuM4cWQ3ySkjRDUi3IWI4nBFfy7LK+bUp39h8979Ye0Xbj9fBnY2JpzqGmOWObhPVq397cWuUxPEh11ovYhwFyKKrwfL3jBt72WuPC85HVLqdL7bpxozy6qdJQAkxQX2iLHo39Fjz+/SgEIegtDSEeEuRBTfiU17/pba2Ocqgm0PYAoHazL0zfnGDTIpoXbhHhOjOLy/8bLJkqRgQitG3kuFiFLpqPFa/2rFTo4YGDoaudIVwNQxQPbH2vAV0KE0d4CX/3iQ24wjCK0VEe5CRKms9haaivAmJatcwvbG4wbV6XydfdITWDb42oiPjXHnpRGE1ooIdyEiaK3ZVljuZ5YpKg+dCfqLZTvdaXtT6jjJac8g2bdjKnEitAUBEJu7ECHemLeZCQ99R67N37x3hxQKw/Bff/ybNfU+r70U3x1Th9bSUxDaFiLchYiwZJupYPSbK4VAp/REemWluIte1MYYV7DQF3+ZUOfz2n3RU0JMpgpCW0KEuxARrIAgK2J07i1HkxgXQ3UYaQEKSqtIT4pjcJeMkH0DYcn3VMm9LghuWo1w311Syfrdpc09jDZLZrInc2NcjCI2RhEfG4MjjPqmXyzfSXlVTch+wdCuKnvJorkLgptWo+qMf2A2Dqdmwz9PkAILzUBqokewxrhU6fjYGK/6psFISYhlWLf6ae2+xxEEwdBqNHcr7H3GjxtC9BQaA7sLpFUh6fNlO9i4Z7+f77sv8bExfhkb64MEJQmCh1Yj3C0+XVp7Tm+hcaiyBQVZJhpLa88vrgy63/5KB0Xl1ThDK/hBefmigzj9wB4khhHAJAhthVYn3JflSQGo5sCeUybFNbF59OBOAOwqrgi637H/ngPAzF+3BO0TiiMHd+KRM0bVe39BaI20GuHeyRa2rnUD1EChXthviDDIAAAgAElEQVSDlyzb9y0nDAE8HjR29lc6ePSr1eTtKwdgRI+65ZQRBKF2Ws2EapKtPubveUWM7NGult5CpLELdytwqUf7ZADyS/zNMle+sZAf1+5xr884f2wjj1AQ2hatRnN32Gy+Jz/5My/9tLEZR9P22F/pCVYa5XqwJsbFoJQnKZidn9Z5BHt8rKpzwjBBEGqn1Qj3Kp8sfy+I10yTUlRezeAu6dw0ZRCPnmns30opEuNiqAgQyJRlKz790Okjm2ycgtBWaDXCvbyqhq624gtidW9a9pRW0jUziasm9ffyWkmKj6UigOZuj0UY3VNqlQpCpGkVwl1rTVl1DZMGefKG7ygK7qEhRJ4dRRV0bZfs154YFxNQuNvb7PMlgiBEhpDCXSn1klIqXykVsIKxMjyhlFqnlFqqlBoT+WHWTqXDidaQYQuBF5qOKoeTgv1VdE73L1tnNHd/s0x324MgLlYiigUh0oSjub8CTKll+/HAANfncuCZhg+rblh5STKSvIV7dY2THUXlTT2cNkepazI1M9nf+Sopzt8ss2TrPqprnAzolMafJvWjg0SWCkLECSnctdZzgIJaukwDXtOGeUA7pVTXSA0wHMpcwsOuuQ/uks6A2z5n/APf8vESiVptTEoqTEGO9CT/NyeNZllekXt99c4Spj31M+t376dLZhJ/nzLYK22vIAiRIRI29+7AVtv6Nldbk1FeZTTHjCSP5rhqZ4l7ef6GvU05nDZHiStne3qSv+a+Zlcp24sqqHHlFyi3afF2P3dBECJLJIR7ILUroLOKUupypVSuUip39+7dETi14fW5mwFTom3Tg1P9tjckb4kQmse+NpWU0gLkUz+gp/F5t7R3e2HqW44f3ASjE4S2SSSE+zagp229BxDQDqK1nqG1Hqu1HtuxY8dAXerFq27hHtjrQtIRNA4V1TXM+n0HS11VmPp38i9OfeGhvQGYs2a3ex+Lo4d0boJRCkLbJBLC/WPgApfXzCFAkdZ6RwSOW2esYg2zrvUu12blLxEiy4s/beSqNxfhcDrpmJ5Ipwx/b5nJLgFu/W3sRTl6d0hpmoEKQhskHFfImcBcYJBSaptS6hKl1JVKqStdXWYBG4B1wPPAVY022hBYmvvQbhleub1/XLuHuz9e3lzDanV8vzqf6honm/eahGD7yqq9ClXbsQKaPllqnveWff7G4wYRH2QfQRAaTsjEYVrr6SG2a+DqiI2oAaTEey7nsgl9+dcXq9zrr/yyibtPHtYcw2pV5G4q4KKXF3DkoI70aO/RvBPiAgtqq3DHkq37mPDQt0wd0Q2A6eN6Nf5gBaENE/Wqk92enpTguZwrJ/Zl1X3e7vk1MrPaYKyApO9W7+b1eZvd7fFBApHsbo5bC8p59of1QGDPGkEQIkfUC3d7jc7UBI/AUEr5hbWXVTkIRd6+8pBl4doywYTy1oLg8xpTR/iHPYhJRhAal6j9D/tp7R4mPfydO4DmmqP6kxrAFe/G4wa5l53+UfBe1Dg1hz34LX9+67eIjrU14QzieVQeIH+MxeEDshtrOIIgBCEqhXtReTXnvTifTXvL3IEwwfKBXzqhD32yUwGo8RFMny3dwdJt+9zr211eNV+v2NUYw24V1Me0lRQflT8zQYhqotLwec7z89zLf3lnMWCyDwYiMS6WPx6Ww50fLffSOovKq7n6rUUAbHpwKou37uOUp35uxFG3DhxBhPtDpwXPyR4XY/42U0d0ZWDndA7qIyl+BaGxiUrhvny7fxHs2uKUYlyTek6bYHrsq9Vefa5+c5HX+ue/7+D4ALbito51D9+5/BAO7tuBnJs/A+C0A3sE3ceabK2ucXLd5AGNP8jGwOmEFyfDzt9h5JmgYmHbAkBB8Tb4cy68cx6U7oL0rlBRDGjQTijeDl1HQXUZOGtA15jjaSeU7IBOQ8HpgJoqUAqS25tt2QPNPpUlkNkTBp8IPQ+G/BWwZCbExkNCGlQWQ+FmKNwESZmQkgU11ea8zmpzrphYiIkz+8TEmfWq/ZCYAVl9YPNc0wYQmwBxSRCXAMU7ICnDjFvFQF4uHHQZdBps+nUbY8657Vco2QnxKZA9ANI6Q3oXSExvxj9aC6R8H+SvhB4HQWzjit+oE+7Bok0D2dstYl2FISyzzD2fLHdHtQIU7K+iQ1qCV7DTn95cFDCVQVvH0tytNL2jemSyZFuR+x4HwnKZHN49SotgO53w0rGQt9Cs//aGf59HbA+tlGxonwMxMbBnrRG+BRugQ38jEGPjjaAEqNgHZXshoyvEtjNCvWwvbP8NNnwPaV0gPhlWfARznwwyQGWO12UEOCrMA6hqvzlfQqoR5k6H7VNjhP/OZVBTCRu+M8K875Hm4eKoNA+aylLYn2/Gm5huHlwAC54P7751GABX/gTxtuC2pe/Coteg5ziYeLN5gEQzm36Gdy9wPYB7QMF6z7aOg2H3KhhwnLmHxdth13Jzzw+6DKY+0qhDizrhvq+s2q9tSNcMThwZXMu25I6luL/88yav7e8v2iZpZ8PEsrnHukwtb112SK2TqWCE+mfXHs7gLhmNPr5GYcELLi0dOOtNQMNXd8DxD0HXkfCoZ9KeW/Ig0ZaGQWvYvdpounWhxmE0acuVdMP38No0s3z4X2H0+ZDRzWiC6V1Me12za5YVwL7N5sGQ0QNSO4TeZ/dq+PkJKM6DfkeZNwOtofNwMw5dAz/9G1Z+AnvXwv1d4G+rYc8amHk2VJWa42z6ERa+AlMehAHHQnI7qCqDvevMPa0NR5V5CKqY5ns4lO+D5ybAvi2eNqXMA3XvOrO+1yXoN/9iHrrdRkPfieYBO77xQ4OiTrhv2FPqXg5Xsw5klrHzj89WcsxQEyY/LieLXzeZDMdaa0lH64Nbc3c9MVMT42p9a7IY1q0eWvuar+Dzm+DMV41Zo7lY/oH57ncUDDnRLA85KXDfRJ/8OkrVXbCD/yt730nw1xWQkGLMNhbx/tWvwiYly3zqQsdBcMpTtfc56w2j9T/QHdDw6EDv7ae9CF/eBqU74f3LTFtihnlIVLmyuV672JiLLLQ2bw4zzzZvNXZiE+D8D83DbsELcORt5j6VFZj95j5pTFzdDjBvDj/9G/pPhnVfm7eLwSfAtlyoLodLZ5s3rkA4qsxDtmyPecDt22IeapPvhgHHePpVFJsHj/VbsN6U4v3TczQmUSfci8tD+6r74jbLOHVQbw/LQ+b1S8cx6PYvAPjnrJXcNGWw+GTbsFxPA2WAjAg1Dlj5EaR2hBUfQuFGmD8DJt4Iqz+Hg6/0aKiVJY1v0103G7b8Yuzo539Qe9/kOgrKupLZpJm0G0ZiGky6Bb5/wNM27A9wzH3QricMPw0+/BOsngUVRcZ0ZeeJA+CGtcY8lNkDvro9uFmqpgpeOcGzHtR8ZWPd1+Z771r4+T+e9u2/QVpHWP0FHDDd8/uqroD7fRLd9RoPF3/hf+wknzfUmFjPfEYTEnXCfX8YgUi+uDV3rd35UIKRGBfLk+eM5s9v/cbzP26kf6c0zjpIQuUtisuNcG+0koZzHoYfHvRuW/yG+QB8cbMRouWu+jF/mAGjzvI/zq4V8Mx4Y/PtMqJ+Y6naD2+capb/+Hno/oNOCN2nLTHhBhh1ttGgOw422rSFUvCHZ83y5rnw63OQ1Q+OvgOePdzMG1jzGENOhlWfeva9Yg6072MmbwEWvwmfXBt8HB0GwJgL4Os7oF1vM/E76Hg46nYoLzTzIkqZh83P/zZKhNMBn98Y+Hj9joYjboQeY+t/b5qAqBPuJ47sxtjeWXUS8jExHuG+Ybe3cF90xzGMuc88xa2UtQf38dgeKx0hIp/aGFZJvUbT3NfPDt2n3FYY7IPLYejJ3uaJTT97NLm5T5sJrGXvGc+SK+ZAh36evttyjbdH9gAozTdeMJbteeUn5rvvJG8TQTBOfCx0n7ZEbJyZWG6fU3u/3uPNx+KCj+Eh2/1e+bH5PuZeOOw6//0PvNCYXVKzjc37zTPMW930meZva2nNhwV5APQcZ8w3uS95/ubBuGtf3ec2momoE+4AXTLrZruKVZZZBnYVV3hta5/i0UCvOKIv4B0QZWUxFAyllTUkxMYETRTWYOJt2t2AY81EXOEms56UaV7hOw8323YsMQ+Dkh2QZf52FGz0fkVf8pZnuaoU/m8M3LrDaJFb5sFLx5ltg0/0aIcXzTJ27Q+uMPbc6W/XPubYBGMaiAscSCfUkZQsuLsIivJg4cvmbQ6M+2Aw7A+H8/5X93MqBWfPhEf6m/W/bzKmmLlPmt/X4KnGTh8lgh2iVLjXFctb5pMl26l2OlEKjhjQkYsOy/GaMO1nKzbx0dWHMe2pnynYX9XUw22xOGqc7sRfjUJZAWz8AUaeBac8Yyalnhhttt243mhmdtZ+bYT7+1fApV8b7euJA0Kf54u/G8+FT//qabO/9tsfDsc/FHrS8vpV4JCaAREns7sxnUy61biSZvdv3POldTR/y6RM18Q1cNz9jXvORqRNCPdMl334ye/WudtevXicX78BNuE+qmc7+nVMZUdR5P9pN+wu5ahHf+Dz6yYwpGv0uAfuKKoI3QlgzZfQfWx4rnV2HnaZS3of6nmVnv42rP3KX7CD8Y4AE0DjdMK9Ni+Sv66ALXPhvUuM7bf3obD5Z/jxUeNnveg1/+PZ3dgsxlwYetx1vU6hbsTENL5gt8hoPYGLbUK4j3TV8QxFepL3JGFWakKjaO5fuTxzPvwtz0u4l1fVoBR+2SxbChUh/NkB4wL31pmQ0d1MWh19p9GEQrFlvvFdBuNJYdFpcHBXwk5DPctLZnqWswcZrW/E6eZj0WciLP/QE2jSY5yZaDvgHPOWoJQZ/+I34Zt74NTngrvFCUILp038ckNN/k0YkM0F43v7tSfFx1LpcFJSUc0Xy3ZELBWwNQewtbDMq33YXV8w+bEfInKOxsCaXLbPU/hhRTEW5xmf41k3hXfw1bM8y+G6NyplJtkAPnIVABt3BVw9P3D/2Dj48wLP+nH/hDHnewcLJabBwVfAbduD+7ILQhTQJjR3X549b4zX+uuXHBywX2JcDAX7nVwz8ze+X72bPtmpfHfDpAaf3/K7n/X7Tr5fnc+kQZ3YWlCGU8O2wnIcNU7iYmP4ae0earRm4sDIFRNvCJbm/p+zR/tvdNbA/Of8tezSnaEPvG8r/Py4WZ72dN0GdchV8PWdnvUDL6x90ismFq5bYqIGe9YyQScIUU6b0Nx9Gdo1vGjJhLgYKh1Olm4rAmDjHo8b5fLtRbz965Zgu9aKXfZc9PICKqprmPDQd+6293/Lo6TCpDW+8KVf63WOxsDS3ANm4Fw3G768BV7/g6ctq5/xNw+FPehk9Ll1G1Ss7S3iwD9C5zBKKbbPMaYYQWjFtB7h/u39cHcm7Fgasmv39uGFbCfExlDlcHrZ3bcWGFPK1Cd+4ub3f2ddfol72ws/buAIm5AOxpYCb3PM7pJKr/Ud+yoYcfdX7vWfXDnrmxvLLJUYaE5A+5isLv8B+h9tEk85Q5iz8l0PgDv21m9gHV1vCxJEJAhuWo9wn/OQ+X5ugskB4cOz5x0IwN+OGVhrBkM7KYlxlFRU072d52Ew4aHvmD7Dk09+8mNzcNQYjfYfn61kS0FZ0MyVFr7C/Jf13sL739+s8Vq3ctY3N1b91IDFN8oLvde7jDCRh2ACiAJRVQa//w82zjHr9U2BerjLpbE5888IQguj9Qj3bjY78AdXeDKyuZgyvAubHpzKNUeHn0+8e7tkCsuqvVIBA8zd4K1h/uOzlV7roaJafbf//b3fa+2/p7Sy1u1NhVtzjwuguZcVeK/HxMLZrpQB2xb49181C/7Z1bgqgslXXl9GnQ13FkJ659B9BaGN0HqEe5wtanX5+/BkwyfLwjWHvPLLJq/1B2at5HeXnT4QwYT/N9dP5ACb22aGqxh11zpG5DYW5VW1aO6FGz3L4/9svtvnQOcRZsLUF9+c6NcsbNjgxGVRELwI6z9CKTVFKbVaKbVOKXVzgO29lVKzlVJLlVLfK6WCl+VpLEp3maowFr424Hpgn/g8cpC/x8q3f5sIwIkju/LJku3u9lfnbuakJ38KetyqIC6V/Tul0SXDCPJD+3VgyV3HAiZ4qD61SyONlRHSNx4AgK3zoc8RJmzcHtWX3sWEb/tid3c89QUJ3ReECBNSuCulYoGngOOBocB0pdRQn26PAK9prUcC9wIP0NSU7jYlyOx8c4+ZZF01K/A+ITh5VDf38h8P808c1bdjGp3SE8kvruSamb/5bQ9GpcNJRlIcs10PB/C4R/ZwTfa2S4lHKcWpY0ya1183FvgfqAl55vv1PPD5KuJiFKkJPmYZrU1mvS4BiizEJcKOxZ46iDUOeHwkLHXla+k0DAYe27iDF4Q2SDia+zhgndZ6g9a6CngbmObTZyhgpfP7LsD2xiX3JZPkP62Tx3MC4CdXlr7P/16vw551kMcOnJYUeLIvPSmOzQW1pxH2pcrh5KCcLPp19KQ7OHW0EeJWorJZvxv/8NtOGALAqp3+dWObkn99sQqAkT0yvQuYFG83mfQcFSbnuS8VLvPUghfMd+kuU/3H4qpfwotgFQShToQj3LsDdqPpNlebnSWAFTP+ByBdKdV0CTesBFBpnUx04jSfSjFFW0wa2DqilKJPdioAI7tnct80jw/1u1eYLHQZyfHsKvaf8IyNUUG9ZiodThJ97NYPnGpyjjtd+xzhClxqn5JAjCJgGgStNQs3F1LlY8PfX+kg5+bP+N/CbWFdZyjsaQe6ZibD/r3GvXHLPHhsCHzssrH3P9p/51NcQUlWBKo9qClU8QtBEOpNOL5ngfwGfaXWDcCTSqmLgDlAHuCXK1cpdTlwOUCvXo1QAMOy444+z6SKtVdYeeUEk8bTXqIsDGZfPxGljKA/f3wO54/P8drua3/+/oZJPP/jBt6cv4VXftkU0JxT5XCS4FPdKc61fssJQ0hJiOUWl8YeE6Non5LA3gDCfe6GvZzz/HzOOLAHD5/hcQP80TUR/M9ZKzltTPcGlwr8fvVu93JKXA087Eqva6VgrSgClPdbk0U71995/bfGRDbYVaYuZ4IpWycIQqMQjua+DbD7qfUAtts7aK23a61P1VqPBm5ztfm5i2itZ2itx2qtx3bs2MCQ+upy4yNdYyuYndrJs3zkbXDpt96FAoq9hh2YxTO9tPyYGFWrcLS7zK+7/3hyslPdHi/3fLLC7QPv7pNfyrbCMrc7oW/em6zUBO6ZNtwreViP9sms3lmCL+c8b3KoWInILK58w3ieFOyv4rq3G+4jbx0P4IDOtoLEXi6OOnjYf5rNRdFKrXvqjAaPSxCE4IQj3BcAA5RSfZRSCcDZwMf2DkqpbKWUdaxbgJciO0wbNdVm8u7+LsZHeuZ0097jIO+E/XGJ0ONAUzjXwuGTsvbDq02xXDCBT0vegQ+v9M7nHQK7cLa071PHeJyF+t/2OcUVngfQ5Md+wKlxF5Wec9OR/Hxz7Rrs2JwsluUV+T0oLO2/XUo8r8/dhNOp2VfmreF/vGQ7y/KCu2WGgyWz7zhxKNPHdKn7Ac56w78tkH1eEISIEVK4a60dwJ+BL4GVwLta6+VKqXuVUie7uk0CViul1gCdgcbLcL/iI3jSVrvQKnQbLAgmqw+c975ZrnFZikrzjda/+A345m5TcWXB86Zkm8WXt4U1nOw048J3+oEege4bAfuey/ZtF85dMs1+WakJXhGwgejbMZVKh5M9pR7BXeVwUuU63ua9Zdzx0XKue2cxB9z7td/+J/7fT1TXBA+s+mLZTuZtCBz6vyyvyO3ocsnhfYhxBkmBPNHPQ9aD/W8z+R5T9zSKKtoIQjQSVry31noWMMun7U7b8v+AetS2qgcJaYHba0s4ZSWXcro06Ed8olRfP8Xk+rYz90lTqT1EcIxVvenQft7zx6vum8LcDXv548sL3JOhVTYB2zkj/MCkrBRjCiksq3KXGJwxx78ikt3X/tyDe/HmfE9is3dzt5IcH+v1VgEmV45ldtn04FS/Y67fXQrAzce77Ok1LuF+6vMw8kxY8bHxSprwt+AXkNbZFLU+5l6TYlcQhEYn+lL+VthMDGe9Ybw2cg4PXKnHIsZ1mXb7vJ0tc80HYOg083YA8NHVJiAnJSvooc8d14suGUlMHtLJqz0pPpYjB5m2FduNG2O1wzMPXRfh3j7VJdxtk6p5+2qvinTftOHExShenWvcDm/7YBkAxw/vSrLNT92ejXJ/pYO8feXsK6tmXB9zzTtd1ZfOO8SV777SZfu3ap0OPdl8aiMmBv6+sfY+giBElOiL2e5zhGd58Ikw7JTaBTtAjKW5O0ywU22c+Rpc7MrIuOQtmHVj7YeOURwztHOtk66zV+UDUFnjcSnsEWZmSvA8CNbs8kyq9ne9MRzcJ/CDJyZGcedJ/ulvf9vqSfDlW3xk+vPzOPbfczjzubluN86dxRWkJcZ55haK88x3RjcEQWi5RJ9wz+gKdxaYCvbh2m2tbIPbFkBerve2u4s8QTRDXbFXvWyRrpvr7h8fiNJKB2WVduGeEva+OR1SSIiN8UpgVlRejVIErMFqpS2IjfFEuFrc9D9PSuTl270Do5ba8uEUl5v5iZ1FFW5TEADznjHfaZKkSxBaMtEn3MFkHEwIXzi6hfcP/4KZZ5vlM16Fy741y5ap55CrPPvc4Uoaltowl83/nH0AAMPv+pJJj3wPwF8O72x8vpf+N6xjKKXomJ7oNaFaVFZFemIcl07ow7kH93ILdPAUBAd49IxRXHNUf977k/Ek2lZY7vbeOfXpXwDvyWCLUfd+xbr8UnYUVbjz3aA1bPrRLDfwvgiC0LhEp3CvK1l9/duGnQLdD/Rus6/HxpvKPsV5Ju/4p9fD7tV1PnXfbP8J4CndXRGt718KDlt065e3wUtTPOtau3Oy5O0r54Pf8nh3wVZmr9zFruJKslIT6NE+hfv/MILM5Hj6dkz1O5dSir8dO4gDe2cxppfxv79u5m9c/eYid58hXTN4YvpoBnRK481LPW8tkx/7gV3FNs29ypZmIc7m7y4IQosj+iZUI8FQn9Q3N6439vhYn2yHqdmmCMV390Pui+Zzt0vLLyuAjT/AMFtZOctn0GYuSvZNsgVkpdieqf/oZI75yV9g4cumbdl7MPw0eGwoVBbDrXnu7je95zGrDOrsXUh61rUT3OkLAvF/54zhsAe/5bvV3vMOFx2aQ2yM4uRR3fxyx3tp7tZk6oQbgp5DEISWQdvQ3H05zidpZWq2SU3rS0o2aKcppmzx7oWmXugbp8J/L4IXbRkNc1+Ee9p5Fa4IlIs9q2CJd0PJLo9gB/jfxcZsU7Idqkph1o20T/FPs7t6l3fUalJ8LCkJwZ/X3YLkhbf75XdI9dfI3Zq7Jdw7DQl6DkEQWgZtR7hfswjGXQ5nvAKZvnnPgpDi8l3f7jFhsOJDI9i3u1L8bp1vhDHAvGfNt61wRapPeoHp43oRV+KT0OvRgbWP49cZvHbxwX7NRw3uFKBzcAJ59Hx6zeF+fZ47/0D+doxnTBmWDb/SNQGb6D+JKwhCy6LtCPcO/eCEh73NKKGoKg2v37L3TGHuvWvN+vNHwasnuTd/c/1Ebj1hMBsfOMFkf6wKkiJ46mPeOdH7ebIsjuiSxAXjja/54C7GHDOyR/1T5f7tmIH8euvRDO/uf4zjhnXxKkfofvuw6qRKil5BaPG0HeFeHzrZapKMu9x/u2V/7zTMFOa2s3GO2wbfv1Malx/Rz6M5W8LdN2T/oEvggHM86+e/7zEhLX6Te04exqxrJ3DZBDNBbKU+qAtL7z6W1y4exzVHD6BTiECqRXccw9PnjuGgnCz49n5483SzQWqVCkKLR4R7bdj93Qcc56VJu/OlDDkZdq8KvH9xXuD2qv3QeTgceYunzao76utiOP4qk+0ybyFKKYZ2y+DUMd15/oKxnDOuF6z/LnC2y4+vgZWf+jVnJMW7c8WHIis1gRNGuBJ8zXnIs6Fd77D2FwSh+Wib3jJ14W+rTSDTgMnQ+1DYs9okIOsy3GxP7+Jdr3Xqo5C/0lQeenYC3LTBO9iqxgHl+yDBx21xkkvQDzwO2veB01/0bMvq4+WGqZSJimXrryYvTmZP+OsyT/+v74RFr5nPOe+aYzaENV96llWsJP0ShChANPdQpHcxbolgAqe6jYaeB0G8K31Ax0Gevrduh4MuhaNuN+vlBcZ7Jn+lp88TB8DmnzyFRc57D0aeBYkuf/jEdLhusbfPfc7hsC0X9u/xHtvse8130VaY87Dx0ikr8C5S8taZkPsyDeIdW7Kviz5r2LEEQWgSRLg3lAxbdKeljSe3hzibPXv+c57lIlfFwqx+5rv/5NCFK/pMBDTssmnn5YWeaFGAb/8BD/UxH18+/YuJht3rn0kSpxOePxpePzXwuQs3Q43L9/2Ovd458wVBaLGIcG8ofSaYZGZX+uSguX0X3JIHccmw6FX//Tr0C/8cVqm6AltmxbyFgftaXPCxd0nB9y+F/xvjL+DfONXk21k/G/asM8XG58/wBGRZbx3Tnvbk6BEEocUjwr2hJKTChZ94bPB2EtPAUW4Coar2m9KAFp39MzYGJaO7eROwJz2rKjPfweqQ9jnC1Iz15avbPcs11bDBk/KXJw80xcY/v9HzhrHHZesfHH51KkEQmh8R7o3Nodea70eHmNKAFjmHB+4fiLgE6HoAbJjjaSvZYb6tVACDbML375s9k55XzfOuLbt6FuS7vHs+/FPwcz4+AlZ/DrvXmP3rWFhcEITmRelacpE0JmPHjtW5ubmhO0Y7FcXwoE8JwPM/CK5xB+PuAIFDMfFwe74R5EoZX/R5z8AtW709Wqy/8fcPmMyYvhx2HQw+CT66Cib+3dSmtUjJNukGLvJ3qxQEoelRSi3UWo8N1U8098YmMd2/Lald3Y8TKLOlswvvMf4AAAWYSURBVNpUObIE+VG3wa3b/F0VLeF/5K2m3J0vR99tPID+vABGnO69rWwPZIdIjyAIQotDhHtjo5Rxn7ToPKJu9nYLqzpUQykv8F4//iH/OrEXfgKjbJGyZYGLZwuC0HIR94em4I+fG++WXoeGLLgdlLSOJvnZB1eaYuCfXAd9J9X9OGfPhLenw7nvQY8DA9vS+xxhPl1Hwhc3w8Sb6jdmQRCaDbG5RyNOp7Gfj7kA2vUM3V8QhFZDuDZ30dyjkZgYY18XBEEIQlg2AqXUFKXUaqXUOqXUzQG291JKfaeU+k0ptVQpJU7RgiAIzUhI4a6UigWeAo4HhgLTlVJDfbrdDryrtR4NnA08HemBCoIgCOETjuY+Dlintd6gta4C3gZ8ipCiAas8TyYQIAetIAiC0FSEI9y7A1tt69tcbXbuBs5TSm0DZgHXBDqQUupypVSuUip39+7dgboIgiAIESAc4R4oebevi8104BWtdQ/gBOB1pZTfsbXWM7TWY7XWYzt2DK9ghCAIglB3whHu2wC7v10P/M0ulwDvAmit5wJJQHYkBigIgiDUnXCE+wJggFKqj1IqATNh+rFPny3A0QBKqSEY4S52F0EQhGYipHDXWjuAPwNfAisxXjHLlVL3KqVOdnX7G3CZUmoJMBO4SDdXdJQgCILQfBGqSqndwOZ67p4N7AnZq+0g98MbuR/eyP3wJtrvR2+tdchJy2YT7g1BKZUbTvhtW0HuhzdyP7yR++FNW7kfkhVSEAShFSLCXRAEoRUSrcJ9RnMPoIUh98MbuR/eyP3wpk3cj6i0uQuCIAi1E62auyAIglALUSfcQ6Ufbq0opTYppX5XSi1WSuW62rKUUl8rpda6vtu72pVS6gnXPVqqlBrTvKNvOEqpl5RS+UqpZba2Ol+/UupCV/+1SqkLm+NaGkqQe3G3UirP9ftYbE+7rZS6xXUvViuljrO1t4r/JaVUT1fK8ZVKqeVKqetc7W3y9+FGax01HyAWWA/0BRKAJcDQ5h5XE137JiDbp+0h4GbX8s3Av1zLJwCfY/ICHQLMb+7xR+D6jwDGAMvqe/1AFrDB9d3etdy+ua8tQvfibuCGAH2Huv5PEoE+rv+f2Nb0vwR0Bca4ltOBNa7rbpO/D+sTbZp7OOmH2xLTgFddy68Cp9jaX9OGeUA7pVTX5hhgpNBazwF8qnvX+fqPA77WWhdorQuBr4EpjT/6yBLkXgRjGvC21rpSa70RWIf5P2o1/0ta6x1a60Wu5RJMJH132ujvwyLahHs46YdbKxr4Sim1UCl1uauts9Z6B5gfONDJ1d5W7lNdr7+135c/u8wML1kmCNrYvVBK5QCjgfm08d9HtAn3cNIPt1YO01qPwVTEulopdUQtfdvyfYLg19+a78szQD/gAGAH8Kirvc3cC6VUGvAe8BetdXFtXQO0tbp7Em3CPZz0w60SrfV213c+8AHmtXqXZW5xfee7ureV+1TX62+190VrvUtrXaO1dgLPY34f0EbuhVIqHiPY39Rav+9qbtO/j2gT7uGkH251KKVSlVLp1jJwLLAMc+3WjP6FwEeu5Y+BC1xeAYcARdbraSujrtf/JXCsUqq9y2xxrKst6vGZU/kD5vcB5l6crZRKVEr1AQYAv9KK/peUUgp4EViptX7Mtqlt/z6ae0a3rh/MTPcazEz/bc09nia65r4Yb4YlwHLruoEOwGxgres7y9WuMEXN1wO/A2Ob+xoicA9mYswN1RgN65L6XD9wMWZScR3wx+a+rgjei9dd17oUI7y62vrf5roXq4Hjbe2t4n8JOBxjPlkKLHZ9Tmirvw/rIxGqgiAIrZBoM8sIgiAIYSDCXRAEoRUiwl0QBKEVIsJdEAShFSLCXRAEoRUiwl0QBKEVIsJdEAShFSLCXRAEoRXy/0Pz/0XwqZkAAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.plot(y_test)\n",
+ "plt.plot(y_pred)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "R-squared is: -0.963381\n"
+ ]
+ }
+ ],
+ "source": [
+ "from sklearn.metrics import r2_score\n",
+ "\n",
+ "def adj_r2_score(r2, n, k):\n",
+ " return 1-((1-r2)*((n-1)/(n-k-1)))\n",
+ "\n",
+ "r2_test = r2_score(y_test, y_pred)\n",
+ "print(\"R-squared is: %f\"%r2_test)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Build a Neural Network"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import tensorflow as tf\n",
+ "from tensorflow.keras.models import Sequential\n",
+ "from tensorflow.keras.layers import Dense\n",
+ "from tensorflow.keras.optimizers import Adam\n",
+ "import tensorflow.keras.backend as K"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 1 hidden layer with 1 neuron"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "WARNING:tensorflow:From C:\\ProgramData\\Anaconda3\\lib\\site-packages\\tensorflow\\python\\ops\\resource_variable_ops.py:435: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n",
+ "Instructions for updating:\n",
+ "Colocations handled automatically by placer.\n",
+ "WARNING:tensorflow:From C:\\ProgramData\\Anaconda3\\lib\\site-packages\\tensorflow\\python\\keras\\utils\\losses_utils.py:170: to_float (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.\n",
+ "Instructions for updating:\n",
+ "Use tf.cast instead.\n",
+ "WARNING:tensorflow:From C:\\ProgramData\\Anaconda3\\lib\\site-packages\\tensorflow\\python\\ops\\math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.\n",
+ "Instructions for updating:\n",
+ "Use tf.cast instead.\n",
+ "Epoch 1/20\n",
+ "7451/7451 [==============================] - 1s 72us/sample - loss: 0.0034\n",
+ "Epoch 2/20\n",
+ "7451/7451 [==============================] - 0s 38us/sample - loss: 0.0025\n",
+ "Epoch 3/20\n",
+ "7451/7451 [==============================] - 0s 39us/sample - loss: 0.0024\n",
+ "Epoch 4/20\n",
+ "7451/7451 [==============================] - 0s 37us/sample - loss: 0.0024\n",
+ "Epoch 5/20\n",
+ "7451/7451 [==============================] - 0s 38us/sample - loss: 0.0024\n",
+ "Epoch 6/20\n",
+ "7451/7451 [==============================] - 0s 37us/sample - loss: 0.0024\n",
+ "Epoch 7/20\n",
+ "7451/7451 [==============================] - 0s 36us/sample - loss: 0.0024\n",
+ "Epoch 8/20\n",
+ "7451/7451 [==============================] - 0s 36us/sample - loss: 0.0024\n",
+ "Epoch 9/20\n",
+ "7451/7451 [==============================] - 0s 37us/sample - loss: 0.0024\n",
+ "Epoch 10/20\n",
+ "7451/7451 [==============================] - 0s 37us/sample - loss: 0.0024\n",
+ "Epoch 11/20\n",
+ "7451/7451 [==============================] - 0s 36us/sample - loss: 0.0024\n",
+ "Epoch 12/20\n",
+ "7451/7451 [==============================] - 0s 37us/sample - loss: 0.0024\n",
+ "Epoch 13/20\n",
+ "7451/7451 [==============================] - 0s 38us/sample - loss: 0.0024\n",
+ "Epoch 14/20\n",
+ "7451/7451 [==============================] - 0s 36us/sample - loss: 0.0024\n",
+ "Epoch 15/20\n",
+ "7451/7451 [==============================] - 0s 37us/sample - loss: 0.0024\n",
+ "Epoch 16/20\n",
+ "7451/7451 [==============================] - 0s 37us/sample - loss: 0.0024\n",
+ "Epoch 17/20\n",
+ "7451/7451 [==============================] - 0s 38us/sample - loss: 0.0024\n",
+ "Epoch 18/20\n",
+ "7451/7451 [==============================] - 0s 37us/sample - loss: 0.0024\n",
+ "Epoch 19/20\n",
+ "7451/7451 [==============================] - 0s 38us/sample - loss: 0.0024\n",
+ "Epoch 20/20\n",
+ "7451/7451 [==============================] - 0s 38us/sample - loss: 0.0024\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 18,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "K.clear_session()\n",
+ "model = Sequential()\n",
+ "model.add(Dense(1, input_shape=(X_test.shape[1],), activation='tanh', kernel_initializer='lecun_uniform'))\n",
+ "model.compile(optimizer=Adam(lr=0.001), loss='mean_squared_error')\n",
+ "model.fit(X_train, y_train, batch_size=16, epochs=20, verbose=1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "R-Squared: -1.148897\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXd4lFX2xz83vQdCQi+hV+kiIipYEEVFUVdddS0o9l1ddUVl7XV/6rq7Vuy6LvauKIJSpAdFQHrvJLT0OnN/f9ypmZnMJJlJMpPzeZ558pY773vnzcx573vuOd+jtNYIgiAIkUVUY3dAEARBCD5i3AVBECIQMe6CIAgRiBh3QRCECESMuyAIQgQixl0QBCECEeMuCIIQgYhxFwRBiEDEuAuCIEQgMY114szMTJ2dnd1YpxcEQQhLVqxYcVBrneWvXaMZ9+zsbHJychrr9IIgCGGJUmpHIO3ELSMIghCBiHEXBEGIQMS4C4IgRCBi3AVBECIQMe6CIAgRiBh3QRCECESMuyAIQgQixl0Q6smKHYdZv7+gsbsRsVRUWcktKAv5ebTWLNl6iEqLNeTnagjEuAtCPbngpcWMf25BY3cjYnlu9kZGPD6H/NLKkJ5nzZ4CLpm+hGdmbQzpeRoKMe6CIDRZKqqsvDh3CwB5heUhPdfe/FIAXp63JaTnaSjEuAuC0GTpNW2mY7ms0hLScx0sct48Qn2uhqDRtGUEQRBqQ0lFaA2u65NBYVkVpRUWprybQ0WVlQ+uP56E2OiQnj/YyMhdEIQmR35pJW/8vM1tW2mIR9O5LsY9v7SSIY/8wPLtR/htdz59/v4ds37fH9LzBxsx7oIgNDke/XotD3+91m1baYhH7vuOljqWt+QVeeyf8u6KkJ4/2IhxFwShSVFWaeGjFbs9tpdWVgX0/ud/3MQ/f6h9xMvafQX0aZsKwPVhZsi9IcZdEIQmxdwNeW7rEwa2A6C0IrD486dnbeRfczbV6pxF5VUcKCjnhB6ZPtt0y0qu1TEbGzHughAkCspCG4fdXLjro9/c1u8/ux9Qs8/9udkbWbHjSJ1j4fccMS6ZNmnxHvuevmgQV4zswuHiijodu7Hwa9yVUm8opXKVUmv8tDtWKWVRSl0YvO4JQvjw7uKACuQIfrj42E5u6y2T4gAorfDulimrtPDc7E1c8NIiXpy72bH9yZnrsVg1Wmu/5yyxHbtn61THtmcuGsT2Jydw4bCOZCTHcbSkkqowyl4NZOT+FjC+pgZKqWjgKeD7IPRJEMKSiqrw+eE3Zeym+PObT+Czm0YRF2PM1NOzNvL2ou0e7V3986/M2+pYfnneFrrf+y2PfbPO7zntTwWu4Y5t0xMcy61SzA1mzvrcgD9HY+PXuGut5wOH/TS7FfgECJ9PLghBpsoqxr2uVFqsjlFxSYWFzJR4BndqwZDOLd3aPfDl7x7v9TWit/Paz9soq7TwxLfryC/x7raxJy0lxkWz/L7TeO1PwxnVvZVjv/3pIZwmWuvtc1dKdQDOB14OoO0UpVSOUionLy/PX3NBCCsqLf4f/wXvjH7qR859fiFgjHViXOCmKZDkpv8u2cEr87cy6OFZZE/9hj/P+NVtv32yNjE2mqzUeE7r1wallGN/33ZOd81PYTJ6D8aE6nPA3Vprv1dYaz1daz1caz08KysrCKcWhKZDlRh3r/ibaF69O58DBeWs3WeUNT9fuZddh0t9tt+c6x6DXljmOXJ//PxjHMvdspL5bXe+2/4vf9tLRZWV8ioLH+XscvQx0UcWao/WqbRONZOtV7+1PCyUI4Nh3IcD7yultgMXAi8qpc4LwnEFIaywBjBx15xYv7+A+z5bzcAHZ/H1qr1e2yzafJBznv/Zsb58u3cP8F9O7elYPu3ZeRyy6cBYrZrXq2WyvnftcUwc3N6xvjWvmK9+8zz/5LeX03vad9z18Sru+XQ1AAk1PDG4ZrD2vG9mk59jqbdx11p31Vpna62zgY+Bm7TWn9e7Z4IQZgQSldGcGP/cAt5buhPwjF23Uz0TdNMBs967Tarb9ttP78UtY3s41oc9Opur3lzG8U/O8Thmy6Q4kuNjeHhi/xr7t2DTQY9tqfGxPtsP7Jjutn7F60trPH5jE0go5AxgMdBbKbVbKTVZKXWDUuqG0HdPEMIHixh3n3zsJePUatWUVxv9PmKTHHjrmmM92lePc5+7IY8DBWY0feXxXYiOMj7yjGQz+fmn47O54/ReADx2/gC2PXGW334mxPo2iR9MOZ4vbznBsb50m784k8bFryqk1vrSQA+mtb6qXr0RhDDGKra9RorLq0iONyYnv6SSQQ/P8mhjN+BtUhM89hV58a3buXFMDyosVmYs20XLZOfo+9ZTe3Kri0vHG+sfGU+fv38H4DaJWp3EuGgGdmzBmofO4NRn5tIuPbHG4zY2kqEqCEFC3DI1c/cnqygqNwb6QKF72bybx3Z3W4+K8jSy4/q38XrcW8b2oG16Ao9MHEDOtNOIj/EvzZsUZ9r8fPfYWkv5psTHMLRzS4rLA9O6aSzEuAtCkJAw95r5etU+XrFVOaqu8HjlqGy/7z+1bxtypp3mtm1Yl5b82TYyj4mOIjPFUz7AlRtO7s7fxvdmwd/G8uMdJ9OxZRIAAzqkERcduDlMTYjxGqXTlJBiHYIQJCRaxj/2UbKrBkyLpFhau7hhvrpltM/32413QmwUw7tk8Nwlgx0ZrIEw9cw+juVWLjeCL28eTW3+e6kJsU1eS0iMuyAEiRrctc2StIQYCsqqmDahL4/aJABio81FcjWMN40xLplOGYnsOlzKgA5pNR53/SPjiVKqVkbdH97cQDWRmhBDSYWFKouVmFqM+BuSptkrQQhDfCXANFf6tU+je1Yyk0d3dWwrLjfumIJS49IYkZ3hcMl8ftMJzLnj5BonNcGM/oNp2OtCaoKZtC1qwn53Me6CIISEiior7dIT3Yz19PlG2OtwsQlhfOuaYx0ToK1S4umeldLwHa0DqQnG6dGU/e5i3AWhHrhGyFRKLKQDrTW/7DzqkNK1T4TaQx2fnrURpcL3aSfNNnJ//sfNflo2HmLcBaEeuNrzcNL6DjWLtxwC4JedRwEzEZpsCz+0R8q0So7z64Jpqlhs//gPcnY12SIeYtwFoR64Rsgs2dq0MxYbkupCXQAXDe9EanwMB226MJNHd2vobgWN8QPaOpbrWv0p1IhxF4R64GrcWyb51iVpbjz13XqPbemJsRSWV3HiP34Cwjt0NDpK8coVwwC4/4s1TTKBTYy7INQD19+06Lk7uXxkZwBm3X6SY1uftu5iYEu2HmrQPgUbuxzCgk0HyStyKkZuP1jMgYIyX29rMMS4C0I9sLg43aUSkxOtITMljl4u6o5927nHrz923jHV3xZWTBjYzrFsr/CUW1DGmKfnctzjTrXKR75ey+nPzmvw/olxF4R64OpaqJJoGQellRYPzZYOLZ1CWxcP70TnVkkN3a2gkhAb7ZA+OP2f83l/2U7u/mSVY39xeRUVVVZe/3kbm3KLyHPRg28IxLgLQj3Ye9T5+C2VmJyUeTHusdFRzLtrDMd3a8WD59astR4ujOvnFDOb+ulqfnLRre//wPf0mjbTsf7c7I0N2jcx7oJQD6Z+6hypSSikk7JKq9cY9i6tkpkxZSSJceEZ316d9MTAJ9HfW7qTWb/vD2Fv3BHjLgj1wLWWpiQxGSotVkorLGGboFQbApELvnFMd86wyRVPeXeFhyJmqBDjLgj1oLLKadAtzcS4z9uY55Du3ZdfytBHfmDX4RIA5m/Mo+d9M1m89RAJETI6r4mWSbEM7tSCS47t5Lb9+T8OcSzfPb4PT04a6Fjve/93vLZga8j7JqqQglAPyquco7DKZuCW0Vpz5RvLACPVe/cnprD0e0t3MvXMPnz+6x5H24RGFvdqCGKio/j85hM4UFDG+8t3ObZ3yUhm82NnOibZWybH8e2fT+Ssfy8AoKQBRu9i3AWhHlS41ABtDhOqrnVM7YYdnAlc5S43uMi/Gk7apCWw/ckJ7M8v4+tVe+nfPo2oKIVrUah+7Z2hoC1tdV5DSeTfWgUhhFS4GDNvce65BWV8t2ZfQ3apVlRZrG5PH/7YeKDI6/YFmw56aKyUVTaMb7kp0TY9gWtP7OZXH35/fmnI+yIjd0GoB+WuI3cvPvcr31zOun0FrHt4fJOLEDnhyR/Zc9QYmZ/uHEPXzOQa26/bV8B5Lyz0uu/nzQc59/mfHccDmDS0Q/A6G2EM75IR8nPIyF0Q6oGrcdfac1J1zxEz0VhY3vTEpVwN8din5/ptv9SLXMDAjumO5d1HSh1yDMvuO5Xzh3Ssdx8jjX9dMpjrTuzK2D6tQ34uv8ZdKfWGUipXKbXGx/6JSqlVSqmVSqkcpZTvAoiCEGG4+twBRj/1o9t6vC1UrikXdQiU6vK8UQo+uXEU0yb0ddv+yhXD3GqiCk4mDu7AfRP6Nci5Ahm5vwWMr2H/HGCQ1nowcA3wWhD6JQhhyb58d8GoeFvESEETlYWtDa5up0fPG8Cmx84iNjqKa090l+4d2zv0o1LBP36Nu9Z6PuBTqFprXaSdepfJNK9JckEA4O1rRnjdbjfu3jS/jxRXMPSRH/h155GQ9q2uHC6u4K8frnTUCX3k67WOfZeP7EK0y6Th5sfO5KXLhrLgb2Mbvb6pYAjKf0Epdb5Saj3wDWb0LgjNgnbpCcTFRNG3mpytnQxbyNvDX6312Ld8+2EOF1fwwk9Ns1TbK/O38Okve3hvyQ637X+xiWW5EhMdxZnHtKNTRniLgUUSQTHuWuvPtNZ9gPOAR3y1U0pNsfnlc/Ly8nw1E4SwoXVaAiO7tSIm2vlTcg0ttKenbz1Y7KE9Yx/hllc1fPKTvS8n9cpi8uiuJMR6mgK7iuETM9fz4/oDju23n96rYTop1IugPj/ZXDjdlVKZPvZP11oP11oPz8rKCuapBaFRsFo10co5Qgd4bcE2r22PlLi7ZuJsN4QFmw6GroM+sN9QRvdoRXJ8DGWVVqzVIn0+/cWZbTrtszXERis6tEhECA/qbdyVUj2UbRpdKTUUiAPCu8SKIASIxardfM8A//f9Bseya6WmHYeK3dq5Co01pFogOI17fEy0Q+CrpieIovIqWqeapxQhPAgkFHIGsBjorZTarZSarJS6QSl1g63JBcAapdRK4AXgYt0UCwoKQgiwak/jDlBSYSYhcwud0TMXvrzYrU25SwbnlHdX1CpTtL7YS8QlxkWTaHPJlFZaKK+y8N7SHR4hngVlVew5WurVfSM0TfxmqGqtL/Wz/yngqaD1SBDCCG8jd4CjJZVEKeWRrn+kuILf9xZw+etLOX+IewbnRzm7uXxkl5D2F4zA2br9BYAphWd3ChWXV/Hmwm3858fNHCjwXjVozrpcHjs/5F0UgoDchgWhHli0Jkp5GveySotDd+bu8X0c24c88gOXv74UgM9cFBQBpn3uNU8w6Dz69Vquf3cFAK2S48lKiQdgs0spuH/P2QTAiT3dp8/+e+1xDdJHof6IcReEeuBr5L4/v4xKm2sjJT6aftWKQ/ti1BNz/DeqBbkF7klVVRYrby92hja2SomjhU3R8eq3lrvJ1gLcOa43Fww1MgLXnNCVHq1Tgto/IXSIcReEemCxaqK9jNz/+NpSh2Z3bHQUD030XTPUNX1/b7UM1/owc/U+Rjw+h/eX7XQkSv3LNiK30yo5nm5Zvg12Ylw0F9gEwCYMbBu0vgmhR4y7INQDq1X7lHe9yDaBWlxhoUUNtTbP6N+WNmnxjvVgxSOs3H0UMIWbz39xEQD/+dE9YSoxLpr0xFi3Qs+utEyKY1SPTNY+fAbDGkDJUAgeYtwFoR5UWjWx0ca4/3D7SW7Zm/ttLpHdR0rcCimf0b8Np9uM6aBOLeiUkcTSe0/jnEHtAe/SwXUhKdY9XsL1pjGuXxt+unOM32NkpZqbTlKcqIOHG2LcBaGOWK2aI8UVtEwyCUw926QyrEtLj3Z/Pb0XaS7G/ZUrhpNvS2jKbuVM1x9gq9RTl4zVtxZu4/wX3bXWk6rpx3e951sARnVvxfQ/DXfTbz+mg1O695MbR7HknlP57rYTa90Poekgxl0Q6sjWg0VUWbWbEe3VxlNjJjUh1iFDYOeZPwzilD6teeoCZ+Fku8jYY9+sY82e/Fr15cGv1vLrzqNuevLf+UiMio32/NnfMKa7Y3lYl5a0TU+gT9vAJoGFpok8awlCHblkuglpdHWRt01PIC0hhgI/+u2dMpJ446pj3bbF2Qpuzli2k09+2c3GR8+0HV97aKn7YtfhErJtI/IVOzzVJqee2YdLju3ksT02OooPrz+enYdLAjqP0PSRkbsg1IEteUUcLDIx4ecN8V1Obm4Afm07iXHOn6M9Q/SeT1dz2WtLa3yfqybMA1/+DsC9n6322vaGk7vTIsl7ceYRXTO4cJhUT4oUZOQuCHXgx3W5juW0BPdImD8M78RrP29j5f2nuxnSSUM6EF9D+n6PLE+XzoxlO/32xbVId0p8DGWVFv631P19J/bM5B0fmvNCZCLGXRACxB5topRyEwdLjnf3p997Vl9uP70XyfHuP69nLx5c4/EzUpw3guFeJmZ9UV7pNO7frN7HNaOzHevnDW7P1DP7kpkSF7BrR4gMxLgLQoDYo01uHtvdbbQcU22CMipKeRj2QOjQIpGXLx/K9Plb3RQjwXcmLOAhOHbBS06BsltO6UHbdKln2hwRn7sg1JIXftriWD7XFpseLMYPaEe79ESKyirdIl9+3+s7esYeOjmpmu9/TO8serT2XiFKiHzEuAtCHTg227hN/nVJza6WupCaEENhWRXbXfTf9x4tdSzb4+vt2EfuY/u4F6Z+ZOKAoPdNCB/EuAtCHUiOj2FQx/SQ+LGjoxS5heWc+sw8x7YZy5yCXu8s3s6QR35g2bbD5Gw/7NCJj4+J4qXLhrr1UWi+yH9fEOqApQZNmfry3lLPCJl5G/Mc8e525cY/vOJe/CM6SjGuf1tm/uVEPszZRcsk33o2QuQjI3dBCIDqYl4WqyYmRMbdVSVyYMd0R/Wjh79eC0DHlt7rmNqzYPu2S+OBc/pLdEwzR4y7IASApVr0yp6jpT6jV+pL5wyn3sxHNxzPsdlGjfGtRdsBHFo2dkZkZ3Dz2O6M6i71TQUnYtwFIQCWbT/str7jUAnF5aGpeXpKn9ac1rc1H15/PPEx0bx+pZEpuHREZ8AUq+7mIvp1x7he3HVGHxmpC26Iz10QAmDnIU/NlVDpsMRER/HalU7dmbiYKLJS4x2uoaLyKjeVSfvIXhBckZG7IATA1E89tVqqu2pCSV5huSNipqi8ipT4GLY+fhbbnjgrZBO7QngjI3dBqCPWIFVMCoROGYnsOlzKS3O38OvOo6QnxopRF2pERu6CEAAdWpgIlScnHePY1pAj9wnHtCc2WvHUd+sBQjaZK0QOfo27UuoNpVSuUmqNj/2XKaVW2V6LlFKDgt9NQWhczh1sZAYuGdGZBX8bCzTsyD0+JopKi/N8X9x8QoOdWwhPAhm5vwWMr2H/NuBkrfVA4BFgehD6JQhNiiqLlURbHHmKLfOzZwPqtrhKBT94Tj86uYRLCoI3/PrctdbzlVLZNexf5LK6BBC1fyHieHXBNsdyy+Q4nrt4MCf1ymqw8yfEOGWFzxjQtsHOK4QvwZ5QnQzMDPIxBaHJUVP1pVDg6mNvl+49Q1UQXAmacVdKjcUY99E1tJkCTAHo3LlzsE4tCCGnW2ayQ1q3MTjkogIpCIEQlGgZpdRA4DVgotb6kK92WuvpWuvhWuvhWVkN90grCPWh0mJl15ES+rRtPG30/BIx7kLtqLdxV0p1Bj4FrtBab6x/lwShafHQV79TadEcbkQD+8fjujTauYXwxK9bRik1AxgDZCqldgMPALEAWuuXgfuBVsCLNm2LKq318FB1WBAamp/W5wGmSEZj0bttKv+5dAjdspL9NxYEAouWudTP/muBa4PWI0FoYpRUVAGw7WCxn5ah5Zwgl/QTIhvJUBUEPxwpqQSgoKyqkXsiCIEjxl0Q/NC7jRSZFsIPMe6C4Ic+7YxxF7l0IZwQ4y4IfoiJMj+T/u3TGrknghA4YtwFwQ92gbB3rzmukXsiCIEjxl1ospRVWjhYVN7Y3aDKqumWmUzL5Dj/jQWhiSDGXWiyXPXmMoY/Oruxu4HFahX9dCHsEOMuNFmWbDVFqXccatz48oNFFbRIivXfUBCaEGLchSZLj9YpACzYdLBR+3GgoIy2osQohBli3IUmS7dMk2pfUFbZaH3ILSxjx6ESSissjdYHQagLYtyFJotdysViaTxNl/eX7QJg9roDjdYHQagLYtyFJowx6pYGrFVaHftE6mPnD2i0PghCXRDjLjRZqmxDd4tVU2mxUlze8Noue46Wkp4Yyx9HSHEZIbwQ4y40Oe75dBXvLN5OfqnxtVusmmvfzqH/A983eF+OllTQOjUeJdoDQpgR7BqqglAvth8sZobNz92xpYlQsVg18zYaTfVKi5XY6Ci01hRXWEiJD+1XuKjcQlKIzyEIoUBG7kKTYtw/5zuWdx8pBeCV+Vsd217/eZvj74AHvie3oCyk/Zm/MY/ySomUEcIPMe5Ck6LCUnMR6idnrufs/yzg0W/WAbD7aKnXdoVllfz98zWU1cMw5xUa6YP1+wvrfAxBaCzkeVMIO9bsKXAsV/kIkzzmwVkAZGcmM3l01zqdZ/Weo3V6nyA0BWTkLoQ1i7bUnL1an5H7kWIzoXvTmO51PoYgNBZi3IWw5rnZm2rc3z0rpc7HLrRlxtZ15C8IjYkYd6HJkpkSX6f3ucoV2LXY31q4jeyp31BeFfhIvtBWMzU1QUTDhPBDjLvQpOjT1lmvND3R+5TQkM4tWPfweEZ0zfC6f9KLixzLlRYrF7y0iAe/WgvA0RJ3nRqrVaN9ZMAWllcRHxNFXIz8TITwQ761QpPCqjWDOrUAoG87Z1m7Lq2SWHLPqfzl1J7MuG4kiXHRjMjO8Kqzvjm3yLGcs/0IK3Yc8bqvuLyKYY/+wH9+3AzAD2sPuO3feaikzk8PgtDY+DXuSqk3lFK5Sqk1Pvb3UUotVkqVK6XuDH4XheZEWaWVrq2SeH/KSP5x4UDH9k9vHEXb9ARuP70XCbHRAMTFRGGxaixW39oz7y7Z4bZ+2WtLHcvbDxVzpKSSZ3/YCMB17+Rw2rPzAFi/v4Dvft9PTLRkpgrhSSAj97eA8TXsPwz8GXg6GB0SmjdllRYSYqMZ2a0VSXFOt4zrsp3YaPP1rXSJjbdLFgR2Luf7KqvF12/JNQVCzjqmXcDHE4SmhF/jrrWejzHgvvbnaq2XA40nui1EDHbjXp2EWM+vaqxtVO2a+HThS4s82lXHPqm6YFOeY9vpthE7wIc5uxyTsleM7BJgzwWhadGgPnel1BSlVI5SKicvL8//G4RmRUWVleIK78bdm3BXvG2is6LKadw32Xzm0yb09XmewrIqisqr3MIotx8qcSz/7eNVvLnQyBy0TJKi2EJ40qDGXWs9XWs9XGs9PCsrqyFPLYQBv+48gsWq3SJmasLulnlvyU6PfTE1FLQuLq/iLzN+rfHYGw8UERcT5fWJQRDCAfnmCk2GElspuy6tkhzbJo/u6tPY2437P2ebCdEqF/fMyO6tmDi4PWAM/fUndePUPq0BWLevkEVbDvntT0WVVaR+hbBFtGWEJsOh4goA4mOcbpm/n93PZ/vqFZo+X7nXsdynbRr/umQIEwe3p3NGMj1apzDr9/3MWZ/LDf9d4fV4n940yi1GXhDCGb/GXSk1AxgDZCqldgMPALEAWuuXlVJtgRwgDbAqpW4D+mmtC3wcUhC8cudHvwEEHH7o6pvXWvP4t+s82pzSp41jOd6LLx/gf9ceR6eMJDplJNEiKdaR6DTlpG4B910Qmhp+jbvW+lI/+/cDHYPWI6HZ0yIpsHT/0/saw31a3zbkFpZz2Dby90WsFz/8tAl9GdUj07G+8v5xXPDSIlbsOOKYsBWEcES+vUJQOVxcQc/7vmXR5prVGmuidWpCQO0S46JJiY9h9roDbuqP6Ynebw7HVpMrePGyoVx7oufo/PwhHQD443FSN1UIX8S4C0Fl44FCKi2ap2dtqNX7lm71P8HpjSJb0eyFm53vn3/XWK9tY6OjeH/KSMd6aoL3B9fLR3Zh/SPjaZeeWKc+CUJTQIy7EFTsWi97jpbyxLfrapQGcMUuAVBX7B6Xly8fRnoNbp2kOKffPbmG2qjeYu0FIZwQ4y4ElUpbQtGBgnJemb+VtXsDm1evjWyAK38b3xtwhlH6i0tv5SIEliqFr4UIRoy7EFTKq2m0BKqfXlxh3Cv2WPRAGdjBKEg+Y3MDJfoZcXdo4XS1dMpIqqGlIIQ3YtyFoFJe6W7ctx4sDuh9R20l7WpylXgj3jZSL3aM3P27U57/4xCuHd1VXC9CRCPGXQgq1Ufqv+0KrMh0Vppxl5zQo1Wtzte+hfukZ0ayfy2Yswe2Z1oNyVGCEAmIcReCSnmV+8jd6qPKkStllRa25pkR/h+Gd6rV+aqHPYqrRRAMMqMkBIWCskr+u2QHyS6667HRiiPF/idKn5y53rFcWy2XBJdEo5vGdK/VewUhkhHjLgSF//tuA+8u2cHwLi0d23q3TeVwSc1ZowC/780HalZy9EVMtNO4j+xWO5eOIEQy4pYRgkKV1bhj9h4tBeDx848hMyXeLXPUF/3bpwOw6sFx9epDcrxMkAqCHTHuQlBIsUW57M0vA+DSEZ2IjY5yK6Thi+/W7CclPsZrKb1AsHty6vp+QYhEIsa4/7Qhl7ds1XOEhqelS5RKXHQUSinioqOoCiBDtaCs0iEjUBfsc7bJYtwFwUHE/BqufnM5AOcMau+WhSg0DApPf7nFqtlsK3tXE6kJMZwzsH29+yBuGUFwEjEjdzv3f/F7Y3ehWeLqfrEb2e9+3w/4lxYoKqsixYeIVyB0yjCx7lLvVBCcRMzI3c43q/fxQmN3ohnimryUmuAee55bUOZThve3XUcprrCwYX9hnc/90fWj2HqwiKg6RNsIQqQScSN3oXFwHbnblRefmHQMAPtsk6zemPiU1ebpAAAgAElEQVTCQgAWbam7/nvb9ARGdc/031AQmhERY9y7ZSY7lqss/iM0hODimplqn0Q9ta8RAfPmd1+zJ5/sqd841v9yaq8Q91AQmhcRY9wrXAz67R/+RkFZ3SRkhbrh6pYpsUW+ZNh84N4iYf7wymK39ZvHSnapIASTiDHulS7G/avf9vLnGb82Ym+aH4VlTgP+d5soV0x0FNFRymsik6vkzBUju7hlmgqCUH8iZkK1erLMxnpM0Am152hJJcO7tOTFy4e61UBNiInyEBMDSEmIodRm9Mf1b9Ng/RSE5kLEDJdKKiycO8gZKx1YcTchWBwoKKNNWoJHceuE2Gi/EgTZrZJr3C8IQu2JCONusWrKq6y0cKmdWVOEhhBctNbszS+lXXqCxz5j3D1H7q5utHg/pfEEQag9fn9VSqk3lFK5Sqk1PvYrpdS/lVKblVKrlFJDg9/NmrE/3vuKpRZCS2mlhbJKK5mpnpnB8bFRlHkpteda7s5faTxBEGpPIEOmt4DxNew/E+hpe00BXqp/t2pHia3+Zlq15JlFWw5y9ZvLHPuF0GCfTE31kmUaHxNNuYtbpqLKyj2frub3vQWM69eGWbef5JH0JAhC/fFr3LXW84HDNTSZCLyjDUuAFkqpdsHqYCCUVZhH/LREp3EZ1KkFf3x1KT9tyOPfczY3ZHeaHYW2sFNvRnpLbhGz1+U61lftPsqMZTsBWLzlEL3apDZMJwWhmREMZ2cHYJfL+m7bNg+UUlOUUjlKqZy8vLwgnNpQUmkfOcbyxKRjaJEU61a7U2LeQ4s9SSnVS3Fre/6BfVI12kUioDQArXdBEOpGMIy7N0EPr8EqWuvpWuvhWuvhWVlZQTi1YfxzCwBIjIvm0hGdOVribsx1AHU8hboz9dPVgPuTk53Jo7sC8MXKPQBuk6vvTB7RAL0ThOZJMIz7bsC1qnFHYG8QjltrkmwTcyOyM9y2W0WNICRs2F/IZa8tobVtInVQxxYebezhqUdsN1zXydVumSkN0EtBaJ4Ew7h/CfzJFjUzEsjXWu8LwnFrTaJNsKr6iPCDnF0cKJDQyGDz3yU7WLj5EJtyi2ibluA1y9TuU7c/3pWUO417Wy+hk4IgBIdAQiFnAIuB3kqp3UqpyUqpG5RSN9iafAtsBTYDrwI3hay3frCrESbERnuM3o97fE5jdCniKKmo4orXl7I1r8ghEKY1xMZ4l9uNizFfsSdmrudwcYVj8vWrW0Y3TIcFoZniV35Aa32pn/0auDloPaoHiS5l1u4+szczlu3i4xW7G7FHkceizYdYsOkgpzwzj4mDnRnBsT60YVwnUIc+8gN92pqRfHZmUmg7KgjNnLBPDbS61OiMczEww7pk8PRFg9za+kuDF/zjmgX8xUrn1EpMgIUy1u8vJEpJvVNBCDVhbdytVu0m9dsqueYyaxUB6Ly/8NNm1u0rqHffIhVfI/SNB3zXSn3gnH5u61aNVE0ShBATtsb9Dy8vptu937LxgFF/vP/sfl4Nxte3On27rqN8b1RUWfm/7zdw7vM/B7ezEUSVn2vojRQv8e+CIISWsDTuc9YdYNl2kzT72a8mftqX+NSADuncd1ZfwAiMuXLRy4t44AsjmVNlsfJhjsnFqrRIXLwvrD5yBmpyy9gnVbNbiZ9dEBqKsBxSTX47x7H85sLtgLu/vToJtigaV9s+b2Mey7cfYfn2Izw0cQCPfbvOcSwwqoW+XBDNmSrbje+KkV0Y1qUlt32wEoC5d43x+Z6YKHMd+7ZL46tbR8t1FYQGIGJ+ZSUVvidL7YNK+6iz0mJ1i6KxWjU/rD3g9p5Tnpkb9D5GAvann3MHt+e8IU6VCVeVx+rERpt/QKVFk5oQS0KkqUBaqqCqvLF7EdmUN1DxnaoK9zJhYUzYjdx9Fb8+sWemz/dEK2Nc7Iap530z3fZvziuiQ4tEdh8pdWzbdbgUwROL7YtvD3H81yWDWb+/EKV8u2WO69aKbpnJ3HZazwbpY4Pz+mmw91d44CjUcB2EANEalk2HtV/CDpf5r8k/QCcfkhWVpRAVA9GxsGeFueF2GlG7/8eWH+Hja6D0KEx8Ho7sgPn/MPsyusGYe2HgRXX/XA1M2Bn37YdKHMvnDW5PcYWF+8/uR6cM3/5c+0SrL3/xpdOXcHz3VsHtaIRisWk52H3sEwd3YKKf96QnxvLjnWNC27HGZK+tXu+i/8AJf27cvjQlyvJh2wI4tBl6nAZtB7jvryiB2ESY9xQseh6G/glOvANeOQkKvOSnvH66+TvxBYiOh9gEiEuGX96B3z/z3Y+4FBh+NexaDoktYeNMaDcIuoyGikJISIfyIljxpvM9X1RL3Tm8FT691rz6T4Ks3nDMRdCq6RZ2DzvjnlvolBF47pIhAb0nynb3tlq9i4gdKq7g151GRfKNq4ZzzVvGp2+xarckHAHKbcJf4jf3wpIXxbi78sUtsO5Lszz7AfN3zD0wZioc2Q6vngolB53tl7xgXnbOfR7ikqDvRFj8vPMY1Q2vPyqKzI3XlX2/mVd1psw1Tw4bvoXs0ZDRHeJTQVvhpVFQuA9+/9S0nfsE3LQEWvetXX8aiLAz7gWltS+8YbdDFq29FmsG2HPUuGFO6dOGaRP68ug36+h+77fMuv0k0Rx3Ib/UyAdI1SsvFDaKpFLTZMdip2F3Ze4T5uWKioLLP4Fdy8y+nmfApTMgymVuZvRtMOrPsOEb+PU9yFsHcanQfSxk9YEBk4xbZv8qaD/UuGPsA7m8DZDWDuLTjMsmfze07gcr37ON4E+AXUuMO6a9bcDYwUtBuTvWg6XS3CzWfQ1f3gIvjgQVbW7q/SeBtRJmP2TanfEYlB427p3KEuh7DiS3NjesBiDsjHunDDNxN7iTpwKhLxwjd635ZccRt3292qR4JOAMcjn2kq1SUMIVuzZ+mhh3w6bZ7utVFRAT576+awl0Palh+xUIhQegcK8ZlbbsCkkZ/t+zOwdeO9Ustx/idEmd9DdjYIsPwttnO9tPfBGGXGYM7f5VxuVi58z/g+OmONe7n2JG9b6IijIGsu85vtt0GOZctvvbW/dxbus43LwATn/Iub2fP+eijehY49oZegXEJMAPfzc39Z//aV6uvDrWfX3WNOfyNd9D55GBnbOOhJ1x798+ne1PTqjVe5xuGU1ekXtUwzd/PtExwXrL2B6A+40jQibOg0aRTdUxKdIiXurK4ufd1x/Ngnv3OUdnS182BqDXeLhkhjFQdrSG2Q8aY1OTwQoVr46Fgj3O9eoTwiWH4b+T4NhrzWh6/Vfw9e3O/XbDDmbi0T75aKf/+cawgzluu0HwYL7nDTBcGXiRef36X3PTs1ZB7looK4CBF0P+Ttjzq7lhtcyGTbPMDaC8ALbOFeMeDOx+c4vWDveLHVffcf/2aY5tgzqm89vufPIKJcTNlXkbTQUtkQ+wkWC+M0yebaJmAB5vZwx57zOdk3Qbv4OHW0Jqe6gqNZN8gy6Fhc85j9V+KJzwF+h/XvD6t+cX44KoLDEjc0uV8Wuv+dTdsAMsfcVMMK76CDK6mj6Ddx/3CbdBWgfjFomONcfbMNPc1E69H9I7QZKPIIVIMOyuDLncvPzRdgAcdz0U5xljH2KahXG3j9ztFZtSE2KYcd1Ierd1d7f0b5/uWP74xlH0vG+m2wRusNBaM3tdLqf2aR1WRjK/pNKtfGGzZ/23sPYL6DQSOh0LvScYnzDA+z7EVAttYmulRzxHunt/gY+uhNVnw+i/QsdhJsTv6C7I6lVzX1a8BQv/DVd+Cekdzah74XOw8F/ONh2Phd3L3d939XfQqgc8dwx8d7dz+8EN3s9zwetwzIWe20/8q3kJNROXbF4NQLMw7j1au1/MwrIqBnRI92jXoaUzESc2OooBHdI4WFQR9P58sXIvt32wkocn9udPx2cH/fih4nBJ8K9FWLHsVfj9c+OftVTArPvM9m5jzN+Jz8Oh25whe3Zu/cWEzL0w0kwEnvqA8VcvfdlEY4x/HHavgB0LjQtn/dfmdf9heKqrGenfuBja2ATYtIaDG6FFF4iJNzeKr/5i9v2zP8QmmZF6dXYvh+Qss7/HacYd1OV4Wx9z4L8XQN56GPeo2b/6YzhlmnGplB4xvmYhbGgWxj3Qcm7Vwx7TEmIpKA1+cW3708Cuw+4/wG9X7yM1IYYTewavvmwwadaSyVrDt3ea5R3VhOVOvMP8TcqApBHGKG+bB9knGpeFnau+Mf7WDFNXlu4uE24dh5lXXBL88ICJyHjYZYLzpeNh/JMw8kYT0/3x1b776mrYz3vJ9L39YEhpC8k+XCXpHeHmpe7bTv27c1kMe9jRLIx7ddfH0M7ukTYf3XA8LZM8/YBxMVEUlVcxd0MuV725nPenjGRkt/onO9ndRK8u2MadZ/QmPsZMTt703i8AtZ4wbijsYaR3ndG7kXvSCOS87n37g/me26KiTeRHdZJb+Taudo691iTHPNnZrI+6FTJ7m7C776aaV3VS20GXUTD+KWOEi/NM0k32CTWfS4homoVxr84zfxjstn5stvcQsLjoKCqqrPzt41UAXDJ9icPwaq3RddQld31C6D3tO7Y9cRZPzFzv2LY1r4huWSmMf24+MdGKr289sdbnCAX2kfuQWoShRgRWC3xjG50PuNCMrn95B3qOC835EtI9bxqF++Cnx5zrE1+AAReYvsVXezJNa2deQrOmWRr31ITAPnZcjDHuuV4iZqZ+spoPcnax+bEzHYWhDxaVs+NQMcO61BwvXF3kLL+0kunztzrWf9qQx+HiCtbvN2JJZZWWJiG2ZR+5+5JXjlhcsxsvtI3gxz3WYBNjgInGsBv3+4+4h1QKgheazTfENXw3MyU+oPfExUR5ZLTe9dFvHCoq5wOb9vtDX6117DvvhYVc8NJiv8fdmlfstr62WuWnR75ey4UvO49jf3JobMptI3e7GynkFB+C395v/GSDMi8RQglp7hmUoSatPUzdBffsEcMuBESzGbmvfWg8s9cd4BgvUTK+aJ2aQG5hGe3SE9iXbyZBP1qxm49c5ILfXbKDq0/IpltWikNV0p8mTUmFu4TCrN8P+GhpmL2u5v0NRZntRpfQUCP3eU8adcCCvY0XZldV7sw8vG114/TBjj2mXhACoNkMARLjojlnUHuyMwN/lC6vslBp0Q7D7otJLy1yWz/qJ2Sw+tPAW4u2A9A2LcFr+5q06huSBhm5lxyG18fBT0+YSUEwQk1LXoY3xsP+1SbD0WqBjbOMGlwoWfCs+Tv4cmjRObTnEoQgEpBxV0qNV0ptUEptVkp5TNcrpboopeYopVYppeYqpToGv6sNT872IzXut8veVi8xN+zR2dz1kRfFORsVPsTLltx7KqN7OHXpn/9jYKqXDYX9JpMYF0Lj/s0dsGupGbVvtum27F9tEmx2LoaXR5sU/4cz4H8XwYvHeT/Omk/gwXSTOWmntOb/pweFB0w/wMSwC0IY4de4K6WigReAM4F+wKVKqX7Vmj0NvKO1Hgg8DFSTfQtPOrvU/Lz3rD4e+zc/fhYAJ/XMInvqN277XF031SmvMkZykkslIzttbKP30/q25uyB7R0VjkKRKVsbcgvKHMXI0xJCKBpWnFe79gc3GjU/VxY8Y4ougJHhfTDdvJ7KNolI1duu/tgsb18IO2xPYVo7hZ5G3iRFOISwI5CR+whgs9Z6q9a6AngfPOoz9APm2JZ/8rI/LHngHOc9bEhn70kcnTISWbm7din5FVVWTu6VxbMXO0MyM5JNnH2HFsa4Hy0xyVPP/mEQAAs2HqQxGfH4HN5bupO2aQmOgtchoXC/+dt/ElzyPxPDDUYWdsKz0ON0uPi/cOMimPCM2bfHWVOXzbNhzsPO9erp9t/eac5RUQL/PMa0/WSyMf5vnQVvnmmWP7kWVn9o4sbHPRq6zysIISKQX2kHYJfL+m7bNld+Ay6wLZ8PpCqlwr60UetUpw+8Xbq7P3yUrXJTanwsuQWeoZI1GcDyKivx1fa/dfWxgDNyJscmTTywo4kpP1DLkftnv+4mvyQ42bUWl8rifdsFIH9cVz/4L+/AoU1mpHzRm9BnAvSwycveuw+OnQyXf2wUFNv0hyxbkYT/2r56OW86l7NryA14pjf8o5tR7fPFGttofsrcho2KEYQgEUi0jLfn0eqxaXcCzyulrgLmA3sAj6oaSqkpwBSAzp3DY3Lq/SkjWbevgI4tk1h276ks3nqIlPgYRttqtqYmxFBU7vyoQzu34GBRBTsPl7Avv5R26Z6Fo8urrB7G327EzzqmHbPX5fLmVcbYJ8ZFkxgbzSEvGjf5pZXcOuNXbh7TneNcMmf35Zdy+we/MaJrBh9ef3y9r4HrBLFfHXdLpdE3GX6NUSPsc3ZgoXvFh+DLW83ywIud2yc8C2OnmZJq1Wnj4h3MXQdf3+Zc/9OXRv9lx0KjwJfSBkoOwb8Gmv1VLuqgw642N4tWPYxff95TZntiywZR7xOEUBCIcd8NdHJZ7wjsdW2gtd4LTAJQSqUAF2itPfKytdbTgekAw4cPDwul9JHdWjkkB1qnJTBxsPtDS6qL/3nGdSM5vnsrHv5qLW8s3Ma9n67mzas9C/pWVFl9RpycP6QDo3tk0tolcqZVShz7CzxH7k/OXMf8jXnsPlLCj3eMcWw//okfAVi27TBr9uR7FUmrDde/u8KxHOevvF7hPig64Ky2c8rf4aQ7/Z9kyYvO5fYuGcQx8b6zLRNbwjF/MO6TF120sW/42dxQohKcI38wmZzX/giv2aQBLv0Aeo93P2b3sabwxPYFTbPAhiAESCBumeVAT6VUV6VUHHAJ4FY/SymVqZSyH+se4I3gdrPpUmFxuiDsRbavGpUNmEzT13/e5tZ+6ier2HO01JHl+fRFg7h5rLPIrlLKzbADDOyYzsqdnn79GcuMt+xADaGaZ//nZ5/7AiXHpXrVraf09N6oogS+/ivsXem+fetc/yc4uAkWPG2WT3uwdp2rHsVy/Xxoe4zv9h2HwaTXTGhjz9O9t4mOMUZe3DFCGOPXuGutq4BbgO+BdcCHWuvflVIPK6XOtTUbA2xQSm0E2gCPeT1YKDmy3ehZVzVscQ37BKgr9lKAYLJNF202k6Faa95fbgxypm0C9cJhHbnrDM9IHFeO6dCCPUdLKSxz96GPsGniVFk12VO/Ye3eAl6Zt8Xj/X94ebHXwuB2rFbtc7/rOdc/Mt4tgsiNbfOMuNaHVzi3dRsD2wO4udgnQONSYPTtNbetToxLtvGoW021H38MvAjOe0GMtxDRBBT2oLX+VmvdS2vdXWv9mG3b/VrrL23LH2ute9raXKu1bvjyRW+cabSwH23doOnqKfHGs+WqlKiU4tZTejjWf7UVuHAd5bdJ956w5I02acaAufrdf915hGXbDwPOpKiz/r3ATYDMzrLthzlc7DuxqvffZ3LZa0u97lu2zZwjLSGmZn2bCndJBe7Zbfs/aKNV7g1LpRnp2wsp37vHezt/HHeD+dv//Lq9XxAikMjJUHUdhb0+zpQXawD+eFwXMlPiOHdQe7ftd4zrzfYnJ5AQG+WYkHRNXvKVjeqNlrZRvmuxjA+W7/LVHIBv/+weLTLs0dlkT/0Gq9X9xvfEt+uotGgWbTnkdfRu9/V/ccvomjtpD2G0E59qKtYDrHrfs/2mH+CRTJh+sllPq0fe29j74NL33YsjC0IzJ3KMu2vl9t3LPCuPh4iumcnkTDudThne3RVllVZeXWD87m7GvRYj9wyb1vx+F996+xaeUTiu9GufxuoHPSVp7fo3dl5xUaNcsvUw2VO/4dq3nbHh+/PLiI5SdPbx+RzsWWHcKpm94GxbXdDup5i6oAc3ebZf8Zb7evVCEbUhIc3UKxUEwUHkGPejO2HwZe7bct4wCSn7G1nwyYarWybQ6lAA3VubtnYJYHBqwp85oK1H+ycmmQnFVC+ZpAs2OzNAq2vgXPrqEgBmr8ul0tbX/fllZKXE1yiEhtawZY4pP3fLchjuUiUoKQO2/uR0lVmt8NFVpoycnRsWemqSC4JQLyLDuH9yndENyaxWRPhr2+Tc/y72fE8DMaijCUN8ed4WvvrNGUFaG32WlPgYWiXHcbDIOZVRUFpJXEwU423G/ZGJ/R37Lh3hzCGYc8fJbse677M1jqSkv35o9G+qa+MAvL1oOxarZn9Bme+njMoy+Pk5k9Jflm9ixauTYAvDtBdqLthjysQBRMXCX9eZqvCCIASVyDDuqz80f9M7mgo2185x31+wx4zgGziSBmDa2SbR5smZ63n8WzPZ+d/JPsSuasCqNf9b6syoPFJSQcukWM4d1J4V007jCh+FtrtnpfDb/ePY/JjTbbE1rwirVfPj+lwAJg3t4LgJ2ecCHv1mHXd8uJJ9+WXu8wNWKzzdGz64AuY+DrMfgJl3mX0DvdxE7RIBsx+A545xGnaAGxcanXJBEIJO+Oq5718NG7+DY69zbku1uSg6DodbcowO98r3nPsPb4XWfZ3rlWUQFWPimu3M+z/I6g39ziUYeKv6ZI9+qQ1HbFICrgJlfdqmopSila34yDvXjHAb3dtJTzLumelXDGPKuys4/Z/z3fbfekpP0hJNMfAqq2bs03MB+HzlXhJio9yUKikvgKL9zggXV5IzPbe5FlY+utNENIHRhslqhrVYBaGBCD/jvnMJvHGGc/1Hm6hTchZku0R0ZPaE816EU6bBszaDbg/Xs1RCeSH8w1aF/oGjkLsWXhrlfP+VXwUlQ9GbgqKrZk19cPXBA5zUK6vG9r722yeD0xNjHYqVdsoqre66OpXuE7IBMWWeMyrGTuvqwqKCIAST8HPLFPtQRzz5bu/b09obnRFwumUeyXQadoAnu8CKt93f9/Y5piBEPfEW1ZKWWPt76rQJff038oO3OPWLhrmHIMbHRNOtWkGTNq5umcoS83fABXD+dBhxvVm/sYbyglm2JK1jr4M7NsJdW0VCVxBCTPiN3F2Nwph7jZug47HQtwY3ij2LsarMjNqrU54Py14xy9knGl0RMAUh/vQldDvZ8z214KpR2by1aDtf3zqalslxqDoYtktGdObRb9a5bbtzXC8frQPj5F5ZPD7JM1X/6z+PprTCwrBHTbEMt+7a9dYHXgK9xsExF8LYe9zdL9WJTYC/bYP4NHcXmCAIISP8Ru69xptK8CffDWPuhjMeg/7n1aw8GG3ixFn7BSx5yX3f8Mnu61d9bbIr7XxSbX8dePDc/mx/cgIDOqQ7im9wdGetngxS4mP45e+nc/bAdkwebZ46Sitr/2Tx9EUmPX/dw+N5+5oRxHoRAkuKi6FVSjy3n2ZuHqf2bePcOfsh8zfTloEbFV2zYXccNEMMuyA0IKomzZFQMnz4cJ2Tk+O/YTAo2Ov0u9sZcw8ktYIR15lIGoDrfnRmOZYehae6QEY3uPUXOPA7tOoOsTUnDwXWn33wbB8YcoW78NXuFWZkXF2psBp7j5Zy8fTFvDd5pG+tl1BgtZinGYC/H4ToEFZkEgTBK0qpFVrr4f7ahd/IvS54C7cbM9UYdoAznoDOo9zT1xNbwAl/gfzdJpvy5RPgsbbOZJyiXPj+PlOs2Y6lCvI2+u9PgS3e/dd3nTeW7+8zUrQzLjZiW6VHYfoYeOE4D92W9i0SWfC3UxrWsIMpXg0QmyyGXRCaOM3nOTmzl6m3CXDHBvd9x99kXtVJ72QKPrgWgXiohXubxc+baJD2g+GH+2HJCyYxp6b47W3z3Nd//qc5jp23Jrjvf+VkuLWBnnJqwu5vl2LRgtDkaT7G/do5sH8VpLR1xsP7IybAkMXpJ8NFbxvDDsYFNPgyE4rpjcJ97uuzH6z5+Ic2mdF7XHLN7UJJZSnk2RQnk2sOuRQEofFpHm4ZMOJS2aOdE4GB0NHFrTXwEs/9t9k0a5Iy4aMr3fetfM/dZeOK3b1RXbv8wXwY/6Rz/e4dplwdwCIfo+XSo8YdVJ0tPzrdP8Hg3UnwsU0zplUtrqEgCI1C8zHudaF1Xzj9EbM8/gm44nOItoVVTnoVWnSGoX+CEh+x949mOQ25ncL9cGCN8e+f9qBz+zWzzN9uNjXLXmcav//Z/4Q2A2Cbe1YpYLTQn+oC757nvv2HB+Dd880TxK/veb6vtmxfCDsXOdd9lb0TBKHJ0DyiZULJ8tfhm7+a5T//aqJrSg67J0md9xIM/qNZtk+g9p4Al/7PjLDXfAITX3C2Ly9yV0mc+5TRcbklx2TegpnYre7/H3ufiepZ+7n79ug485SR3Np7yOiaTwAFAyZ57qssNRPJdq6eCV1GebYTBKFBkGiZhqK7rdjySXcZww4mpvusp51tPr/R830dhjjf72rYwVP+tu855u+Ohc5tO5d4HvOnxzwNO5hJ4Wd6w8Mtjb6OK29OgI+vMS6XvI1GEOzHR51RQfbztB9i3EZi2AUhLBDjXl8yusLUnWbU7MqI64wxtLPibTMCt9OrFsUlMntCfDpsdlG7zLclWvU8w7N9iy5GL+ev6zz3/XuIeTIA2DgLdrjUOH3hWCMINv//jMBX8SHYsQhUlNHaEQQhbBC3TKjZtgDePtt927Cr4ZznanecR9tClRfRrru3G031PmfDnIeMdML9h51lB8sLYfXHUHrYlLbb6UUDJqO7yfxd8oLnPjCj9ilza9dfQRBCQqBumeYTCtlYZHupPTrSi5vGH33OsvnGq5HYEk63SQJc9jEU57rXk41PdVZGOuE2Z4apKzf8bDJvT3vA6PDY5wXsiIKjIIQd4pYJNUoZWQOAYVeZePi66JhPes2UsXOlZbb7emyCieDxRVS0eWqwk9nLTLTGJZl+2gXW7toCV3wGHWyDg25jat9fQRAaFXHLhBtlBSaZae4TJgyzJmPuDa2h5JD3whrVsVpNFasWnerWV0EQgk5Qo2WUUuOVUhuUUpuVUlO97O+slPpJKfWrUmqVUuqsunRaCFhMTpoAAATmSURBVICENDMCP2Va7Q07mBF6IIYdTNikGHZBCEv8GnelVDTwAnAm0A+4VClV3Qk7DfhQaz0EuATwkXcvCIIgNASBjNxHAJu11lu11hXA+0A15y8aSLMtpwNBzHsXBEEQaksg0TIdgF0u67uB46q1eRCYpZS6FUgGTgtK7wRBEIQ6EcjI3VtNuOqzsJcCb2mtOwJnAe8qpTyOrZSaopTKUUrl5OXl1b63giAIQkAEYtx3A66zah3xdLtMBj4E0FovBhIAj1k7rfV0rfVwrfXwrCyRjRUEQQgVgRj35UBPpVRXpVQcZsL0y2ptdgKnAiil+mKMuwzNBUEQGgm/xl1rXQXcAnwPrMNExfyulHpYKXWurdkdwHVKqd+AGcBVurEC6AVBEITA5Ae01t8C31bbdr/L8lrghOB2TRAEQagrjZahqpTKA3bU8e2ZgI8KGc0SuR7uyPVwR66HO+F+Pbporf1OWjaaca8PSqmcQNJvmwtyPdyR6+GOXA93msv1EOEwQRCECESMuyAIQgQSrsZ9emN3oIkh18MduR7uyPVwp1lcj7D0uQuCIAg1E64jd0EQBKEGws64+9OWj1SUUtuVUquVUiuVUjm2bRlKqR+UUptsf1vatiul1L9t12iVUmpo4/a+/iil3lBK5Sql1rhsq/XnV0pdaWu/SSl1ZWN8lvri41o8qJTaY/t+rHStqaCUusd2LTYopc5w2R4RvyWlVCdbPYl1SqnflVJ/sW1vlt8PB1rrsHkB0cAWoBsQB/wG9GvsfjXQZ98OZFbb9g9gqm15KvCUbfksYCZG9G0ksLSx+x+Ez38SMBRYU9fPD2QAW21/W9qWWzb2ZwvStXgQuNNL236230k80NX2+4mOpN8S0A4YaltOBTbaPnez/H7YX+E2cg9EW745MRF427b8NnCey/Z3tGEJ0EIp1a4xOhgstNbzgcPVNtf2858B/KC1Pqy1PgL8AIwPfe+Di49r4YuJwPta63Kt9TZgM+Z3FDG/Ja31Pq31L7blQoxMSgea6ffDTrgZd2/a8h0aqS8NjcZo5q9QSk2xbWujtd4H5gsOtLZtby7XqbafP9Kvyy02N8MbdhcEzexaKKWygSHAUpr59yPcjHsg2vKRygla66GYcoc3K6VOqqFtc75O4PvzR/J1eQnoDgwG9gHP2LY3m2uhlEoBPgFu01oX1NTUy7aIuybhZtwD0ZaPSLTWe21/c4HPMI/VB+zuFtvfXFvz5nKdavv5I/a6aK0PaK0tWmsr8Crm+wHN5FoopWIxhv09rfWnts3N+vsRbsY9EG35iEMplayUSrUvA+OANZjPbp/RvxL4wrb8JfAnW1TASCDf/ngaYdT2838PjFNKtbS5LcbZtoU91eZUzsd8P8Bci0uUUvFKqa5AT2AZEfRbUkop4HVgndb6WZddzfv70dgzurV9YWa6N2Jm+u9r7P400Gfuholm+A343f65gVbAHGCT7W+GbbsCXrBdo9XA8Mb+DEG4BjMw7oZKzAhrcl0+P3ANZlJxM3B1Y3+uIF6Ld22fdRXGeLVzaX+f7VpsAM502R4RvyVgNMZ9sgpYaXud1Vy/H/aXZKgKgiBEIOHmlhEEQRACQIy7IAhCBCLGXRAEIQIR4y4IghCBiHEXBEGIQMS4C4IgRCBi3AVBECIQMe6CIAgRyP8DAMQBM/f3q4kAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "y_pred = model.predict(X_test)\n",
+ "plt.plot(y_test)\n",
+ "plt.plot(y_pred)\n",
+ "print('R-Squared: %f'%(r2_score(y_test, y_pred)))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### 2 Hidden Layers with 50 neurons each and ReLU activation function"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Epoch 1/20\n",
+ "7451/7451 [==============================] - 1s 103us/sample - loss: 0.0332\n",
+ "Epoch 2/20\n",
+ "7451/7451 [==============================] - 0s 50us/sample - loss: 1.2320e-05\n",
+ "Epoch 3/20\n",
+ "7451/7451 [==============================] - 0s 49us/sample - loss: 1.0278e-05\n",
+ "Epoch 4/20\n",
+ "7451/7451 [==============================] - 0s 48us/sample - loss: 9.9471e-06\n",
+ "Epoch 5/20\n",
+ "7451/7451 [==============================] - 0s 47us/sample - loss: 9.8869e-06\n",
+ "Epoch 6/20\n",
+ "7451/7451 [==============================] - 0s 48us/sample - loss: 9.6331e-06\n",
+ "Epoch 7/20\n",
+ "7451/7451 [==============================] - 0s 48us/sample - loss: 1.0694e-05\n",
+ "Epoch 8/20\n",
+ "7451/7451 [==============================] - 0s 48us/sample - loss: 1.1236e-05\n",
+ "Epoch 9/20\n",
+ "7451/7451 [==============================] - 0s 47us/sample - loss: 1.2764e-05\n",
+ "Epoch 10/20\n",
+ "7451/7451 [==============================] - 0s 49us/sample - loss: 1.2035e-05\n",
+ "Epoch 11/20\n",
+ "7451/7451 [==============================] - 0s 47us/sample - loss: 1.3691e-05\n",
+ "Epoch 12/20\n",
+ "7451/7451 [==============================] - 0s 47us/sample - loss: 1.3934e-05\n",
+ "Epoch 13/20\n",
+ "7451/7451 [==============================] - 0s 48us/sample - loss: 1.4127e-05\n",
+ "Epoch 14/20\n",
+ "7451/7451 [==============================] - 0s 49us/sample - loss: 2.8624e-05\n",
+ "Epoch 15/20\n",
+ "7451/7451 [==============================] - 0s 50us/sample - loss: 1.5024e-05\n",
+ "Epoch 16/20\n",
+ "7451/7451 [==============================] - 0s 47us/sample - loss: 2.1077e-05\n",
+ "Epoch 17/20\n",
+ "7451/7451 [==============================] - 0s 48us/sample - loss: 1.8178e-05\n",
+ "Epoch 18/20\n",
+ "7451/7451 [==============================] - 0s 48us/sample - loss: 2.2788e-05\n",
+ "Epoch 19/20\n",
+ "7451/7451 [==============================] - 0s 49us/sample - loss: 2.3774e-05\n",
+ "Epoch 20/20\n",
+ "7451/7451 [==============================] - 0s 47us/sample - loss: 3.1842e-05\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "K.clear_session()\n",
+ "model = Sequential()\n",
+ "model.add(Dense(50, input_shape=(X_test.shape[1],), activation='relu', kernel_initializer='lecun_uniform'))\n",
+ "model.add(Dense(50, input_shape=(X_test.shape[1],), activation='relu'))\n",
+ "model.add(Dense(1))\n",
+ "model.compile(optimizer=Adam(lr=0.001), loss='mean_squared_error')\n",
+ "model.fit(X_train, y_train, batch_size=16, epochs=20, verbose=1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "R-Squared: 0.996083\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd4HMX5wPHv7FU194qNLQM2xZhiTAsOJZTQew8hdExJIAT4mZjiBAgQAg4tdDDVhBoDNrhh415kcG+4d0u2ZHVdnd8fe7qiO0kn66Qrej/P40e7s7N7c2fp1Wp25h2ltUYIIURmMZLdACGEEIknwV0IITKQBHchhMhAEtyFECIDSXAXQogMJMFdCCEykAR3IYTIQBLchRAiA0lwF0KIDGRN1gt36dJF5+fnJ+vlhRAiLS1cuHC31rprY/WSFtzz8/MpKChI1ssLIURaUkptiqeedMsIIUQGkuAuhBAZSIK7EEJkIAnuQgiRgSS4CyFEBpLgLoQQGUiCuxBCZCAJ7kI008JNxazcUZbsZmQsj89PUbmrxV9Ha838DcV4ff4Wf63WIMFdiGa67NU5nPPCjGQ3I2O9MPkXjn1yMqXVnhZ9nWXbyrjy9TmMmrymRV+ntUhwF0KkLL9f8/LUtQDsrmjZu/cdpdUAvDJ1XYu+TmuR4C6ESFkH/HV8cLva7WvR1yqudAe33d7075qR4C6ESAs1npYN7uF/GZTXmF1Any/cyhPfrkBr3aKv3RKSljhMiEzhxIWVlg08bY3Pr1lXVBFRVuNp2bvp3RVuFH40BuU1Xo55YnLw2FszNzD1/lPp1yWnRduQSHLnLkQzTXPcxzLnLcluRkZ5d9YGzho1HYAj1Vom2B/EX7qtRV9zb2kZCx3DuN3yDUUx+vdP+9e0Fn39RJPgLkQz9VAlyW5CRvH7NU+MWxnc/4ftbQ42tpK3fVZc5y/bVsrCTU3/P9mzcyOdVAUP2cYwfnHL/iJpDRLchRApZUtJVXD7d5bJDDTM9OUuf3zh6vyXZnLZq7Ob9Jpaa6qLtwf3p86dF1Wnb+fsJl0z2SS4CyFSyp0f/RTcftL2TnDb4/XWe05heU2zHrhu3FNFV1Ua3M/DHBbZkz3cbJvArw/qjKuF+/wTrdHgrpR6RylVqJRa1ki9Y5VSPqXU5YlrnhDpY/KKXcluQkbolucAIJuaiHK/pypWdbTWHPfkFO766KeI/4Mqd/2/DOqqdHnpqvYG99upSj7uP405zj/yiOU9Xtt5NVlV29Jq1Ew8d+6jgbMbqqCUsgDPABMS0CYh0tIKSUGQEAf3aMdAtYEVzpsiyt3VlVS6ogP2ml3mqJopqwr5alGor/ywRycwfumO4OSkhtR4fBF37l0p5Vdb3gju53hLmGr9I9UtPBwzkRoN7lrr6UBxI9X+CHwBFCaiUUKko0zJSZJsNR4fTzvejSr/ed12Bj4Wff84eWXobn3ckh10oZQjlTmr9c6PfuLClxt/EFvt8TFAbcVv2AH4lbE8Zr1hH/4UszwVNbvPXSnVC7gEeK35zREifXn86fMne6pZurWUjbsrAah2uRnE2ojjXm2QpdyxTsVqqIj9qY77GOt4NLhfVO5i295q8oeP44HPFlOwsRiXN/IOvNrt43hjJRW9hoI9lyutP8Z8relripr83pIlEQ9U/w38n9a60b9XlFK3KaUKlFIFRUXp8yEJEQ9vAw/8RMMueHkmpwbGkR9b9EWdgy9SjYMsYueWqXB5aUclWYE++jxldsNYwiaWfbpgCwCfLdzK5a/N4eCHv4+4hsvtpoOqxKI05HSNeg1P//MAsOPhyXErmv4GkyARwX0I8IlSaiNwOfAfpdTFsSpqrd/QWg/RWg/p2jX6AxQinZ20LborQcC89Xvw1/NXjd+v+XDupoj99dvq9O72PIIa7GRh3rnXfXBdVO5iifNWJtr/j75qZ7C8jzKvc2DXHF6Y8kvUa1e6vOypcHHr+wWsDbymp+/JUBYYEjnwUrjxe7h3GbYBpwPQgQrenLGBXWU1UddLNc0O7lrrflrrfK11PvA5cKfW+n/NbpkQaaZf2YJkNyGlTFtdyCnPTuWqN+by9swNMeuMX7aDh/8XGog3eeUuiskLVXC2h879ycnJo5MqozOl3PJ+AUu3mg8/azw+xi9YBcD+RhHnG3ODp051/IXfGD/h2B27/3zQyAkc88RkJq3YxcczVwNgdeSAL/AXQqd+0PdE6LA/ZHc2i1Q5AMf/Y0qLpyBurkZzyyilxgCnAl2UUluBxwAbgNZa+tmFCDB0av+wt7Yb3g39slu+vTRmnZLKyH70ogoX2bXdL/+3EbI6ApCtXJxjWcA5lgXk13zMBS/PpFOOneJKN6cYof75B2yfRlzvHfu/AMiv+Zjj+3Vi3obQ2JDwPyacynxNe1YunPoQTHsKDr0gVCGnCwDfO4aTX/MxAGc+/yPzR5zR2MeQNI0Gd631NfFeTGt9Q7NaI0Qas2jpc6/P/xZt599XHx1R5vL6cAVS6w5UG8hT1Yz4Cu60BIK7LSxJV2X4MzoNqGCK3vr64sN9ceNAjhlzJDjhGvcIfvH3Zjftg8dru3zszhw4ZjicOjzyAtldoq5Z2AqrQzWHzFAVIkEMCe4Nqggbo15S6ebgh78P5pAZ5xjBJ/YnAPMuXSsLWGwxr5NdJ5jnqViTmyJH0BxjC/Xrj7E/SYHzjuD+xqfPC/2CsGXFbnyX/qH6+z3CYT3bcXSfDrHrpggJ7kIkiNIyzj2Ws435dKCcJ8etDC64Ecq6qLnLEnpEZ8XL3daxKO0DFRagO/QJbj5g/W/E9S/uG6M77IHIoZR8FD1xfoDawoI/HwUvH8t1lkB63/qCu2GBXkPM7eJ1XGafQ0VNav8yl+AuRIIoZJx7uNONhWx0Xstr9n/ziu1FxszfzOvTzSXsavPA7MeeiH7ywSp6VAsAV48Jbt5oncAVlmko/By1XxYnba8zSumi/wT7yIN80WPkJzr+j66vHga713CF1UwvjK2B5GBFq4ObN+96kn7VDWZkSToJ7kIkiHTLRLrfGgraJ1nMEStG4G68rNr8rLJUZBfLwYY5Hp39BkderMfhcOX7wd1nbW+wwXkd/yu+JFSn3ynm18BDWO5dCv1ODh0/8trGG+1oV/+xSyLHj7zh+Wvj10siCe5CJIg8UI3kxRJVlm03y8prPByottFTRWY2edw22ty44N/RF7TY63+xPr8Cq5lwjNrusQ594OJAQL5zLlzyauxzLY7QtiMvdh2AQ8+HR0ug/2+DRfWN308FEtyFSBAJ7pGyHI6I/ePUSqoCfe7lNV6mOB7gQ/tTsU9u1yu6zFVe/4td9QGcdK+5vf9xofL2vWBkKXQ7tP5zw/vnnQ3cuQMYBvzuU5b3upISnUtlEzJPtjYJ7kIkiEXWUY3gqXPn/qnjcQrXzAegoqoysvL5oyL36/aZAxx0RuTwyFpHXWfWzz/JDOS53Rpv3HG3m18fLY4M6A31uYdztiOXaipqUndugwR3IZohPL+34U/du7hk8Ojo8HLnzocB2LB1R+SBo69v/ILZneCvdZa/O+R8uPDF+Bt1/Vi4+FU4+2kYscscBQNwzrPQfVDkCJ0GGM722JSPopLYk7NSgQR3IZohvMtVumVCNu2ppDTGHJ9l/n54fH5mLFsXecBiDU0U+n0D2UuUMmeOdh8Ex90G5z4bCtDxOOBUOOpas3vF5gyVH38b3DEz7su4LOYd/s2v/9CsFaBakgR3IZoh/M7dL0Mhg1ZsL6OQwCSf80MPR8ttnal0eWlH2MSjwy8zvx52kfm197ENX/yqD81AfO6z0G6/BLY6fn336wmYE6iKUnSmqgR3IZoh/M7dTQOjOdqYF39Yi1dbKdQdYMiNwXLDU8m/J/9Cu9pZpd0GhoL/Oc/AfavAkZuEFjdNx07mXxl5VKVsAjEJ7kI0gz/szn2n0SOJLUktfr/Gpryo2q6PQI70SyyzGD17I50IjHy57M3QA02LDdr1TEJr90FgyGSequb8l2YGZ96mEgnuQjSD1rDZbwauChVjJEcbdeKBnTnPmEcXFVhX9p7FEcf/ZP3S3Gi/fyu3LEGcZpfT07Y3AU1xVWgG7LAPFvLBnI3B/d0VrmCSs9YkwV2IZvBrjaHMu3d5oBpiVO/BoTwoT6D7xZ6De/+TAFD4OcgILIjR2LjyVJVlBvfeajdHqnXB1MWrd5bz/fKdPDI2lEP+2CcnM/jxSa0+4anRlL9CiPr5tQ7mlDnSl9q5RlpTXtXmqDLbYefBllm0JzDG/YirWrlVCRT2ILeDquT8l2ZyXL9OzA/LF7+2sByrYVDbc7dhTyUHdm295wly5y5EM/y4pggjENzLiXMCTBvwm6KPospUVicAFjkDE4h8qfkgMm7DZgEwwvohFnwRgR3gjOenB9eFBbhpdOuu1CXBXYhmeGvGBgzMXCbxTX9pG5bajzQ3woZB0n1gZKXlX7Zeg1pCID3wAGMbpxqLgsUWfMHFusNt2lPFaz+uiypvKRLchWgGr98fvHO3In3uYC5YrWvvygeF5VHvenBkxXP/1XqNagmdDohZvM75e1Y6bwruf3VKIbN6PA/A09+toqyVUhZIcBeiGTzeUJ97W8kt8+2S7Tw7wVyUes2ucvKHj2NtYQUA3y3dwbFPTqaweK9Z2Rq2+IU1MpEYx93aGs1tOUqhA7+gXnW+yonGck41fg4e7oKZmuDoeffSa28BhypzNagjRk7kxSn15K1PIAnuQjSDx+MODvez4QOd2bNUtdbc/fHPvDJ1HZ8WbOGsUeYiF58VmHnYJ67YBYBTufFhMdMKhLt9hvn1jjmt1uaWpAKza+3+KsbYn2S0/dngsYK8v7CxQ2g5v08Hzm3VtklwF6IZTnf/EFmQ4UvtVYflUXnw8yXB7U455uxct898/1m4cSknUXoeYWZu7H5Yyza0tTjb13/MUwU1ocRieWvHcmBgCGjH7NjrwyaSBHchmiHbXyfHeJ0RIKXVHhZuKmnFFrWsbSXVMctX7Syn2u0L5tpx4sat2kA6hniTlnUzf5lNsd9PN0paJR+NBHchmkH76/Sz10n7O+yDhVz26uyUzBx498c/kT98HMc8Pimu/ChbS6o4c9R0cqjmWLUqUKq5yjKVmT8v47q357FxRxEFjmFca/0Bi72exaYzUfs+kfunPxravmcx3DQhuHuLdTz9urb8bGYJ7kI0g/ZFBm2/NzJILttu/lle6Uq9kTTfLjFzqu+pdHPck5MbrT850J++3Hkznzn+TmdKGWH9iGdsbzLK9h8WbirhgOKZwWcQuSr2XX7GGbET7qzzDMGWA7f8ABe9Ah3zzZm4t04F4DbrOC4+KsZKUwkmwV2I5tCRwf2Z8Usj9h1W80esvCb1gns4l7fxZwWqzkIWC513cKt1PABuzD7k8AWvlS+133PC2LLMTJbDZpkBfb/BcPA50PsYOPq6UL1eg811YA0rqnJ3izer0eCulHpHKVWolIo5t1opdZFSaolSapFSqkApNTTxzRQiNRl1HqB+tTBy2r3DasGCL+WDezwMBdSTs74YM0eMLXw4qLeN3LnX6nG4GdBvmwod+8auk9XR7Lr7/MbYxxMonjv30cDZDRyfAhyptT4KuAl4KwHtEiIt2FRk0LbVmch0tp7JOufvce9eS11aaz6YszFpXTZDjaU8YP2Eh6wfESto+/2aOev2BB+Svjd7I/Mdd8W81uWW6YyyvcKlA8KGPnbs1xLNTm8VZtcWJRtb/KUaDe5a6+lAcQPHK3RoOZoc6vvVLkQG6mCP/Ha3qMg7+dP1bAD2ri2IOnfm2t08MnY5j3+7ouUa2IAP7U9xl/VrbreOY5r9vqjjYxZs5po35/L9sp0A+Hf/Qje1t97rXWKZxZANr5s7pz4EN45vkXantf5nmV/DHrC2lIT0uSulLlFKrQLGYd6911fvtkDXTUFRUVEiXlqIpOpYJ7gPs3wTWcFqjvX+9qcNEUvyAXgCY8J3lkXnIWlpddPP5hu7ourUDnt8f84mKlzeYA6dCBe8AAefG11+6nDI7ZaQtmaU331mjvNvnyYPVLXWX2mtDwEuBh5voN4bWushWushXbt2TcRLC5FUVh25CMO11h8o2Bj6Q9cTGOvtUB6q6qzWY7eYY6R37G394F472aghb85YD8Cc9Xv405ifyabO2OzL34FjboCrP44sv2J0YhopmiWho2UCXTgHKqW6JPK6QqSqAd7V5kavIcGyZ75fFdz2BoK7HU/UajxKwRFqHVt3Fbb6Mm2xRsd4vJFt8Ph0ID+KZvn2Us7LXR06OLI0tLC1UnD79NCxAee0QItFUzU7uCulDlKBMVJKqcGAHdjT3OsKkQ5KVWAloRu+DZYt2BiakVqF2S3TnkqWbiuNONfjquZrxyO8bnueuz/+qeUbG8bljf5lUlNTFbHfT+2gwHkHN1gmsLvCze2eD+u/YM8jzYA/shRsMdIOiFYXz1DIMcAc4GCl1Fal1M1KqWFKqWGBKpcBy5RSi4BXgKt03c5FITLUHtWJImvPYG7vWsWVbvx+TWGlGUT/YvucRz6aGuzrXrq1NBhMjzdWMWVVIYWt2PdeFmNGqquqkq0lVfzurbls3lNFD2V2L91iHU+WvzJU8coPWquZohkaXWZPa31NI8efAZ5JWIuESCNK+/CryPwipxk/U+k6DafNwOdxBX/K+qpdTFq5i1lrd/P+nE0c3t7F2YBNmb8Anp+0hqcvO6LF21xc6eaT+Vu4WXdCHXQGO/IO5+hFj1JRWcYrBbuYtXYPT4xbwdHKHL7ZW+3mC/vI0AUOlm6XdCAzVIVoBgM/Wpk/Rmv95rqa79qfxeX14/Fq7ITukB3Kw+0fLOT9OWZe75LSsuCx7hTzyYItrdL3fudHC3lr5gYcuLE5ssjONtf1XLR+B7bAjNqJK3bxoO2/wXMONrYy3TcIf69jwdLyGQ1F80lwF6IZjLA7972EFj9es70Et8+PIyy4H6tWR5zrUKFjPzj+AsChj36fsLb5/ZoFGyOnqFS4vMxdb5Y58eDMysaeZSaxemPyMj6eF72wda2DOlkxpD89bUhwF6IZlPahMYN7+F36m//9grIaDwcbW4Jl99k+x4E5Yqaf2kF7Qv3YOcrFMXWCf3ONWbCZK16bw3MTVzN1VSEAj45dFmxrtnJhz+1Ir27mwtVO3GRTw6u2URyotrFLd4i43n6lP8OW+Qlto2g5jfa5CyHqF94tEz4O3KncnDVqOnNthfiVBSOQYOxWyzhW6T68ZX8Ot47sq//Q/hSHukajtY5K0rUvNhebD2xf+sHsO9/49Hl8+dM27Hi4wWL+hWDL6wrZZhBvpyo5Xf3EOZYFdFcldI81G9XX8nnIRWLInbsQzaC0Hx3olslvHwrITtz4/BobPhZ0uTRYfr/tM96yPweAXUX2r2cpN90pxuNLzGCzHHvse7e7rV/xV9sYcye7S3Am6QWWudgDuXEGG4FcOL/+S+TJD6xLSNtEy5PgLsQ+8vs1fp8XIzDT1OoLDWX8lbEcMBOJDe7XDc95L9R/odrJQMA8591xzR6t69MFW/jDO5FdJtl2C0ONpVgDAXvQyAnY8HKrbWJYpc6QYwb3yywzeM7+WuSFux8emoHa50TIkfmJ6UKCuxD7aNveapT2Y9QuAu0OTQK61Tqe3qoIG15sdge2Q2PkX6l16AURu29P/4X1RRVNasuDXyzhxzVFETljdqyYxYf2p3jT9hzXWSZRXuPlBsv3ZOmwyUo5XcCeXf+F/T7oexK06wW/ebhJbRLJJcFdiH1018c/YVF+PP5Ad0yvYyKOz3TcY3a97FwKzg4xrhBw4G9gYKjrZsyUBVzx2pz66zdgd0WoT3zlJnMx5tMsi3nC9i4KPyNsdfLAdDrA/HrSPbEv2G4/yOoA962AfFmqIZ1IcBdiH5RWeViytRQbXrq2D6yHec3HcP3Y6Mp71oI1bLHoI66KXGPT2R6ueJeCQSMByFE17Ankoflk/mb+/k3DKYHDJ4T/LZA++L3ZG9FEPpTNJWwG7OXvwoMbQmPWrXWGONampu1zQoOvLVKXBHch9sEnC8zx4J0pw8gLpLZ1tofex0VXvvbTyP3f/iO03X7/4GaHLj0AIsbGD/9yKe/M2tBgW9w+P5dbfmSj81rs/mq01jz29XKy6mRxXOq8JbRz+KWQ3Sm0f+TVoe0rRsNVH8K9S8GIHNEj0ocMhRRiHyzeuhcHbvKNXfj8YUG07h0whLo+atmy4PhhUFMKv74/WJyTbfZ9/9n6BbPzfgucF1dbXF4/t1vMxGWqeCPLtx8OwKnG4tgnONo13MYB54DVAR36xPX6IjVJcBciTq9OW0ely8vZh/dg/NKdPG41syRaqsNmgRoGHHYRrAjrnrHU+TGzOs074jP/HlHcraMZdM+0LOTMqoXA/wWONDw00uXx09/YBoB35wo+mmfmp7neOim68inDzRzssfxpEayfJlkdM4QEdyHiVJun/eWpa8mjit9bJ5sHTh1e/0l3Ry+vV19Xh6XOqBWtNXdaxnKFZRrbSk6jV8ecmOeFD5180f4y+fN/xTDL17Hb8+u/RPb/h+vUz/wnMoL0uQuxD3qrsGUine0jDx50pvn1xu+hS/9Q+dD7zLHi9ek6IGK32uPjQdt/6WfsYtOO3fWe5vKEJkOt8fcCNMNtn0RXfGxv/YFdZBy5cxdiH9zXZQGUB3bseZEHj74ODjkv8oElwBmPNXzRsOGSNdj4eN5mah+BFpWUAH0BWFtYwdeLtnHPGeYvg58376W2x3yAsY0O1Bkjf98qcLYzV0wSbYYEdyHi9Kn9bxxnrOZ5z+WcWf5l6IAjN7KiUtGBPR5KwZUfsOir59nfvZYnxq3klkD397+/LeCik44CYNSkNYxbuoOJK3ZRVu1he2kNl4V1ky9w3hXaufBlaNez6W0RaU+6ZYSI03GGmbXxPtvnkQdyErjY+2EXssTXN3JMOjBIrWdnqVm2epf5J8OqneVsL60BND6t2NLbnOlqC6QbAMy/IkSbJMFdiDiET+sHmJIdWI3or9sTPhb8hEPzcShPMD0wQBdVxpWvm7NWB/eJnO1qxYdFaTr0GRh5od//T7pi2jAJ7kLEoW4yr81lfipULthjj2BpDmeuGbxHWD8Klp1iLMZqmIG6R8Uqljlv5mC1GScuJgz4BoC83Fw4f1ToQl5Jz9uWSZ+7EHGYsrIwYkqRFR/eFro36lP+MxA5Tv0UyxKGHtQZgP57Z5BLNRMcgSGYtYsnGVYYchN07g/vnQ+9j22R9on0IHfuQsShsDyyD9yOF49uoR+fQVdE7gdSGgzd/i4AVf567sn2BHKt9/s1jCyFnM4t0z6RFiS4CxGHv9VJ3pVv7MSnWyjvSq8hoe1hM6GvOTb+rMK3AXDVt5jHb0a0THtEWpLgLkQcwtdHBTjeWEVWnREtCVM7+ib/19BjEJz6EACb/N3414TVlJWW4NNhD0pPuse8U8/q2DLtEWlJ+tyFiMOhnYCqyLL2qjJm3WazWM1gXcuWxbbcw9lSpnh56loes9ZQqbJpV7vA9lEy3FFEazS4K6XeAc4HCrXWh8c4/jtCGY4qgDu01vWkoxMiPf258/yo4N6a2rkLGWoUApBLNdm57eHa8aCMqLQFQkB83TKjgbMbOL4BOEVrfQTwOPBGAtolRErJ37tvKyMlSpXD7Ko5UG3jCut0rN4q2O8o6HlEUtslUlejwV1rPR0obuD4bK11SWB3LtA7QW0TImWs39v0RasTaUNPc9LUFMcDZkHN3iS2RqSDRD9QvRn4LsHXFCLpJvoDI1jumA03tv63uL9ucrI6i2oLUVfCHqgqpU7DDO71rqKrlLoNuA2gTx9Z5UWkjxy7Ya6ZkdUJug9stH6ilXrq/KhePrrV2yDSS0Lu3JVSRwBvARdprffUV09r/YbWeojWekjXrglMtiRECzvGvtXcqF1QukMfOPHuVnv9cm/YmPqjfx+9upMQdTT7O0Qp1Qf4Evi91npN85skRGqZuHwn57rGmztG4Efm3qWt2oYenTtAYAIqZz/Vqq8t0lM8QyHHAKcCXZRSW4HHABuA1vo14FGgM/AfZWag82qth8S+mhDp5x/jV3K8zqa9qgJHXuMntIBfH9oL5gd2ktQGkV4aDe5a62saOX4LBBeMESLj1Hj8/Og/kmNsm+iV4PS+8ZLEvaKpJP2AEI0oLyvhQsscPF5f45Vbit/beB0hwkhwF6IRf7R+BUC+sSt5jeh3avJeW6QleeQuRCMGdfSGFsNOFsOABzeY6QaEiIMEdyEaUbsCUtLty6Lbos2S2wAhGuHQLZTaV4gWJMFdiEZsdfRPdhOEaDIJ7iJl7a5wsXJHWbKbgV/Xs/KREClMgrtIWZf+ZzbnvDAj2c0IDUPM7ZHcdgjRBBLcRcraXGyujrG2MLlDVWpcLnPj7gVJbYcQTSHBXaSsI3s4OUhtZc76epcTaBUutxsfFnC2S2o7hGgKCe4iZd3ve4vJjgfxlBUmrQ0llW4qq2vwy/hykWbkO1akrL4uM8lo792zktaGD+duoqsqpcgvybpEepHgLlLWSufRAHSuWJ20NhiGoit7IW+/pLVBiH0hM1RFynIpOwA2X1XS2lBcVsHJlqVo3S1pbRBiX8idu0g5YxdtY/GWvfi9HrPA7+WtGeu54rXZrd4W2x7zrwZVmbx+fyH2hdy5i5Ti9vq555NFADybZ077V9rPE+NWAuD3a4xWzPXiqNltbvT5Vau9phCJIHfuIqXc9kFBcNvjcQNQXB7qlllXVAGYY9/v+eRnPD5/i7anU/VGc+PK91v0dYRINAnuIqVMW13EJcYMLjWmYw/0tZdV1XCdZRIbnddy3qgpTF1dyNVvzGXsou0s21Za77V2lTUv4VeNx0dlyU7c2gK5sqC7SC8S3EVKceBmlP1Vnre/Zo5SASz4GWb9BoAeqpgb313A7grzrt5fT9qX5yeu5vh/TGHGL0X73JbVO8vJpoZKsvb5GkIkiwR3kVKetL0T3N5fmQ8xz7XMp7cy+77PNeYBcKDaxkbntfiLfol5nRd/WAvA8u37nnhsS0kVB6gd+3y+EMkkwV2klKPU2uD2AcbOqOOLKp0uAAAgAElEQVTDbZ9wp2UsUxwPADD9q9frvdZQYyl5ln1fe7S8xsvJlqV0VBX7fA0hkkWCu0gpnjgGcD1o+29wu75xM3flTOFD+1OcuvZpACpcXhZualqOGr13a5PqC5FKJLiLlOJq4ujcDjHuqpds3csDvrcB6LZ1Ai6vj7s++onLXp1DWY0n/otXRP/lIES6kOAuUorN7mxS/Zus30eVXfjyLBb5DwBge88zOPjh7/lxjflgtbwmsptm5Y6yegO+rzowEucP3zapTUKkAgnuIqVUaUfE/nJ/3zhOiu5uKdM5AEwr7gxAR8oYYf2QOWtCD0h3V7g454UZPPTlUgBemPwL01abD3G11qzcEOiWkYWpRRpqNLgrpd5RShUqpZbVc/wQpdQcpZRLKXV/4pso2pIKHXnnXm8f/KVvUZh7CABeb+Sd92C1hpMtZsAu3FvB4Wo9r9n/za3W8fz4v7eD9XaWmuPgxy0xA/6oyWu44V1zQY4FG0vwVAdG2jgkj7tIP/HcuY8Gzm7geDHwJ+BfiWiQaOO0n53OA4K7DsIC928eMb9e8joccQUrel0BgMftClYpLK9hjP2J4L5defjW8TDHG6vMfULdMi6vj+sskzjTKMDl9QEaA3PGa1G5iw4E+vOd7RP5DoVoFY0+vdJaT1dK5TdwvBAoVEqdl8B2iTbKpl34DAcccwP0Pwv7x38BQF/8GuqIq+Dk0B+HymJmjfS6QzNRz31hBgUqFMBvtEyIuP5z9teo8fwDp83C5GVbecL2LgD9HzuWSfYH8WEwetbhOCwwwvaxeZKswCTSUKv2uSulblNKFSilCoqK9n3moMhMbq8fq9+Fz+KEC16AQ84L3mmrboeCEfntalhtAHg9oTv32pmrtdqp6HTBFS4vlS4vH89YGSzz+DT9jW0cYmxh5Dcr+H7GnIS9LyGSoVWDu9b6Da31EK31kK5dJVeHiLRoy16cuHFmZQfLHCrQLWPPjT7BavbPT10eGo8+SK1v9HVcheu555NFEV0+ilACskPUZsqKAw9WL3mjSe9BiFQho2VEyqh0e3Hgwe4MBffc2hmm9uyo+obV7JYZPcNMQaC15p82c8ZqTfsD632d8tLdzFxbxJv254JlG5zXBbe/dwynp9oDgOpc/3WESGUS3EXKcFdXsr8qRGd3DpZlGz5zw54TVd9vmN0y3VUJAOOX7sSFGfCdnfev93VGfjaXHt5tHGnUf5f/H/uL5kZWxya9ByFSRTxDIccAc4CDlVJblVI3K6WGKaWGBY73UEptBe4DHg7UkSdQosleGjuTXFWDp9uRocLaVLu26ODuDYwHeNP+PAD/LdgSOujsUO/rOPBwt3VsfI2S4C7SVDyjZa5p5PhOoHfCWiTarJqaKnAQGVBvGAeb54Il+lv16AO6wVxze0+Fi3lrtnGUc51ZcO6zcN7z8OwB0Lk/XPtfViyczmGz72WkdTTT/UdEN8CeB+7yyDIZBinSlCyzJxLK6/Pz3KQ13DK0H51zHY2fEKav2gVAtw5hD0879DH/xdAhN3Q37/HpYIpgAHIDC1o/XATKAIuV/Q6ugtnQz9hFP2NSqG5WR8jrCXfOgZF1grlhadJ7ECJVSJ+7SKiFm0p4ddo6Hvx8SZPOK6/x8HbtA86tC+I7KadbxOtOdjwYXcdqD971d8iLMeIG4OoxZmAH8y+FAN2+/n57IVKdBHeRUBZD0YM9lJRXsrUkeox5fR75X1h2iyE3xXdS+17M8g1khb8vFa44sj1mRfbD+6w5cMds6HtiqDB/KJz6VwBU54Pia4cQKUiCu0gov9fNXOcfuaHwaYY+M5Xte6vjOm/97srQToc4koUF9Db2cJixifZ7FoUK67vjzurI3v6XBXcLj/0LdB8YXe/o30G/U+D8UXG3Q4hUI8FdJJTXZd6tX2gxuzniXaQ6vyrszl3VtwRHtL7KzLneY9vEUOGwGfXWzz738dB2Tj0PS9v3hj98DZ36xd0OIVKNBHeRUD536E59mv3P+Eq2NFA75LCaRY1XasAP683X3XLsiAaHL9qz8oLb7drXP1xSiHQnwV0klMcVCu75xi6qCj6K6zyfJ747/LpWX2aOeqnETEVgiTGTNULYZCglwxxFBpPgLhIq/M4dzD74eHTP3bdRud07mwtpPGL7EICOHRoJ2OFDG7sevE+vKUQ6kHHuIqH8de7A86oa75bZWVrD3vIK87vR2rRl9hzOrIj9LOWtp2aYO+bAirH1P3gVIgPInbtIiM17qvj92/Mor6yMKM92NZ7aefiXS/DXfiuecGeTXtfRvgfV2h4qaLdf4yd1PwxOe6hJD26FSDcS3EVCPDdpNTN+2c38X3ZElHt9utFzlfZzmzUweah2taU4GRYL1YQF9wG/bdL5QmQqCe4iIfLs8EfLlxjVkYtV5/jLGj33An4M7RhN/5asXdBjb58zm3yuEJlK+txFQhxTOYNLbJ+z1dMFAr0dJZbO5PnLGz4RWLdle7NeO1eZ/fw1fU9t1nWEyCQZc+c+dXUho2dtSHYz2qxsh5kkrLfabRYMvp4luUNxaFcDZ5k8gZTt3DG7WW2wOvMaryREG5Exwf3Gdxcw8psVlFbHkWNEJJzHEjlqhaH34VU2lG589MoJllXmRpd9G5r4o89M32vPluAuRK2MCe75agfXWqYw8uvlyW5Km+T31QniVgdrdruw46W8puFfuD38ZqrfWDnb42G3mA9tc3MkuAtRK2P63L+xP0yequbsNScARyW7OW2O9taZYWpx4MGCQ3nYWu4iz2mLed6W4irKtYNfso+k/z6+9lG98mAbGPv4y0GITJQxd+55ypwZ+bpnRJJb0jZpb52+dWd7rssz88VUbiio97xf/3MqOdSwqWLfvxWzaicyyZJ4QgRlTHCv1dcoxO9vfGy1SLC6wd1ipVP1RgBcG+dHVS+udHPLewU4cHO4sZGjHDui6sTtopfhjL9BzyMbrytEG5FxwR3g51Vrk92EtscXPSrGc+XHAJR7o2eC/uGd+UxeuYvHrO8B0MW7c99fu91+MPRemXEqRJiMCe6zjcHB7Xs/mMGr09YlsTVtj88dHdytA87Apa3kVm6OOrZ+RxEv2l7iWuvU1mieEG1OxgR3S9iQu5ss3/PRbAnurSlWyl5ldVBCO+yukqhjIx1jggt6AHDtpy3ZPCHanIwZXmD4vcGZkTdaJ3CgtwQ4K6ltaku0qyK0075PcNOl7Bi+6MC/H4WRBf3l/0qIRMqI4K61xqI9weAOcLI/+iGeaDmqppRKS3tyLngaDjk/WO5RdowY/fElOje4XTH4dnKlv1yIhGq0W0Yp9Y5SqlAptaye40op9aJSaq1SaolSanCsei3J49M4cVPkzG/tlxaA1+cn11tMjb0jHHUtONsFj3mUI2Zwt1lD9xW+fqe1SjuFaEvi6XMfDZzdwPFzgP6Bf7cBrza/WU1T7fbhxEVx3oDI3N6iVVS6fPRQxdRkdY865lF2LP7o4G6E3annGpIyQohEazS4a62nA8UNVLkIeF+b5gIdlFI9E9XAeFR7fGQrF8qWQ5YKLev2wGeLyR8+jhXbG087K/ZductDN7UXT4zg7jUcWMP63HeV1ZA/fBxVNaEyiz++pfiEEPFLxGiZXkD4WmpbA2WtptrjIwsXhiNyceTPFm7FjoeP521szea0ORUuL+2oRMdYcHp3jcJVU43W5sSyrSVV9GQP7aikUHeAI6+FQ85r7SYLkfESEdxjPQmLOUVUKXWbUqpAKVVQVNT48mvx2lJcZQb3sJXtAV6zjWKN8w8M3fVhwl5LRJuztohcajCyooO7Cxu9VSFl1eZQVeXzMMf5R06zLMZmAJe8CrasqPOEEM2TiOC+FQhfabg3EHP1Ba31G1rrIVrrIV27dk3AS5tuemc2duVD2SPv3M+2LADg2OJvE/ZaItqocT9hKI09Jzq4X2CZSztVzbiZ5ugljyu0xmpHvbfV2ihEW5OI4P41cH1g1MwJQKnWuhmJQpruWGM1ABZHDowsZU6XyyIraH9rNqfNWLiphNP+NY1rO/8CQI8OOVF1yg+9GoCupUsA8NZUB4/5Oh7YCq0Uom2KZyjkGGAOcLBSaqtS6mal1DCl1LBAlfHAemAt8CbQtOXrE2CM/UkALE4zuJxA5KhNj7uGrSVVrd2sjPdZwRa8e9YzpHQiACo3+oGq7fhbADh0+5cA1NSE7twtpz/cCq0Uom2KZ7TMNVrrnlprm9a6t9b6ba31a1rr1wLHtdb6Lq31gVrrQVrr+vO7tjCrwwzu6op3I8rzqGLoM5LDJBEqXV6ueWMu64oqyK9aygzHnxlobDIPHnxuVH3b/scAMLWoHeU1HmqqQsGdroe0RpOFaJMyJrcMgDUrMOux+0D27n9GsDxHubjJ8l2SWpVZZq/bw+L12zjjuank1Zi9bz1VYKSsJXqOgcViUKNtDDQ2MmjkRKYtCcv50/2w1miyEG1S2gf38NztVmsouHQ4+NcR9R61fUBNeUPD9UU8Otg1K5w38Q/r2/y0ITTiyY8CwxLzHKfyMNhYy+8sk3EVrTfr3zihVdorRFuV9sHd7Qs9LM1VYTMhjx8G13/NZN/RwSJPZXR2wrq+W7qDnaXRia6EyanMIY3XWKfyuC3U/eXR1kbzqT9pe4cX7a8AxBw2KYRInLQN7qMmrSF/+DgKy0IB3eIMWyDZ5oQDTuE31iXBIl3T8ExVr8/PHR/9xGWvzk54ezOF3x9KrZwd9svUoepPIbCt+6nRhY520WVCiIRJy+C+bW81L0xZw7FqFXPX7aJMZ+M1nDDgt1F11fmjgts6LDABvDJ1LZNW7Arur9pZztu2Z7mi4oOWa3ya8/l8TT5nU79rogtlvVMhWlRaBvfTn5vGe7Zn+Mzxd5aNNYP3+j6XxewWUIOuCG77wwJTYVkNL09YzD3vzwRg2upCzn9pJqdbfuZe65ct/A7Sl/Y1PcmX35EXXVhnwpkQIrHSMrgf5VvGKRazu+Vayw+0U1V4jXqyQdqz+eEYs59X+0PB/V8TV7PEcSs/O24D4P5PFvJn62fB458v3NpCrU9vfp+38Up1aIfZv+6r/XZzSH+7EC0t7YK7XjeNT+xPBPcPMcycZXn+8nrPUYFRHP5AcH9s7DIWL5yNTflwKC97Klz8MXsC91i/Cp7z1GfTW6L5aa/2r5/CQ66DEbsoU4FAPWxmvef06GammvBZsmBkKTwUvaaqECKx0i64V9UznLG3vaHgbr7N2jv3T+b8Qj+1M3h84s+/0FvtjjhnofOO5jY1I/kD3TLV3Y4Gm5PcdoHgnt253nP6728mCbWppvfXCyH2Tdots7e9QtM/Rrk66c/1n6TMO3cduOtc7bwh4vDs78ZwRs/uUFH3RFFX7Z27YZjfOsYV78LyryCvgRT+9hwYeClqyI2t0UQhBGl4517tDlvY4YirYeAlcMds6Htiveeo2uDu90VMeqr1kv1llu6sjir/Yu6aYB5yYapxm8Mf7XabWdB7CPz2yYbHuCsFV7wL/U5uhRYKISANg7unKqz75dxn4YrR0H1gg+coS6jPfVd57AlKl1sCfex/CKUHHjV2Ft8uadUElymvqspMwOZ0Sg52IVJZ2gX3w/fLDe3Y4htOV/tAVfv9rNwReyJT7YNZ8odSdPbrAMx03It127x9b2wG8lWXApCV1ynJLRFCNCTtgrvjiMtDO5b4HhmEHqh6KS2OXAFKdxlQp7Ki64DjgruHbRi9T+3MVDoQ3G0xFuYQQqSOtAvuWO3mcLqRpXGfYgT63L1eH1WFGyKOqbsXsEObd6EVHQIpaDv2Cx63VEuysXDTl28EQEn6ACFSWvoF931gWM07/Ce+XcYP83+OOu6vXQb20AvMr0oFH/45Xbuj6jeXx+fntR/X4fKm19DAwvIacnRg0RN79KpLQojU0SaCe34Xc/r7XdaxHK42moWnDIdhswDopfYAkN17UOika83ZqtssvRLenk8WbOHp71bx5vT1Cb92S6qo8fJEbSZICe5CpLQ2Edy79TAD9FHGOv5s+8IsPOVB6HF4RD2jS9gIepuThc4TaOfdk/D2+Cr2sNF5Lf02fxFR/sXCrRGJzFKNyxP2l0acD7OFEMnRJoK70X6/GIUxFpbo1C9it8rSjlx/OVNXFZI/fBxz1ycm0Ld3m7Nj+63/GE9YPvqHPivgT+/XP40/2dzusGGk9SzMIYRIDW0iuDfqhLvMyVC2yLHbPosTm3bz0Oc/c6rxM9e/MSMhL1c7NHM/tZtjHp+E1poXp/zCV/ZHWem8iS3FZr/2Fa/N5qrX5yTkNRPBUyOLjAuRLtpkcK866ubIgrP/YU6GqsNv2LBqD5fUfMlo+7Oscf4heOz5wGIh4SpdXjbvaTwAerxmZsUOqpLzPBMoq/by2qQlwYWmJy/ewIrtZRRvWkbWph/wxZhVmwwel3nnvunEx5PcEiFEY9pkcM/uflB8FS12bHg4SIXS/74zYz1en5/3pvzM+cYcRs8KDa28/p35nPzs1EYvW1S8N7j9lO1t1u+uYIXzpmDZwXPu57wXf2SK4wFG2//JP8avjK+9LczrNlM0WGwyO1WIVNcmgzuDLm+8DmC1O3Hg4YDsUD6bF8fN56AR3/GS7SVetr/EjHEfUFplZkos37yEF2wv4/c2vKBFbuXGiP15GyLH0hdX+3jO9lpwf0NBaiwmHQzudmeSWyKEaEzbCe6XmCkF6HQA5HaL6xSr3bxD3V0VWqBikfN2/ml9nRONFQC8bX+Om95bAMCLtpe5yDIb985VDV63U03kQiAzJ3wWsX++ZR6XWkIPVt9hZFztbWk+V21wlzt3IVJd2wnuR14NI3bBXQviPmXeHjOInWn5KaL8SuuPEbnJz9j2HwBsmL8E/vjJogaHNBp+d8T+ZZb0WBjEE7hztzkkuAuR6uIK7kqps5VSq5VSa5VSw2Mc76uUmqKUWqKUmqaU6p34piaAzRl3PhqALHt8v/vusH7DS1N+wYI5rLFjSWht1lgMX2Rwv8RiTqbizMfZZj8g5jmpMJvVVWMG96wsGeMuRKprNHopMxn6K8A5wGHANUqpw+pU+xfwvtb6CODvwFOJbmgynJQfWtjZ4+gYXeG854Kbz01aE0xj8E/bmxEPSOuqe+ceesE/sbPjMUBgvdF7FgcPzV1bFPucVvLkuBV8M9/sbnJI0jAhUl48t6bHAWu11uu11m7gE+CiOnUOA6YEtqfGOJ6WBuWHVhfafejvoyscewtrjX7MV4PY6LyWA4yd0XViCAb300ZEHdulzV8i2/ydoWM+NUdcD0D1mmlNa3yCfT1jIUONZQAopwR3IVJdPMG9F7AlbH9roCzcYuCywPYlQJ5Sqv5FNdPFwEuDm90dse+2Kywd6OyLnVxM+2KPmrH4Peyy9TZTINRRaDd7tPoY5p267bynAeiwK/Zkpl92lUetLlXl9pI/fBxjF22LeU5T1Xh8zHPezY3WwKiddjFm/AohUko8wT3W+ml1Z9XcD5yilPoZOAXYBnjrnqSUuk0pVaCUKigqSm43Q1zC+ueN/mfB/seHjnXoA4Dbmks3tbfumQB8My/2+HSrduE1HJGFF74MwKVHdo9sgiOHQjphqY5OfbB4y17OHDWdx75eHlG+emc5ZxoFvPV142Pu41GwsSS47cMSNZNXCJF64nm6uBXYP2y/N7A9vILWejtwKYBSKhe4TGsdlXBda/0G8AbAkCFDUmPaZWPuXgi/TICDTof9j4Mt88DvhwNOBcBlySFPha2/2vMoCis9dCtbzjfjv+WCEwehwtYXLa32YPjc+GrXIK014GwA2vUOPM44OXRXX2FpB1XRwf3qN2bxgu1lflwyFC4OJUG75D+z2eh8Hr9P8crUE7jrtDgnbdXjurfnsjEwtN1la4c8ThUi9cVz574A6K+U6qeUsgNXA1+HV1BKdVFK1V7rIeCdxDYzibocBCfeZW478uCgM2DAWeaiIYDLErbs35l/h9t/pPO5jwDwpvUZ+j00PmKR7SP/NhHlc6Pr3rk7A4tf9DwC7lsFp/01eEhndcZeXRS1WPdxvsVcZJnN8/5/smiL+deDy+tjuPVjAAyl+XbiRGo8zRtpc5stNIkqS9ZOFSItNBrctdZe4G5gArAS+FRrvVwp9Xel1IWBaqcCq5VSa4DuwJMt1N6UU53bJ7Qz2Mw9Y+l7YrDodGMhnxaYjyz8fs3Fxkx+ZVmBYQsE90vegP0GgzUs2LfraS4YElDT6VAOZT17yiqDZVprRjo+Du5f/MosPpi7ifNfnMkwa2iR7+8cD3HII99H9cuH27yniqJyV8xjG3dXcoYKrSOrzn223usIIVJHXAO5tdbjtdYDtNYHaq2fDJQ9qrX+OrD9uda6f6DOLVrr2JEiA+mcrqGdrA6RXzFnsOas+w4At8/Pv+3mhCedHVhg+sir4LaG+8Zruh2BXfmo2hGa+fr14u1M9xwS3P/G/lc+GPsdZYWbo85/z/Y0G4rKItILB9uvNSc/O5Vjn5wc87VXbi9liFpj7tyzGA49v8G2CiFSQ9uZodpCzjjKnHTk63Fk5IHBoQySPXebk5TcYcHVyOsR92tY25uDk6qLQ486Zq/axh+sk4L7g4yNTHT8H/Ocd0edf4plCX9/4RX6j/gOb50Af+PoBdxm+YbHrO+htQ7+q1VduA5DBfY75sfdZiFEcklwb6bs/QYCYDn6d5EHLnwRHi1hvb8HO3aZ49/d3lBgtXeMf/m+rPZmLpyyksJg2SmOhvPXcNF/InaftL3NNPuf2bi7PFimtWbbmp/5q20MN1onMGnJJvo9NJ5zXgjlra8pNvPg+E//W9ztFUIknwT35uqwPwzfDMfdFn3MMLArL+dbzD7r8G6Rjp26xP0SfXqbvwhKd4fy1Xh0IyshDbwYbvsxuNtb7Sbf2MWqgmnBspIqD5McoVE5//lkLOcbc/h10RhcHnMkq690h/lWDj477vYKIZJPgnsiONtHPAAN11uZE5xen7aGcUt2BMttHeJPv+Ns3w03VvLKVgfLPNUVAGzte3Hsk+w5sN9RUcULZk8JLv5x/2eLI469bX+Wl+0vMcL2Mf+bXoDfrzEqAm1uQjeSECL5JLi3kq8nTOTFcQWhgv5nxn+yxcYmelG9J5Qq2F9lTizqNeCY6Pr3hU2euvKDiEN/s73H1t3mFITVqyInP3VWoS6bTybPZeQ3y7FXF+JWDvMXmBAibcSfIlHsk3VX/sCBn/6GcY5QHpnSAZfTvp47/frs9OXRTpUGl/a702mmFlBHXAXuShhyEzw3wKycFZbk7LAL4bK3zTvv0ecB8OdR7/KTHsBKxwMA+OztsLjLIl7vK8dj3D5vLyfYiyi3d6FzE9srhEguuXNvYfb20d0Zlv5nNPk6BxnbGWys5WbLeM40CsjzluDTCnK6wmkPQV53GHSlWblueoBBl0P+UFy/+gtgpih+3/YUWcrMl2M56Ddw00TY/3hqbp0VPO11+yg6+/fgyopvcRMhROqQO/cW1rt79IPT7E49Y9RsWE9lLsX3iO3DYFmVdpBthP1+vvhVOH9UvddwnP5X3LP+zZmWhZEHLn4V7Nlw80ScdWbBHm+sYnPOOU1urxAiueTOvYUpqyOqzHDkxqjZsJoDzooqy1Z15opZrNDQtS1WysiJLreHZYuJ0f3iljt3IdKOBPdW4O/QN7RjdUK3Q5t8DeflryekLdqwRxac+6/oStd9AQeeHtztlpUeOd6EECES3FuBcd0XkP9rGL4FHt5lDlNsquxOMPTPQCifTXGXIU2+TFcdlnv+xu/huFujKx10Bvz+y+BuO4d8mwiRbqTPvTV06Q83fNt4vcac/hh0P5ysdvvBu+fQKXcfMjQ+uAG+fwgufCmY2bJe9yyB7x6Es5/et/YKIZJG1U0j21qGDBmiCwoKGq8oovn9MO0pGHy9OUNWCNFmKKUWaq0b/bNd7tzTkWHAb6LXXxVCiFrSmSqEEBlIgrsQQmQgCe5CCJGBJLgLIUQGkuAuhBAZSIK7EEJkIAnuQgiRgSS4CyFEBkraDFWlVBGwaR9P7wLsbrRW2yGfRyT5PCLJ5xEp3T+Pvlrrro1VSlpwbw6lVEE802/bCvk8IsnnEUk+j0ht5fOQbhkhhMhAEtyFECIDpWtwfyPZDUgx8nlEks8jknwekdrE55GWfe5CCCEalq537kIIIRqQdsFdKXW2Umq1UmqtUmp4stvTWpRSG5VSS5VSi5RSBYGyTkqpSUqpXwJfOwbKlVLqxcBntEQpNTi5rW8+pdQ7SqlCpdSysLImv3+l1B8C9X9RSv0hGe+luer5LEYqpbYFvj8WKaXODTv2UOCzWK2U+m1YeUb8LCml9ldKTVVKrVRKLVdK3RMob5PfH0Fa67T5B1iAdcABgB1YDByW7Ha10nvfCHSpU/ZPYHhgezjwTGD7XOA7QAEnAPOS3f4EvP+TgcHAsn19/0AnYH3ga8fAdsdkv7cEfRYjgftj1D0s8HPiAPoFfn4smfSzBPQEBge284A1gffdJr8/av+l2537ccBarfV6rbUb+AS4KMltSqaLgPcC2+8BF4eVv69Nc4EOSqmeyWhgomitpwPFdYqb+v5/C0zSWhdrrUuAScDZLd/6xKrns6jPRcAnWmuX1noDsBbz5yhjfpa01ju01j8FtsuBlUAv2uj3R610C+69gC1h+1sDZW2BBiYqpRYqpW4LlHXXWu8A8xsc6BYobyufU1Pff6Z/LncHuhneqe2CoI19FkqpfOBoYB5t/Psj3YK7ilHWVob7nKS1HgycA9yllDq5gbpt+XOC+t9/Jn8urwIHAkcBO4DnAuVt5rNQSuUCXwD3aq3LGqoaoyzjPpN0C+5bgf3D9nsD25PUllaltd4e+FoIfIX5Z/Wu2u6WwNfCQPW28jk19f1n7Oeitd6ltfZprf3Am5jfH9BGPgullA0zsH+ktbgnYZsAAAE0SURBVP4yUNymvz/SLbgvAPorpfoppezA1cDXSW5Ti1NK5Sil8mq3gbOAZZjvvfaJ/h+AsYHtr4HrA6MCTgBKa/88zTBNff8TgLOUUh0D3RZnBcrSXp1nKpdgfn+A+VlcrZRyKKX6Af2B+WTQz5JSSgFvAyu11s+HHWrb3x/JfqLb1H+YT7rXYD7pH5Hs9rTSez4AczTDYmB57fsGOgNTgF8CXzsFyhXwSuAzWgoMSfZ7SMBnMAazu8GDeYd18768f+AmzIeKa4Ebk/2+EvhZfBB4r0swg1fPsPojAp/FauCcsPKM+FkChmJ2nywBFgX+ndtWvz9q/8kMVSGEyEDp1i0jhBAiDhLchRAiA0lwF0KIDCTBXQghMpAEdyGEyEAS3IUQIgNJcBdCiAwkwV0IITLQ/wObmUl/qYiDhAAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "y_pred = model.predict(X_test)\n",
+ "plt.plot(y_test)\n",
+ "plt.plot(y_pred)\n",
+ "print('R-Squared: %f'%(r2_score(y_test, y_pred)))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "collapsed": true
+ },
+ "source": [
+ "## Try to predict the difference between consecutive days\n",
+ "### This is also known as introducing stationarity in the dataset.\n",
+ "### A better test of the model is to predict stationarized data where the mean, standard deviation, autocorrelation are constant over time.\n",
+ "### Because stock price data, currency exchange etc. are generated using a completely stochastic random walk process. Being able to predict future outcomes of a stochastic process is by definition not possible, and if someone claims to do this, one should be a bit skeptical [Vegard Flovik, PhD]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/Time Series Prediction.ipynb b/Time Series Prediction.ipynb
index 97a812f..3d8b41e 100644
--- a/Time Series Prediction.ipynb
+++ b/Time Series Prediction.ipynb
@@ -3,9 +3,7 @@
{
"cell_type": "code",
"execution_count": 1,
- "metadata": {
- "collapsed": true
- },
+ "metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
@@ -37,18 +35,18 @@
"data": {
"text/html": [
"\n",
- "\n",
"
\n",
" \n",
@@ -146,9 +144,7 @@
{
"cell_type": "code",
"execution_count": 3,
- "metadata": {
- "collapsed": true
- },
+ "metadata": {},
"outputs": [],
"source": [
"df_idx = df_idx.sort_index(axis=1, ascending=True)\n",
@@ -170,7 +166,7 @@
{
"data": {
"text/plain": [
- ""
+ ""
]
},
"execution_count": 4,
@@ -179,12 +175,14 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEACAYAAACj0I2EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8lOW1wPHfyUICJCwhIUa2gGwiOwG1giCLG+5r1SpW\nLK3XWvXaWtRrW0VbvNZ9rbW3orZurVYruACyiFQUFJB9DRqBsIclBLKc+8f7zjCTdZLMnvP9fPLJ\nu86cTGbOPO/zPouoKsYYY2JfQqQDMMYYExyW0I0xJk5YQjfGmDhhCd0YY+KEJXRjjIkTltCNMSZO\nWEI3xpg4YQndGGPihCV0Y4yJE5bQjTEmTiSF88kyMzM1Nzc3nE9pjDExb8mSJbtUNauu4+pM6CLS\nC3jDZ1M34DfAy+72XCAfuEJV99b2WLm5uSxevLiupzTGGONDRLYEclydVS6qulZVB6rqQGAIUAy8\nA0wGZqtqD2C2u26MMSZC6luHPgbYqKpbgAuBae72acBFwQzMGGNM/dQ3of8QeM1dzlbVbe7ydiA7\naFEZY4ypt4BviopIM+AC4K7K+1RVRaTagdVFZBIwCaBz585V9peWllJQUEBJSUmgocS01NRUOnbs\nSHJycqRDMcbEmfq0cjkH+EpVC931QhHJUdVtIpID7KjuJFV9AXgBIC8vr0rSLygoID09ndzcXESk\nnuHHFlVl9+7dFBQU0LVr10iHY4yJM/WpcrmKY9UtAO8BE9zlCcC7DQmgpKSEdu3axX0yBxAR2rVr\n12SuRoyJVWu3HyAUs7kVFZdSVl5RZbuq8v2+w41+/IASuoi0BMYBb/tsngqME5H1wFh3vUGaQjL3\naEp/qzGxaMmWvZz1+Hz+smBzUB9XVRlw/8ec//RnVfY9O3cjp039hFmrCqs5M3ABJXRVPaSq7VS1\nyGfbblUdo6o9VHWsqu5pVCQRlJiYyMCBA+nbty+XX345xcXF1R537rnnsm/fvjBHZ4wJp+/2OJ//\nb74vquPI+vnJy0sAWL1tf5V9K7c6z3Xjy4u57fWvG/wc1vUfaN68OUuXLmXFihU0a9aM559/3m+/\nqlJRUcGMGTNo06ZNhKI0xsSyWav9S9/PzNnA8gKngNg+PdW7/V9Ltzb4OSyhVzJixAg2bNhAfn4+\nvXr14rrrrqNv375899135ObmsmvXLgBefvll+vfvz4ABA7j22msB2LlzJ5deeilDhw5l6NChfPZZ\n1UsrY0x0q3Drzj9csT0kjz+yZxY3TlvMwx+t5YJqql8aI6xjudTlvn+vZNXWqpcjjdHn+Fb89vyT\nAjq2rKyMDz74gLPPPhuA9evXM23aNE455RS/41auXMkDDzzAwoULyczMZM8ep7bp1ltv5fbbb2f4\n8OF8++23nHXWWaxevTqof48xJrQOHS0H4EhZ1ZuXDbVky7FRUeat2+m3L3fydC4YcHxQnieqEnqk\nHD58mIEDBwJOCX3ixIls3bqVLl26VEnmAJ988gmXX345mZmZAGRkZAAwa9YsVq1a5T1u//79HDx4\nkLS0tDD8FcaYYEgIUruFwv0lXPrcQl6deDKXPrew1mPfW+ZfzfKrt5bx8OUD6v2cUZXQAy1JB5un\nDr2yli1b1utxKioq+Pzzz0lNTa37YGNMVBKCk9FP/v1sAEb9cW7A5wzLzeCL/D28taSgQQnd6tAb\nYPTo0bz11lvs3r0bwFvlcuaZZ/LUU095j6vuS8IYE93C2bK4Q5vmfutv/NSpEchp3bBCYVSV0GPF\nSSedxD333MPIkSNJTExk0KBBvPTSSzz55JPcfPPN9O/fn7KyMk4//fQqLWaMMdGtvCL4HYo8Pr3z\nDEb87xwA8qeOp7S8gj9+tJbj2zSnfXoKIsJlQzry2YZdDXp8S+jAwYMHq2zLzc1lxYoVftvy8/O9\nyxMmTGDChAl++zMzM3njjTcwxsSuVs2DM85Svw6t/dqyP3P1YDpltCB/6njvtuTEBO4690S/8ypU\n2VZUgqrWuyOiVbkYY4wPT3VHr+z0Rj2ObzLvlZ3O+P45AZ3naenXkI5NVkI3xhgfFW6VS0UQx3JZ\nW3gg4GPH98thzfYD3jbqL/14aMDnWgndGGN8LHN7b+44cKRRjzO8e6Z3+bpTuwR83sWDO/itX//X\nLwM+NypK6A2pK4pVoRjBzRgTPM/P2wRA0eHSep+rqvzi9aX826dd+cr7zqJlSuCptnUj6vAjXkJP\nTU1l9+7dTSLRecZDt3bqxkSvUp8eov/6+vs6c1NRcan3uML9R/ySOVCvZA6QnprMiTmt6nWOR8RL\n6B07dqSgoICdO3fWfXAc8MxYZIyJTqUVxxL6bW8sJT01iTEn1jzD5oD7PwacwbfeX76txuPq44Nb\nRwCwvvAA4x6bH/B5EU/oycnJNnuPMSZqtG6eTEnpsfrzzzftZnlBEbeN7VFr1XB1yXzlfWc1KpYe\n2enM+u+R9HgosOMjXuVijDHR5KaRJ/it//nTzTwxe7130K7KstJTqmx7/5bhvDJxWL2rW6rTvX3g\nY0FZQjfGGB81lcLvfvubarf369C6yra+HVozokdWUOMKhCV0Y4zxUVZD1//KIyKWlJazdvsBPlmz\nIxxhBSTidejGGBNNqpvEuTr/9bevqk3mZ/QKf8ncwxK6Mcb4OHikrMZ9JaXlpCYnct5Tn7Li++on\n43lxQuA9O4MtoCoXEWkjIv8QkTUislpEThWRDBGZKSLr3d9tQx2sMcaE2lOfbKhxX+97P2R/SWmV\nZH5mH6dZY/7U8SQGa4aMBgi0Dv0J4ENV7Q0MAFYDk4HZqtoDmO2uG2NMzHp2rn8yP617O/57XE+/\nbV9s2uO3/tw1g3nhujy/URQjpc4qFxFpDZwOXA+gqkeBoyJyITDKPWwaMBf4dSiCNMaYcPjfD9d6\nl30T9Ln9chj76DwA7nhrmd855/QLbBTFcAikhN4V2An8VUS+FpEXRaQlkK2qnpb024Gau1IZY0wM\nGdY1w2+9bYtj46v4jvFyR6XSe6QFktCTgMHAc6o6CDhEpeoVdQY7qLatj4hMEpHFIrK4qXTvN8bE\nti82+1ertG3RrMoxz14zmFvG9AhXSAEJJKEXAAWqushd/wdOgi8UkRwA93e1jTFV9QVVzVPVvKys\nyDXnMcaYhkpIEJb+ZpzftnOjqKrFo86Erqrbge9EpJe7aQywCngP8MzBNgF4NyQRGmNMFGjjU0p/\n4ocDIxhJzQJth34L8DcRaQZsAn6M82XwpohMBLYAV4QmRGOMCY+c1qlsKyrhhWuH1HrcBQOOD1NE\n9RNQQlfVpUBeNbvGBDccY4yJjLLyCrYVldC/Y2vOPOm4Wo+N1gl5rKeoMcYAm3YdAmB5Qc2TM4/v\nl8PGnQfDFVK9WUI3xhigNIAxXJ65ZnAYImk4G23RGNMk7Cs+ys5aJn5uluikw8y0quObxwpL6MaY\nJmH0I/MY+uCsGvcfcecSfeCivuEKKegsoRtjmoQ9h47Wun9xvtOZaG9x7cdFM0voxpi4V+EzaUW+\ne/OzsvzdxQC0aJYYlphCwRK6MSbu3fS3Jd7lUX+cy5w1OygpLfe7Eerp3n9y13Zhjy9YrJWLMSbu\nfbSy0G/9xy99CUCfnFbMuHUEAI/NWgcQ0fHMG8tK6MaYJmvVtv3MWuUk+x+c4JTMM9OqDsQVK6yE\nboyJe0Nz2/Jl/t5q99348mLv8vGtU6O2F2ggrIRujIl7g7scmyGzc0aLGo/LadM8HOGEjCV0Y0zc\n23/42MTP3+4prvG4JVuqL8XHCkvoxpi49/mm3QDcGmUTUgSbJXRjTNyZuaqQ3MnTKdjrlMY3u23P\nbx/X0286uZQk/xR4RV7H8AUZApbQjTFx55XPtwAw4n/nVNnXyacOfdLp3QBo3TyZWf99Og9e3C88\nAYaIJXRjTNzZ707krNXMdOxJ4nBsGrmbzziB7u3TSU6M7ZRozRaNMXFn6Xf7vMtbdvt39T9adqx3\n6Ik5rVgz5WxSk2O3u7+v2P46MsbEpG93F/uNrxJKO9whc/t3bA0cG6SrZ3YaQNwkc7CEbowJs827\nDnH6w3O46s+fh/y5+nZo5a12+dVZzjz3Oa2dtubdMtNC/vzhZgndGBNW37ntwBdt3hPy5yo+Us4V\nf/oPcKxkflr3dnRs25xbxnQP+fOHW0B16CKSDxwAyoEyVc0TkQzgDSAXyAeuUNXYbpVvjAm5rPRj\nMwJVVCgJQR4MS33uhG7fX+JdHpqbAUCbFs1Y8OvRQX3OaFGfEvoZqjpQVfPc9cnAbFXtAcx2140x\npla+Q9YeOFJWy5ENc9Tn8YuPlnuXj4/xbv2BaEyVy4XANHd5GnBR48MxxsQrVaWiQv1amby1+Lug\nP0/JUefx26fH7tygDRVoQldglogsEZFJ7rZsVd3mLm8HsoMenTEmbnS9awbd7p7B6m37vdsemL46\n6M9z6KhT6vdtU+5p0RLvAm2HPlxVvxeR9sBMEVnju1NVVUSqbYPkfgFMAujcuXOjgjXGxKat+w57\nl+99d6XfPlUN2pC1peUVXPzsZ97H9fDUn8e7gEroqvq9+3sH8A4wDCgUkRwA9/eOGs59QVXzVDUv\nKysrOFEbY2LK218V1Lhv/Y6DQXueFz/dTOF+p925b136z0fHX4uW6tSZ0EWkpYike5aBM4EVwHvA\nBPewCcC7oQrSmHi188ARBtz3MbmTp/OXBZsjHU7IHC2vuRPR8oIiet/7AV3vmt7o5/n7F1u8y3ld\njpXKPfOFxrtASujZwAIRWQZ8AUxX1Q+BqcA4EVkPjHXXjTEBUFVyJ09n6IOzKHLHHZny/ip63/sB\nJaXldZwde5olVq1S8XT0+eVbyygprUAVyhvZe/QUnwmeT+t+bLnyqIrxqs6/UlU3qeoA9+ckVX3Q\n3b5bVceoag9VHauqoe8lYEyM83R3H/7QsVEAR/TI5JHLBwBQUlpB73s/JHfydJ6ZsyEiMYbCzFWF\nVbb1Pi69yrbGTjAxoFMb7/I57sBbz1w9OKanlasPG5zLmDBZsmUPlz73H79t/7lrtLcr+kWDOnDC\n3TO8+x7+aC0Pf7Q2LgaPWlZQ5Lf+zNWDqx3Z8LbXv2bhXWMa/Dxlbr35V/eOI6NlM/Knjm/wY8Wi\npnEdYkwUeOjDtX7r5/Y7zpvMARIThPyp48mfOp7z+ud4t/e+90NWbd1PPDm333HVJvStRSVVtq0v\nPODXYqU2Czc6MxO1aBbbX4ANZQndmBDae+gom3YeZHH+Ho64deOL7h7DhQOP57ErB9Z43tNXD2bJ\n/4z1rp/75Kfk7zpU4/HR7vSe/i3cRIRD1fQSbdsi2S95L1i/i3GPzWfitMV89W3d1TEfu1U7TaXO\nvLKm+VcbEwLlFcrDH61h/rqdgNP2etCUmYx+ZB6XPf8flhUUMfbEbLJbpfLEDweRklR7KbJdWgr5\nU8eT0dJpoTHqj3O9U6qFWvHRMv69bGvQHs/zmvjybVZ4ZV4nAPYWl9L1rhks3LCLHftLWLHVqar5\nZM0OLnl2IWc/Pr/W5+nszkbUVOrMK7M6dGOC5PFZ63hmzkaembOx2v1/unYIeV3a1vtxv7p3HLmT\nnSZ9wx+aE5Z64QH3fUxpuTJzVSFPXjWoUY81Z41/F5V+HZxxyXPbtfRue+iy/rzhMwzA1S8uAuAX\nlSZ1XrP9QK3PddLxrZps6RyshG5MUPxlwWae+qT6Vikzbz+d/KnjOeuk42iX1rDxRXyrX76pdIPR\n16JNu8mdPJ3cydO9M93X5c/zN/l1x39/+VZK3Xbj7y3b2uirgnyfGYM+uWMkf//JyQD0Ob4Vb/70\nVJb/7swaz91z6EiVbbXVpy/YsIsmWjgHLKEb02hFh0uZ8v4q7/oXd4+hfXoKf7/xZDb9/lx6ZFdt\nnldf7dJSvE3yzn96AXkPzOT/FmxmQ6Velle+cGzSiB++8DlFxaW1Pu6qrft5cMZqznniU++2n//9\na79jfJtYNkSSz/C43bLSSE9N9q4P65pBK5/1ykrLqibv9TsOsmrrfh7+aA27Dh5L+IePlnOgpIx1\nhcHreRprLKEb00iDp8z0Lj//oyG0b5XKF/eM5QfdM4M61vcrE4d5l3cdPMr9769i7KPz+GzDLgA+\nXLGtyjmeyR1qcu6Tn9a638N3hMT6WhlgC52HLu1XZdsb1YzGeOZj8zn3yU95Zs5G8h6Y5d2+cOOu\nBscYLyyhG9NIFw44HoDsVimc3fe4kD1Pq9RkNv/h3Crbr3lxEbmTp/OzV7/ybpv3q1EArC2svc65\nMt+ql6W/GeddzntgZnWHByS7VSoAo3u3r/W4K4d2Jn/qeNJSqt7ae+jSfrz2k1OqPe/NL78jd/J0\n3vjSSf6XDOrQ4FhjnSV0Yxphy+5DvP319wAsuntsHUc3nojw8e2n13rMnWf3oovPDcdpC/OrPa5y\nr8zv9x32q3pp06IZj13p9GDdX1IWcFvwyjLdccn/cEnVEnh1/nbjyVxzsv/IrJcP6eQ305GvO/+5\nHDjWZHHKRX0bFGc8sIRuTAOVVygjH54b9uftmZ3u7YCUP3U8c345ym//NcO6APDidc7kYn+aV32r\nm8o3Ta/9y6Iqx1w8qKN3uetdM8jfdYh9xUfrFe/BEqe9eXpqYI3qBnRqw4MX9/MraSckCFkB3lBu\nqp2KwBK6MQ32tU9HF0/LjUho3fzYTcVfjOlB6xbOuqeKo7relwCt3POe/9FgADbtPNYaZdlvq295\nMuqPcxl4f/2qXx760Jk+oXk9hy/wXPl4tGru/4Uw7YZhVKeptkEHS+jGNIiqctnzzg3Hyef05gcn\nZEYsFt+S749OOVZV4XtDtv/vPuLy5xfy2hffsnXfYT5euZ17/7UCcFqe+Fr/4Dl+XxL5U8cz9sTa\n678DUd9E++pE50vyh0M7VTn/x6flMrJnlrdD0vU/yG10fPHAOhaZJm3l1iKOb92cti2rjpddUaE8\n+cl6Hp+1HnCa33Vu18KvJAtw4/CuYYm1Jr5jotRULbG/pIwv8/fyZb5/vXn79BS6Z6XRKzud3jnp\nPHzZgGrHWHn+R0O479+reOXzLVX2hcrwHplVOlEt+Z+xPPzRWm4f1xNw6stvHduD49s056ZRJ3Ck\ntOGtceKBJXTTZKkq459cQJ+cVsy4dYTfvrLyCrrf84H/tgr1S+Yje2Zxw/CuJFWTACOlvqXgL+5x\nbuR+VMeN1qTEBKZc1Neb0GevLmTMibVPI1xaXkGPSq9hY7VLS2Hqpf29682SEji+jTPAmac1TVNm\nCd00SVv3HebXbuuIVdv820lvLyrhlD/M9q7369CaJ68axLLv9tE7J50e7dNJDGL78mB4Y9IpdG7X\nosr2NVPOZuoHazilWwZnnXQcM1cVcnyb5pz31IIa68kDMf2bbbUmdFX1S+a+o0ea0LGEbpqke975\nhk/XH+uI4hkrpbLrf5DL7y44CYCumS2rPSYanNytXbXbU5MTvfEDnHmS006+oePBPHxZf371j+V+\nkz5Xp/J0ep0yqn7ZmOCLnmtFY8Joztqqo/9V9vyPhvglQwOXuzchu2am1XGkv4K9tX8BmOCwErpp\n0v7xs1P5dk8x//3mMj68bQS9stNZsmUv+4pLGdun9jripqprZstqxzL31S7N/ybzaSdUfwVhgssS\numnS8nIzyMvN4JLBHf22mZq1Sk1iz6HaOxd5OhN9cc8Y8ncVM7hzm1qPN8FhCd00OapKs6QEa7vc\nQDsPHGFZQRH7io8y6eUlZLRsxvPXDvE75oBbgm+VmsywrvYFGS4BJ3QRSQQWA9+r6nkikgG8AeQC\n+cAVqtq4KbuNCaF1hQfo0T6NQ0fLOVpW4Z0JyNSPp+epb4/R0vIKb/v1gr3FLP12H0kJ0qQnm4iE\n+rzatwKrfdYnA7NVtQcw2103Jip9un4nZz42n7eWFDDLHcRpew1d4k39eV5TcMZP/3hVIWmpSU26\nG34kBJTQRaQjMB540WfzhcA0d3kacFFwQzMmeDwdglZ+X+RtQz7Obno2yKd3nlFlm6eZYuH+Y1+S\nVjoPv0Bf8ceBOwHffrXZquoZUX87UO2nQ0QmichiEVm8c2fdTcWMCYXX3bGyN+8u5pbXnBl5Mhs4\nHVxT1ymjBee7Y8B7LN6yl38sKeC8pxZ4txXurzp9nAmtOhO6iJwH7FDVJTUdo85AydUOlqyqL6hq\nnqrmZWVlNTxSYxro8NFy78QNvrPPd6mmZ6UJzFNXDfIO3+vxy7eWsfPAsST+u/P7RCK0Ji2Qm6Kn\nAReIyLlAKtBKRF4FCkUkR1W3iUgOsKPWRzEmQh6fta7KtkV3jyG1nsO5msA1tCeqaZw6S+iqepeq\ndlTVXOCHwCeq+iPgPWCCe9gE4N2QRWlMI2yrdPNz+i+G20BOQVR5XPJIjg3f1DWmHfpU4E0RmQhs\nAa4ITkjGBNeATm14b9lW7/qJx7WKYDTxZ2TPLCuRR4l6JXRVnQvMdZd3A2OCH5Ix/g4fLWfXwSMN\nHuDpQEmpd3lUryy/iR+MiSfWU9REvUmvLObT9bsaXAosOlxKWkoSn00eXe9p0IyJJZbQTdTzDHPr\n2xuxPooOl9K6ebLftGrGxCNr+W9ixpGyhk0vtv9wmXdCZGPimSV0EzPWFx6o1/EbdhzggqcXsOfQ\nEVo3t4tRE/8soZuY8eGK7fU6fuyj81leUMRX3+6jnfUKNU2AFVtMzGjvth0v3F/Chh0HaZfWjD0H\nj3L1i4tITU5gRI8semWn075VCqdWmpLtTBu3xTQBltBNVFJV3lpcwMndjo2lXVJaDsDIh+dQUupf\nn15SWsHMVYXM9Bn1z+P3F/fjwoEdQhuwMVHAErqJSht3HuLOfy4nLeXYW/SV/2xh446DVZI5wKWD\nO5KX25YF63cx/Ztt9MxOY13hQe6/8CSuPrlzOEM3JmIsoZuo5Jmz8qDP3JXb95fw9tffe9fXPXAO\nzSoN0XrVsM48E54QjYk6dlPURKXio+W17j8hq2WVZG5MU2efCBOVDpceK5mvmXK2376LBh7P7DtG\nhTkiY6KfJXQTdVSVG15a7F2vPMztI1cMDHdIxsQES+imwTbsOMCRstqrRhrC96bnivvO8tv35FWD\nvFPIGWP82U1R0yC7Dx5h7KPzuXhQBx67MrglZnUnv5pwahdvKxcbntWYulkJ3TRI0WFnSNp3fFqd\nBEuFO5lhx7Y2RZwx9WEJ3TRItRPIBomnA1FyolWtGFMfltBNgxyuo1lhY2x3p4w7rrVNE2dMfVhC\nNw1SVzvx+pj6wRpO+f1s7/rnm3YDcHyb5kF7DmOaArspamr0yMdrGdylLWf0al9l37d7ir3LZz02\nn5w2qZzZ5zg6tG1OeUUFZeVKeYVSuL+ErPRU0lOTqFBFFSpU2VpUQmFRCf07tub5eRsByJ08nVtG\nd+epTzYA0C0rLTx/qDFxwhK6qVZFhXoTa3UtTNb5jE2+tvAAawsPMHftzkY/r+c5Ab9xXIwxdavz\nEyMiqcB8IMU9/h+q+lsRyQDeAHKBfOAKVd0bulBNOJX4tC/PnTydW8f0oHNGC87uexzTl2/jhfmb\nADilWwafb9rD5HN6c2JOK9JSkkhKEBIThKREobRM2Vt8lJYpiYgICSIkCJSWK1v3HSY5UchulUq7\nlims3r6fDm2a06JZIl0zW0bqTzcmZgVSBDoCjFbVgyKSDCwQkQ+AS4DZqjpVRCYDk4FfhzBWE0aH\njvjXkT8xez0An23Y5R0gq3NGC16fdGqDn2NIl7Z+653bWTNFYxqjzpui6jjoria7PwpcCExzt08D\nLgpJhCYiDvmMcujLk8xTkhL45I6R4QzJGFOHgFq5iEiiiCwFdgAzVXURkK2q29xDtgPVTgkjIpNE\nZLGILN65s/F1rCY8Suro0t8zO52kRGskZUw0Ceiuk6qWAwNFpA3wjoj0rbRfRaTaviaq+gLwAkBe\nXl4o+6OYIDpY4pTQJ53eje/3Hub603JJT03i9S++o09OK87ud1yEIzTGVFavZgSquk9E5gBnA4Ui\nkqOq20QkB6f0buLE3e98A8Dgzm24+9wTvdt/d8FJkQrJGFOHOq+ZRSTLLZkjIs2BccAa4D1ggnvY\nBODdUAVpwm9doXPbxDNmizEm+gVSCZoDzBGR5cCXOHXo7wNTgXEish4Y666bOHHj8K4AnNnHqlaM\niRV1Vrmo6nJgUDXbdwNjQhGUibyMtGYANG+WWMeRxphoYc0UTLXUvX0tNuChMTHDErqplroZPcEy\nujExwxK6qVa5OwucpXNjYocl9CZOVSk+WrVX6GOz1gFWQjcmllhCb+Kem7eRPr/5iD2Hjla73/K5\nMbHDxidt4mZ844zeMHjKTAZ0bM21p+byt0VbvPvFMroxMcMSehPXrmWKd3lZQRHL3loWwWiMMY1h\nVS5N3PDumdVu75PTihm/GBHmaIwxjWEl9CZOcZonfnrnGXTKsPHIjYllVkJv4ircDkSZaSm1H2iM\niXqW0Ju4CrcDkd37NCb2WUJv4jxd/K29uTGxzxJ6E1dR4eniH+FAjDGNZgm9iauwEroxccMSehNn\ndejGxA9L6E2cqiJiPUKNiQeW0Ju4CrXqFmPihSX0Jq5C1W6IGhMnLKE3cRVq1S3GxAvr+t/EPT9v\nY6RDMMYESZ0ldBHpJCJzRGSViKwUkVvd7RkiMlNE1ru/24Y+XBNMm3YejHQIxpggCqTKpQy4Q1X7\nAKcAN4tIH2AyMFtVewCz3XUTQ0Y/Mg+Aiwd1iHAkxphgqDOhq+o2Vf3KXT4ArAY6ABcC09zDpgEX\nhSpIE3zbi0q8y49eMSCCkRhjgqVeN0VFJBcYBCwCslV1m7trO5Ad1MhMSN3//krAGQ/dbooaEx8C\nTugikgb8E7hNVff77lNVBXdg7arnTRKRxSKyeOfOnY0K1gTPjG+2A/DARX0jHIkxJlgCSugikoyT\nzP+mqm+7mwtFJMfdnwPsqO5cVX1BVfNUNS8rKysYMZtGeu2LbwE4o1cWuZktIxyNMSZYAmnlIsBf\ngNWq+qjPrveACe7yBODd4IdnQuGut78BYOLwbhGOxBgTTIG0Qz8NuBb4RkSWutvuBqYCb4rIRGAL\ncEVoQjSEKQEEAAARpklEQVTBNH/dsWqv4T2qn0/UGBOb6kzoqroAqOmu2ZjghmNCYV3hAc58bL7f\ntn//fHiEojHGhIp1/W8CKifzG4d3pV/H1hGKxhgTKtb1P06tLzzAuEqJfO4vR9EpowWJNhqXMXHJ\nEnocOFpWwb7DR0kQYfW2/fxp3iYWbNjld8zYE9tbixZj4pwl9Bi2v6SU/r/7uMb9Oa1TmfurUWwv\nKqFzRoswRmaMiQRL6DFIVel614wq25MThdJy5a5zevPTkSd4t3dpZyVzY5oCS+gx6JGP1/mtf3nP\nWLLSUyIUjTEmWlhCjzH/2bibp+dsAOCv1w9lRI9MkhKtsZIxxhJ6TFm9bT9X/flzAKZe0o8zereP\ncETGmGhiCT3KqSqjH5nH5l2HvNvO7XccPxzWOYJRGWOikSX0KKaq/NffvvJL5jefcQK/Oqt3BKMy\nxkQrS+hRau+howyaMhOAti2S+euPhzGwU5sIR2WMiWaW0KPQ7NWFTJy22Lv++d1jSElKjGBExphY\nYM0jotCf5m3yLn997zhL5saYgFgJvQ4LN+6ifXoK3dun1/vc4qNlvPP195zcNYNmiYl0buf01lRV\njpRV+B1bWl5Bi2ZJnHD3sQ5D+VPHNy54Y0yTYgm9FnsPHeXqPy8CYMOD59TY3nv3wSMkJSZw8EgZ\nJaXlnJCVxo79JQz7/ewqx14+pCNvLSmo87lfvmFY44I3xjQ5ltBrUFGh3puSAN3v+YATsloy8/aR\nlFZU0CwxARGhYG8xwx+aE/DjBpLM/3nTDxjSpW2D4jbGNF2W0KuxYcdBbnnt6yrbN+48RDefKpFx\nfbKZuaqwxsfJbpXCorvHAnDwSBl9f/sRAEkJwobfn4uqUlJawcqtRew4cITTe2bRPDnRhrc1xjSI\nqGrYniwvL08XL15c94ERlDt5ut/6zNtPrzKueG0SE4S7zunNjSNsvk5jTHCIyBJVzavrOCuhu6ob\nwXDtA2eTkpTIqvvPorRMGXB/1aFqB3RszR8u6c9xrVNp2yIZZ05tY4wJP0voQMHeYj5csd27/skd\nI+mWleZdb9EsCZrBZ5NHc9rUT+iZncaDF/djaG5GJMI1xphq1ZnQReT/gPOAHara192WAbwB5AL5\nwBWqujd0YQbf5l2HKDpcyuebdjP1gzUAnNItg1cmnkxyDa1ZOrRpzid3jKRzRgsb4dAYE3UCKaG/\nBDwNvOyzbTIwW1Wnishkd/3XwQ8v+FSVS55byNff7vPbPqZ3ex6+fECNydzDt+RujDHRpM6Erqrz\nRSS30uYLgVHu8jRgLlGY0A+UlJKSlMia7fu54OnPAMhKT2HngSMADOnSlrSUJB661KkDN8aYWNbQ\nOvRsVd3mLm8HsoMUT4OVlJYzd+0OfvbqV/Ron8b6HQerPc6TzBfdPYbsVpbEjTHxo9E3RVVVRaTG\nto8iMgmYBNC5c/DG8P5uTzF/WbCZlxbmV9lXXTJ/6NJ+XD6kEwnWxtsYE6camtALRSRHVbeJSA6w\no6YDVfUF4AVw2qHX94mmL9/GzX//KuDjh+VmsHJrER/edjqdbKZ7Y0wT0tCE/h4wAZjq/n43aBH5\nmLt2R0DJfN0D59AsyVqdGGOatkCaLb6GcwM0U0QKgN/iJPI3RWQisAW4ItAnVFVUqbHqQ1XZVlTC\nK59v4bm5G73bT8hqyQMX9SM3swXtWqZYAjfGmErC2vW/Tefe2ubqRwBYdf9ZTocdHxt3HmTMI/P8\ntp3XP4enrx4cthiNMSbaRGXX/8Ol5XgmUevzm48QAVVo2SyRQ0fLqxz/8g3DOL1nVjhDNMaYmBX2\nrv8/G3kCz89zqlI8Fwe+ybxFs0RW/O4sa41ijDH1FLHRFouKS0lPTaKsQtl18AjFR8vp3t56YRpj\nTGVRWeXiq3WLZACaJQjHt2keqTCMMSZuWFMRY4yJE5bQjTEmTlhCN8aYOGEJ3Rhj4oQldGOMiROW\n0I0xJk6EtR26iOzEGfulsTKBXUF4nGCIpljA4qlNNMUC0RVPNMUCFk9lXVS1zm7zYU3owSIiiwNp\nZB8O0RQLWDy1iaZYILriiaZYwOJpKKtyMcaYOGEJ3Rhj4kSsJvQXIh2Aj2iKBSye2kRTLBBd8URT\nLGDxNEhM1qEbY4ypKlZL6MYYYyqxhG5MiIiIDepfC3t9gi+qE3q0/MNFJGLDDNckWl4bDxGJ6vdS\nhETVayIieSLSPtJx+EiOdAAeIpLp/k6MdCyNEVVvOAAROVFETgXQCFfwi8ipIvJnYGgk4/AQkZNE\nZBRE/rUBEJF+InKHG09FhGMZKCI/EZHjIhmHG8swEXkV+IP7GkX0c+a+bxbiTPDepq7jwxDPqSLy\nFvBHEekTqSQqjhYi8hrwLoCqVp0LM4ZETUIXkdZu8nwdmCIiD4pI9wjG8xOcO9tfAV9H8ptbRBJE\n5Fngn8DdIjJFRPI8+yIVF/Ag8HvPl0wkXiMRSRaRPwF/AUYCD4rIyeGOw40lQUR+C7wIfIAzgczN\nwIBIxOPjVuAdVT1fVddB5K7w3CuEp4EZOD0vbwVuiERM6ih2VzNF5CY3jqjJi/UVTYHfidPqZgDw\nU6AdkBvBeDoD96jqc6paEuFv7jZAmqr2Bq4BdgN3iEhaJErGPol7PvAE8AA4pZsIfBj6Aq1VdYiq\n/gjnPR2RLtru/6IAuF5V/4bzhdcFiGRhIBNQnCSKiFwsIh2B5u56uBN7X2Ctqv4VeAR4G7hQRHqq\nqoYzHreEngMUAhOBm0SkjapWxGpSj/Sl4GAR6eWuPgf8BkBVN+IksX5hjqWHu9wa5433hYiMFpGP\nRORuEbnE3R/yN52IdBWRVHc1A/iBiLRU1Z04JfW9wM/DHE+Ku1rhPudZwJ+BHSJyIzhJLdTxVHpt\nBLjCvcK7BDgFGCMig9xjQx3LVSJyv4hc4G76O7BURFJUdTdwAMgJZQzVxHOfiJzvbjoEjABGu9VA\nP8X5An4cQl91JyIjK10xLQOGisgJqnoI+BJY7MYV0nh8YxGRBLeEvg2n4JgPzAMmu7FFtAqxwVQ1\n7D9AV2A68B9gETDaZ1+S+/uvwAURiGWsu30aMBN4ErgA+DGwFBgQ4nhycS7XZ+Mk7j7u9v8D7vW8\nRsAYnOqpnDDH04tj/RceAVKBwcBa4C2gYwRemynAa8AO4Fp3/d9AzxDGIsDPgK/d98Y693e6zzHJ\nwMJQxlFLPGuBn7j7bgO+Ba5z1zu4cZ0TwnjScUrfe9z3bluffQ8Aj7vLCcBwnAJdSN7LdcTSE3jU\nXb4A2I9TzZoCJIf6/xbsn7CV0CuVlH4JLFXVU4F/ATdWc0oH4Dv33KDGWUcsP3G33wsMBLap6nvq\nXCLOAC4MZiw1xLNIVccAc4D7RKQP8BJwioh0U9UynMvEEqBFmOOZAvR0S+tZOF+I1wDZQHtVLQhm\nXXpdsbiX6vcCK4HLVPUVnNLnZuC0YMVRmToZ4FRgqvve+C+cL9kRPjH3AQpVdZ2IpIvIsDDGczNw\nhoicjZPEknD+X6jq98ACIJSl0KPAJ8CPgK3A5T77/gH0FpEx6pSEd+N83osiEMtWoIeIvAc8jFNK\n36KqR1S1NETxhEw4q1xSwfsBPQR4XqzWwGpP1YuqlrlVH3tU9Wv3RsW9IhLMu/O1xbJCRE5U1W9x\nbm5d5nNee5ySTbB54vE0j1wFoKpPA8OAq3DeeF8A/+vuW4FTP3skAvFcj5PAy92Y0oDRQGcR6a/B\nvd9QWyxDgBvcL/wS4Ap3nydBrApiHIjIde5le4a7aTXQQUSSVHUW8A1OabOLuz8DKBaR63HeN/2C\nWQUUQDzLgTNwEtotwARxWgPdBIzFqWYIGp942qjqEZzPzyycq5c8n+rV5ThXl4+L0/BhDM4VRrMw\nxtLTPTQd2AZsAoao6vlAJxEZEqxYwink7atFZBzODc+1IjJfVd8UkQXAlSLyNc4/8l/AqyLyP6r6\nEc4HYpiIzMH5oN6mqvvCFMu7wCsicqeq3iUiPURkKjAKJ6mubGwcdcSzBxgkImvdw1bgVDUkAr8H\n5ovIUzgf1MVAkYiIW0ILRzwrcZJlK5wqlqmqutY9/zdAo/9P9YhlBdAJ57J5BvC+iDyMU4/+Pc6H\ntLFxCHAcTt14BbARaOkmxe9w7vN0B9YAbwCPAW1xkuU5OF/GR4BrVHV5mON5HedqpY+q/tO9qroC\nOAm41vN/C0E8k0TkVlXd5R7zH5z/0RXAFLdU/pKIZAF3ufsmNfYzXs9YrnRj2SYiv1JV36uDMZXW\nY0co63Nw3liLcKopBuG80L909/UC3vY59l7gSXf5Gpz6rrERjOVpd7kV0Bs4M8SvzWs4l+3p7vO/\nj3NZnOfGept7XjbwA4J8f6Ge8bwO3ORzbgKQEKFYXgN+7p43EOfm2sVBiiPR/d0TeNWzDXgW5x5L\nMk5zyWtxWtqAUzX2gLt8GnBlEF+XRsXjrksY4nnK9/Pkbr/YjbM70NLzfgGaRTiW5kCK530crNcm\nUj/Bf0CfDzdOYn7WZ98NOCW4bJz6vCeAE919w3Hq1oKZGBobS9De/AHEM9GNJ8td7+az72bgRnc5\nmB/IqImnEbH83BNLEF8Xz9XQQzht288HplXavwOnffkYnCaBd7n7/g8Y38TjSQC2AyMrnXc3sMHd\nd2K8xRINP8G+2fhjnHa4U9xN3wA/FJGu7noyzmXwFJzmXBnAL0TkVuBPOK0XgtIWNQixzGpsDPWM\nJwnnEvExd32ze94knIT2FQSvWVc0xdPIWG7wxBIMIjISWIJTbbLBjakU5wbjMPD2JrwPeEhVZ+N0\nQBsuIovc8+Y28XgqgN+5P57zLgfuwbmZ3V9VV8dTLFEjiN/aaTh14bfifMB6u9sfx7ks/gx4FaeO\n7wOcy64TcW7WTANOicdYGhDPdCDb3X8bTjvdofEaTzTF4j7uCJz6Zc/6s8BNODeCl7jbEnDqat8C\nct1tbYAOwYwlDuJ5E+jqc96IeI0lWn6C/c/u7P6eCrzhLifilH6Hu+udcJJmUOrOYiGWesbzEsfq\n9Fo0hXiiLJYWOG2QPXWy1wB/cJeXAre4y3nAa2F438RyPH9vKrFEy09Qq1zUaeoHTumqq4icpc7l\nYJGqLnD3/QynqWBIu9JHUyz1jKcYKHPPKa76SPEXT5TFUqxOG2TPe2IcsNNd/jFwooi8j3P1ELSq\nnjiN5+umEkvUCOG350+BeT7rw3CaBM4Ajgvnt1Y0xWLxxEYsOFcICThVct3dbd1xqjKGE4LqDIsn\n9mOJ9E9IpqATZ5yEChH5B06j/SM4NxnXqzNOS9hEUywWT0zF4uno8iLwDs7N1904l/H7wxmLxRM7\nsURcCL81W+CMxrcL+EUkv7WiKRaLJ6ZiOQWng8oCYGIU/J8snhiIJZI/oewp+l84dXrj1Ol6G0nR\nFAtYPLESSwFO87ZHoyAWsHhiJZaICUmVCxy7fA7Jg9dTNMUCFk9toikWY2JNyBK6McaY8IrJWTmM\nMcZUZQndGGPihCV0Y4yJE5bQjTEmTlhCN3FLRMpFZKmIrBSRZSJyh9QxnaGI5IrI1eGK0ZhgsoRu\n4tlhVR2oqifhjPNxDvDbOs7JBSyhm5hkzRZN3BKRg6qa5rPeDWfI3UycaQ5fwRk6GZxZjxaKyOc4\nQylvxhmJ80mcUSBH4Yzs94yq/ilsf4Qx9WAJ3cStygnd3bYPZ8rBA0CFqpaIMyn5a6qaJyKjcKYm\nPM89fhLQXlUfcOfk/Ay4XFU3h/WPMSYAIZ8k2pgolQw8LSIDcYZP7lnDcWcC/UXkMne9NdADd9Yk\nY6KJJXTTZLhVLuU482/+FijEmYczASip6TScUfs+CkuQxjSC3RQ1TYKIZAHPA0+rU8/YGtjmjhtz\nLc6Y2uBUxaT7nPoRcJOIJLuP01NEWmJMFLISuolnzUVkKU71ShnOTdBH3X3PAv8UkeuAD3FmrgJY\nDpSLyDKcKe+ewGn58pU77vZO4KJw/QHG1IfdFDXGmDhhVS7GGBMnLKEbY0ycsIRujDFxwhK6McbE\nCUvoxhgTJyyhG2NMnLCEbowxccISujHGxIn/B7/xY/tlXCRmAAAAAElFTkSuQmCC\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEACAYAAACj0I2EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8VOXVwPHfSQgJO4SEfQkgIItshkVFURFUcMEqarVIlYq+LrVqVdC6VLRFfatVcaNaxbYqvLhgxRXEDRUBjcgi4oIS1rAHQvbz/nFvJjNkkkyS2XO+n08+ufe5d+6cDMyZZ577LKKqGGOMiX0JkQ7AGGNMcFhCN8aYOGEJ3Rhj4oQldGOMiROW0I0xJk5YQjfGmDhhCd0YY+KEJXRjjIkTltCNMSZOWEI3xpg40SCcT5aWlqYZGRnhfEpjjIl5K1eu3Kmq6dWdV21CF5HewFyvou7AHcDzbnkGsBE4X1X3VHWtjIwMVqxYUd1TGmOM8SIiPwdyXrVNLqq6XlUHqeog4GggD3gVmAYsVtWewGJ33xhjTITUtA19NPCDqv4MnA3MccvnABOCGZgxxpiaqWlCvxB40d1uq6pbAdzfbYIZmDHGmJoJ+KaoiDQEzgKm1+QJRGQqMBWgS5cuFY4XFRWRnZ1Nfn5+TS4bk1JSUujUqRNJSUmRDsUYE4dq0svldOBLVd3u7m8XkfaqulVE2gM7/D1IVWcDswEyMzMrrKaRnZ1Ns2bNyMjIQERqGH7sUFV27dpFdnY23bp1i3Q4xpg4VJMml19T3twC8Dow2d2eDCyoTQD5+fm0bt06rpM5gIjQunXrevFNxJhooqp8tz03qNfcc7AQf6u9Ze/J81seLgEldBFpDIwBXvEqngmMEZEN7rGZtQ0i3pN5mfrydxoTTZ755CfGPvQRK3+usld1wNZs2cfgGe/xt3e/8ynfkZvPyPuWcN6TnwXleWojoISuqnmq2lpV93mV7VLV0ara0/29O3RhhlZiYiKDBg2if//+TJw4kby8PL/njRs3jr1794Y5OmNMXWRtct6z2Xv8v69ravwjnwAwa8n3PuU79hcAsPLnPQy7d1FQnqumbOg/0KhRI7Kysli9ejUNGzbkySef9DmuqpSWlvLmm2/SsmXLCEVpjKmNshaQxITgf0P+bnsudy5YTWmpkl9U4infkVsQ9OcKhCX0wxx//PF8//33bNy4kT59+nDVVVcxZMgQNm3aREZGBjt37gTg+eefZ8CAAQwcOJBJkyYBkJOTw7nnnsvQoUMZOnQoS5cujeSfYowBctzk+t32A0G/9tiHPmLOZz+zavM+cvOLg379mgrrXC7V+fN/17B2y/6gXrNvh+bceWa/gM4tLi7mrbfe4rTTTgNg/fr1PPvsszz++OM+561Zs4Z7772XpUuXkpaWxu7dTmvTddddx/XXX8/IkSP55ZdfOPXUU1m3bl1Q/x5jTM18sdF5f/7zk5+4YUyvul3rJ/8tyxMeW0r/js19ylQ17PfNoiqhR8qhQ4cYNGgQ4NTQp0yZwpYtW+jatSsjRoyocP7777/PeeedR1paGgCpqakALFq0iLVr13rO279/P7m5uTRr1iwMf4Uxpiq1Ta2lpcq4Rz7mtvF9mPTMF5Wet3qzUxlNa9qQnQcKufz5FTw9eWgtn7V2oiqhB1qTDrayNvTDNWnSxO/5lX3ylpaW8tlnn9GoUaOgx2iMqaNaZvS5Kzbx7bbcKpO5t9+M6MrfF21g0Tq/Q3NCytrQa2H06NHMmzePXbt2AXiaXMaOHcusWbM85/n7kDDGxJY1W/ZVeXxs37Y+++cd3QmAts2TQxZTZSyh10K/fv247bbbGDVqFAMHDuSGG24A4JFHHmHFihUMGDCAvn37VugtY4yJPQ0SKqbJxy8eAkCz5AbMviSTZy8dyuXHd+OmU3vTsWUjJrpJPdyiqsklUg4cqHj3OyMjg9WrV/uUbdy40bM9efJkJk+e7HM8LS2NuXPnYoyJHu2ap7Btfz5DM1Jr9fj+HVv47D920RDGHdWejTPHe8pO6t2Gk3qXz0+Y2rQhu93RpOG8MWo1dGNMXBvjNol0S/N/T6w6019Z5bM/fkD7ah/TqnFDikqUPXlFtXrO2rKEboyJa80bOQ0RLRrVbpbTsX3b1fgx//rMWWBoyIz3yLznPbbuO1Sr564pS+jGmHqhtg0fAzuXN7mkNQ3sRucDEwd4tnceKPRMFxBqUdGGHokO+JEQyVnYjKmvSt23XUINh/6v/Hk35z5RPtHWN3eNpWlyYCmzfQvfrsu7DxayaXcenVMb1yiGmop4DT0lJYVdu3bFfbIrmw89JSUl0qEYU6+UpZafdh6sdKRnmR9yDvDp9870Ht7JHKBZSlLAFc9uaU3o0ML3vV5QXFLJ2cET8Rp6p06dyM7OJicnJ9KhhFzZikXGmPBRnIw+f2U281dm+/ROOdzov30IwEc3nVTn5/10+mgAMqYtBKBpcuhXKot4Qk9KSrIVfIwxYfOPj35kWLdUBnaufObUe99cW+mxmvp2xmnsySukXYvQfzuPeEI3xphQOrw19943nQnzqqqpv7Nmu2f7/vMGcO6Q2n+zTklKrNCmHiqW0I0xca2ktPb3564b3ZPzMzsHMZrQivhNUWOMCaXKEvoPOeUjxA8VlvD26q0Vzvlmc9XzuEQbq6EbY+JaaSU96D7ZsJMe6U0BOPeJT1m7teJaDH8556iQxhZsVkM3xsS1/Yf8D79fvz0XgN/NWe43md9/3oCw3MgMpoBq6CLSEnga6A8ocBmwHpgLZAAbgfNVNTjLahtjTJC8lrXFb/kLy37hpN5tKsxbPrZvW/p3bBFTbedlAq2hPwy8rapHAgOBdcA0YLGq9gQWu/vGGBM1Hlm8wWf/lD5teeF3wz37lz+/wuf4k785mtmXZPL70T3DEl+wVVtDF5HmwAnAbwFUtRAoFJGzgRPd0+YAHwC3hCJIY4ypjQff+86zXVU3xTKn9a/5RFzRJJAaencgB3hWRL4SkadFpAnQVlW3Ari/21R1EWOMiZSzB3Wo9pyrT+oRhkhCK5CE3gAYAjyhqoOBg9SgeUVEporIChFZUR+G9xtjos+CStrRy/x6WGduOvXIMEUTOoEk9GwgW1WXufvzcRL8dhFpD+D+9rsiqqrOVtVMVc1MT08PRszGGFMn391zOqf1K29eibXuiZWpNqGr6jZgk4j0dotGA2uB14GyNdgmAwtCEqExxgRZwwYJnkUnOqc2ipvpuwMdWHQt8B8RaQj8CFyK82EwT0SmAL8AE0MTojHG1E6nVo3I3nOIFy8fUeHY19nOKNAHzhsY7rBCJqCErqpZQKafQ6ODG44xxgRHSamSvecQ3dOacEyP1pWeV1wSP2sx2EhRY0xc2n2wEIAfdx70e/yJi4cAMLRbq7DFFGo2l4sxpl46/aj2AfVNjyVWQzfGxKyt+w6Rm+9/rpaiklIAGtRwLdFYZgndGBOzjvnr+4x58CO/xwqLnYQ+89wB4QwpoiyhG2Ni2rb9+X7Lv93mzKD4y+68cIYTUZbQjTEx6VBhiWc7v6ikwvFt+5xEnxgnfcwDYQndGBOT+tzxtmf7yNvfZl9eEQcKij1ljRs6fT5G96k/00xZQjfGxIWBd79L/zvf8YwAvfnlVYD/2nu8soRujIkrV/5rJarKr4Z0BGBAp5YRjih8rB+6MSaufJ29j27T3wQgJSmBhg3qT721/vylxpi4cnoAi1GkJCWGIZLoYQndGBOTirzmYGnS0H/i3pvnf9BRvLKEboyJSYvWbQfg/vMGcLCw/tz4rIoldGNMTNh1oICMaQt5eWW2T/n5mZ0rfUy/Ds1DHVZUsYRujIkJZbMm3vh/X1d6zkMXlM9t/tFNJzHvimNCHlc0sV4uxpiYkOg1yVZJqf85zJMblLeld2ndOOQxRRtL6MaYmPDBt+XLFn+w3u8SxpzQK50N955O/Rns78sSujEmqHLzi8gvKiW9WXJQr/vI+997tvPcm6DnHd3J55ymyfU7pdXvv94YE3RH3fUuQEgXjyjrX37JMV1D9hyxyG6KGmNCYn8lC08Ew+XPrwDK+5nPOLsfo3qlh+z5YkVACV1ENorINyKSJSIr3LJUEXlPRDa4v+NnYT5jTJ299tXmkD9H/44tAJh0TAZzLhsW8ueLdjWpoZ+kqoNUNdPdnwYsVtWewGJ33xhjALhjwZqgXq9jy0YVylKbNAzqc8S6ujS5nA3McbfnABPqHo4xJlaVliqllXQnDIa2zYN7kzUeBXpTVIF3RUSBp1R1NtBWVbcCqOpWEak/s8gbYyrofuubFcq+255Lr7bNgnL9AwXFJAiUfWZUNn9LfRZoQj9OVbe4Sfs9Efk20CcQkanAVIAuXbrUIkRjTLR7b+12v+V7DhYG5frzV2bz3fYDPmVDutptu8MF1OSiqlvc3zuAV4FhwHYRaQ/g/vbb019VZ6tqpqpmpqfbXWhj4tENc7P8ll8w+/OgXP+Pfob7Tzv9yKBcO55Um9BFpImINCvbBsYCq4HXgcnuaZOBBaEK0ph4kptfRMa0hWRMW8hH3+VEOpygKCwprfTY0HsXkTFtYa2vreq/Xb5Ns5RaXzNeBdLk0hZ4VZyVsxsAL6jq2yKyHJgnIlOAX4CJoQvTmPjQ49Y3feYhueSfX3BKnzb845JMJIZXpy+qIqHn5BYAUFhcWqvVgwqK/V+7ZeOkGl8r3lX76qrqj6o60P3pp6r3uuW7VHW0qvZ0f+8OfbjGxB5VpaiklHkrNnmSeZfUxlw3uicAi9btoNv0N8mYtpDcEA7GCaXDO7c08zMEv7b90r0T+nOXDgXgj2N7kZRo4yIPZ0P/jQmxsvUty9w2rg+Xn9AdgItHdGHYvYs9x466613++dtMTj6ybVhjDLav7xxbodfLzS+v4vyhlc9dXpmCImfelnsm9OfE3m1COqVArLOPOGNCyN80r2XJHJx24I0zx/PtjNM8ZZc9t4JJzywLS3yhMLBzSxISqm8+2n2w0NMcU5WyGnp9Wx+0NiyhGxMCm3bnkb0nz7O6zs2n9ebqk3qw5I8n+j0/JSmRn/46zrP/8YadvLDsl3CEGnQXVLKCUOJhSX7IjPcYeu+iav/OgmKnhp5ci/b3+sZeIWOC4MUvfuE/y34GYPnG3Rx//xJG3reEm19eBcDQjFRuOvVIuqU1qfQaIsLGmeOZcXY/AG599ZuQ94L58pc9bNieW6drHP4tpPSwXimn9mvrOS9j2kKW/biL/KLyNUBvffWbKnvB5Bc5NXRL6NWzV8iYOtqwPZfpr3zDba+uJmPaQiY++ZnnWNvmycydOoLMGgyCmXRMBhMGdQCcXjCh9KvHP2XMQx/V6WbsjDfW+uxntPb90HpqUqbP/gWzP+fWV76pcJ2f3CXmDlfW5JJsTS7VsoRuTB3s2J/PmIc+8nvsi9tGs+zWUxjevXWNuyQ+MLF8bczlG/13INu675CnP/ucTzdWe815yzex7Mddnv3rXvrKs102h3lteK8e9Ma1IxnZMw2AD286kUU3nOD3Ma/46fHyY84BP2fCtn35AKRYDb1a9goZUwfD/lLeQ+WLW0fTPKUBsycdzU9/HVengS9JiQmexRsmPvkZQ+9dxMOLNnCwoNhzzjF/fd+zfefra9ixP7/S6+3LK+Lml1d5Rm6WlCoLsrb4nOPdDFITJV5NLGXT2QJ0bd2EI9oEPo/LroOFfPXLHu5/+1ufudSvfuFLAJqlWL/z6lhCNyYI2jVPoU3zFFbddSpj+7ULyiCh6af38Wzn5Bbw0KLv6HfnOxQWl7LdT/I+/6nPKpSVGXi3bw18/6GKTSxnPPpJreIscNu4K7sZCuX9x6ty8/xVnPP4pzz+wQ8M8PONoUmyNblUxxK6MbVU7DU68v+uPCbo12/U0LfnS5lef3qL4V7fDN75g9OssXFXXkDXVVVmLCxv9/7vNSMB+H7HAfbm1XwyrSPbNwfg+F5plZ5TVf/xZbeO9lt+9X++ZPwjH3v2u7au/IaycVhCN6YWVJU/vbYagLvP7kfn1MYheR4R4fVrjqvynN7typs1FmRVbJs+fC6Uucs38cqXznnnZ3biqE7lzSR3vl7zRSkGd24JwLj+7as99+ELB3H9Kb18yto2T6Ghn1GfC7/Zypot+wFqdFO5PrOEbkwt3P/Oel5avgmA9KahXXhhQKeWbJw53vNz1sAOnmMv/G444HyoALzq52bjjsMG70zz6mEyuItvolyQtYWsTXvZkVt5e/zhHl68ASCgwURnD+rIdaf09Oz36+DU7qua3Avg2CMqr/2bcpbQjamFJz74AYCUpAROP6r6mmkwNfZa2KEs0Z3u1o4/WF+x3/o+t738xjG+NeM+7ZtzoTsU/6ELynvVTHhsqc90BKHkb/ELf2uDbtt3KBzhxDxL6MbUkHcTxrczTg/78xeVVJxOoFlK+bRMx9//Pqc8+CFZm/aSX1TCWLdbZcdWvmtyvnXd8Z6bt+cM7lQhkYZyObkyf/3VUT77KUkJjOqV7hlE9JsRzqI4wVr1KN7Z5FymXlu3dT9tm6f4XWz4/W+3c9lzKyIQVdVe/tKZTuBCr4muvEdRbtrt1GYnPLbU53FnDOjAn/+7lqO7tuKpSUdXuO6oXunMumgw17zg9E8/UFhM8xB1FTz8Bum3M07j3oXrmOrOc7PiT6dQWFxK66bJXDmqB+1bVFwg2lRkCd3UW6rK6Q9/TI/0Jiy+8USfY9e88CVvrNpa6WMHdmrB7EsyKz0eSilJCeQXlXLpcd08ZdV1k/zittE0bJDA13eOrfK8MwZ04LWvNrNo3Q7+b0U2U0Z2q/TcklKlh591RGsjJSmRGRP6e/a9+5x3ahWaG87xyBK6qZcOFhR7Bqz8kFM+5DyvsJj7317vk8yXTjuZ+976lnOGdGRUz/SAbv6F0ufTR5O1aa9P7xZwBjb97d3vuGBYZ7qmNmbV5n3MW76Jnm2a1miQ0253HdC3V2+tMqF7J/OqzjPhYwnd1EsLV231uYFY2eRQZU0Dj/x6cFjiCkTLxg05sXebCuVtmqdw33kDPPsn9W7DSX7Oq87VJx3BlDkryM0vrvSc7D2+fd47tLQmkWhgN0VNvVQ2C2JV1t19WrXnxKPRfZzZEY/yGsZ/uL15viNNdx2ofl5zE3pWQzf12hUndCcpMYFZS74n644xJCYIr2Vt4cwB7WnUsP4ONe+e3oS8KuZ2OXwN0cP7s5vIsIRu6qVmyQ3ILShm+jhnvpQ/ntrbc2zSiK6RCitqNEtJYl9e5VPqHixwkv1LU0eQmCAcbQk9KliTi6mX+ndsYcPJq7Bx50E++X4nOw8UkDFtIe+s2eZz/IA762PT5AYMzUiN+I1i4wg4oYtIooh8JSJvuPvdRGSZiGwQkbkiUrEjrzFRxHsNy/Xbc2nlp++5cZSNLs28ZxEAV/xrpefYocISzxzoTZPtS340qUkN/Tpgndf+fcBDqtoT2ANMCWZgxgRb2RqWhwpL2H2wkPfWbo90SDGlbOToyPve98xj08QSelQJKKGLSCdgPPC0uy/AycB895Q5wIRQBGhMsOUVOs0F3iMtja/Xrq44w+Med2rdXQfLp9j1nnLARF6gNfS/AzcDZbe2WwN7VbWso2o20NHfA0VkqoisEJEVOTmhXfDWmMp4r8Zz6t+dObb7VdEtr74b1Lklw7ul+pT9YW4Wq7L3+pSl2DqfUaXahC4iZwA7VHWld7GfU/3O5KOqs1U1U1Uz09PTaxmmMXVzptdqPDvdPtPHdG8dqXBiwtwrjmHjzPGeWRo/3rCTs2aVzw8z0J0H3USPQL4vHQecJSLjgBSgOU6NvaWINHBr6Z2ALVVcw5iI2rDDdwHiWRcN5og2TSMUTWy5aHgX/vbedz5l715/gs2AGIWqraGr6nRV7aSqGcCFwPuqejGwBDjPPW0ysCBkURoTRAniTEJlAtO6aTJDuji18TbNkhnYqYUl8yhVlzsatwAvicg9wFfAM8EJyZjgK5uhEOCKUT0iHE3seeWqqpfBM9GhRgldVT8APnC3fwQqLi1iTIgUFpeydd+hWi0WnNY0mew9zjzh1558RLBDMyYq2EhREzOmvbKKUQ98QG5+5UPSK3OgoJiLhnch644xNG5oXe1MfLKEbmLGR9853V7L5hGpiUOFJTRLbkDLxjY61MQvS+gmZiS4q/KUDQwKlKpSUFzqs0ybMfHIvnuamJHoTgC1dV8+3dMD63K4IGsz77pD/G2Yuol39j/cxJzXs7Zw3BFpAZ173UtZnu1uaTW/mWpMLLGEbmJGQbHT7TDDTcxZm/aSX1RC19aNOeexT9m2P5+OLRsxqHNLhma0oktr38WFh3ezkaEmvllCN1Hvg/U7aN4oybN4cUGxc1N0wmNLK5y7ee8hNu89xMJvtvqUv/2H42nROKnC+cbEE0voJur99tnlPvsvfvEL73+7w++5N47pRUpSIve+WT7T8ytXHcuR7ZqHNEZjooEldBNztu8vYPv+8kWJN84cX+Gcy0/oHs6QjIkK1o/LxLRnJmdGOgRjooYldBMznr10qM/+05dkMrpP2whFY0z0sYRuotrf3l3v2R7V03c+/VP6WjI3xpsldBM0+/OL2LQ7L6jXfPT97wGYfvqRPivLP3+ZzQtnzOHspqgJmgmzlvLjzoN+b1LW1un92/HhdzmeKW+DeW1j4o3V0E3Q/LjzIABLKulSWBulqnRu1bj6E40xltBN8H23PTdo1youUc8cLsaYqllCN0HXrkVK0K6180ABac2Sg3Y9Y+KZJXQTNJ1aNQKclYVqa8JjS7nupa8AZ9rbr7P3UVJa++sZU5/YTVFTIwuyNpOTW8Dvjq84ErO0VAG4af4q1m7dT9PkBmRmpCI4c5mLgCooSqk655eqcqiohPXbcumW1oSsTXvJ2rSXBVlbuCCzMwDd0wKbKteY+s4SuqmRsuloJx+bQVKi7xe8JK8FJJ5durHOzzV3xSYArjzRFnU2JhDVJnQRSQE+ApLd8+er6p0i0g14CUgFvgQmqWphKIM10aPnbW9xxQnd6Z7ehIlHd6b7rW8C0L5FClv35XPFqO7069CCDm57ekmpIu6KQwkCIkKClC9asWVvPi0bJ9G2eQq7DhSwevM+jjsijTbNUmyWRGMCFEgNvQA4WVUPiEgS8ImIvAXcADykqi+JyJPAFOCJEMZqosxTH/0IQG5++ZJw/ztxYMCLT3gb0Kl8u1taEzIzUuscnzH1TbU3RdVxwN1Ncn8UOBmY75bPASaEJEIT9e5Z6ExV++ez+tUqmRtjgiOgXi4ikigiWcAO4D3gB2CvqpZVzbKBjpU8dqqIrBCRFTk5OcGI2URQk4aJlR4barVqYyIqoJuiqloCDBKRlsCrQB9/p1Xy2NnAbIDMzEy/55jYcbCwhON7ppGTW8AfTulFo4aJvLtmGyO6t6ZvB1tEwphIqlEvF1XdKyIfACOAliLSwK2ldwK2hCA+E0U++2EXAD/tPMgnt5zsKR/VK72yhxhjwqjaJhcRSXdr5ohII+AUYB2wBDjPPW0ysCBUQZro8PMuZ66W7D2HIhyJMcafQGro7YE5IpKI8wEwT1XfEJG1wEsicg/wFfBMCOM0UeCINs4An9vP6BvhSIwx/lSb0FV1FTDYT/mPgE1KXY+43cg9id0YE11sLhcTMHVvadvch8ZEJ0voJmBlXZTEMroxUckSuglY2eRbCZbRjYlKltCNX8UlpeQXlfiU3fn6GsCaXIyJVpbQjV8X/WMZR97+tk/Zt9uclYgK6jDfuTEmdGz6XOPXFxt3A5AxbSHDuqX6DB7KOVAQqbCMMVWwhG6q9cVPu/nip92e/bF920YwGmNMZazJxfh1Yu+Kw/mPaNOUP43vQ8vGDSMQkTGmOlZDN341bphIm2bJfHjTSTSqYoZFY0z0sBq68UsVWjZOsmRuTAyxhG78KlW1/ubGxBhL6MavUsWzBqgxJjZYQjd+qSoJls+NiSmW0I1fTg090lEYY2rCErrxS60N3ZiYYwnd+GVt6MbEHkvoxq9Sa0M3JuZYQjd+qdo0ucbEGkvoxq9SVZsm15gYY0P/jV+f/rCLRkk2StSYWFJtDV1EOovIEhFZJyJrROQ6tzxVRN4TkQ3u71ahD9eEw7zlmwA4dNgCF8aY6BZIk0sxcKOq9gFGAFeLSF9gGrBYVXsCi919EwdufnkVAC9cPjzCkRhjaqLahK6qW1X1S3c7F1gHdATOBua4p80BJoQqSBM+m3bnebaP7ZEWwUiMMTVVo5uiIpIBDAaWAW1VdSs4SR9oE+zgTPjd+uo3AFw5qkeEIzHG1FTACV1EmgIvA39Q1f01eNxUEVkhIitycnJqE6MJo4837ATgspEZkQ3EGFNjASV0EUnCSeb/UdVX3OLtItLePd4e2OHvsao6W1UzVTUzPb3iKjgmery9ehsAx/dMo02zlAhHY4ypqUB6uQjwDLBOVR/0OvQ6MNndngwsCH54Jpyu/PdKAH4zomuEIzHG1EYg/dCPAyYB34hIllt2KzATmCciU4BfgImhCdGEw968Qs/2qf3aRTASY0xtVZvQVfUTqHTQ4OjghmPC7ZQHP+T7HQc8+/ede1QEozHG1IUN/a/Hfsw54JPM+7ZvzgVDu0QwImNMXdjQ/3ro4UUbeGjRd579MX3bMuuiwSQ3sKH+xsQyS+hxrqRU2XWwgNJS2LAjl0nPfFHhnCd/czSJNleuMTHPEnocy5i2sNJjt5x2JBcM7YyAJXNj4oQl9Dj0ypfZ3DDva7/H/jVlGMf3tPEAxsQjS+hxprRUfZL5XWf2ZfKxGbacnDH1gCX0OHPCA0s8259PH027Fjbi05j6whJ6HLn9tdVk7zkEwIZ7Tycp0XqlGlOfWEKPcUUlpfS87S2fsjeuHWnJ3Jh6yN71Me6if3zus//KVcfSv2OLCEVjjIkkq6HHqL15hQy6+z3P/uIbR9EjvWkEIzLGRJol9BiUX1Tik8zX3X0ajRraKE9j6jtrcolBn7iLUAC8dd3xlsyNMYDV0INqyfod9GrbjI4tG9Xocas376OguISGiYkc1clp/1ZV8gpLSEwQikuVpEShsLiU99Zu9/QzX/mnU2jVBxLXAAAPeklEQVTdNDnof4cxJjZZQg+SLXsPcemzywHYOHO833P25RVRqsqevEKSEhPonNqYa1/8iv9+vcXnvOHdUln20+4qn2/kEWmWzI0xPiyhB4GqcuzM9z37GdMW8sB5A/jVkE6UqpKUmEBufhED7343oOtVl8wB/v274bWO1xgTnyyh19HWfYf4n39/WaH8pvmruGn+KgCGZrRi+cY9lV7jhcuHc2yPNEpKlR63vukp/+mv4wDYn1/Ma19t5pS+bWnZKIkmyfbPZoypSFQ1bE+WmZmpK1asCNvzhdpV/1nJm99s8+zPumgw17zwVUCPbZbSgPvOHcDp/dvZPCvGmCqJyEpVzazuPKvq1dKcTzf6JPOv7xhLi8ZJjD6yLUmJwhGHjd4E+PeU4fRq25T0ZsmWxI0xQWcJvYaKSkpZvXkfd76+BoArTujO9HF9PMfLuhD269CcNVv2M2NCfy4a1sXmHDfGhFy1CV1E/gmcAexQ1f5uWSowF8gANgLnq2rljcRxYOn3OxGBGW+sY93W/QDMv/IYMjNS/Z4//8pj2XmggM6pjcMZpjGmHgukhv4cMAt43qtsGrBYVWeKyDR3/5bghxd5qkq36W9WKH/yN0MqTebg1NQtmRtjwqnahK6qH4lIxmHFZwMnuttzgA+Ig4SuqhwoKOZQUQnnPPYpm/ce8jnepGEix/RozexJmSRYE4oxJsrUtg29rapuBVDVrSLSJogxhc3BgmLmLt/E3W+srfK8Jg0T+eSWk2nVpGGYIjPGmJoL+U1REZkKTAXo0qVLqJ+uSkUlpXy8IYfLnqu+6+TVJ/Xg2pN7kpJk86QYY2JDbRP6dhFp79bO2wM7KjtRVWcDs8Hph17L56ux+9/+lsc/+CGgc1ObNOSoji14ZnImDWxhCGNMjKptQn8dmAzMdH8vCFpEQfDo4g2VJvPWTRqy62Ahq+4aS/OUpDBHZowxoRNIt8UXcW6ApolINnAnTiKfJyJTgF+AiaEMsoyqVjkgZ/fBQp755EceW1KezH97bAZTRnYjuUECbZrbgsnGmPgVSC+XX1dyaHSQY6nUpz/s5LZXV/PTzoOAM8eJd2LfsT+fY2e+T3FpeYvOsG6pzLvimHCFaIwxERcTI0Uv+scyn33vfuGdUxuxabdv98L/XjPSM6+4McbUFzFxB/CJi4cAcMtpR1Y45p3MP5t+Mhtnjrdkboypl2JutsXSUiWvqMSzgs/Pu/LonNqYFo3sBqcxJj7F7WyLCQlCU3c+8OQGifTvaLVxY4yBGGlyMcYYUz1L6MYYEycsoRtjTJywhG6MMXHCEroxxsQJS+jGGBMnwtoPXURygJ9r+fA0YGcQwwmFaI/R4qu7aI8x2uOD6I8xGuPrqqrp1Z0U1oReFyKyIpCO9ZEU7TFafHUX7TFGe3wQ/TFGe3xVsSYXY4yJE5bQjTEmTsRSQp8d6QACEO0xWnx1F+0xRnt8EP0xRnt8lYqZNnRjjDFVi6UaujHGmCpYQjfGmDgRdQldqlo0NEqISNS9bt5i4TWMBdH6OopImvs7KuMDEJFE93dUxigi7dzfURlfbUVFYhKR3iJyFIBGaaO+iAwTkdsBVLU00vEcTkT6iciJEJ2vofv6/SWaPwxFZKSIPCEiV0H0vY4iMlhE3gSuh+iLD0BEjhOROcCfRCQ12mJ0X8PFwAyIztewLiL65hKRBiLyDPA68KiI3Cgind1jUfHJKSItReRR4FFgl1sWNUlJRBJE5HHgZeBWEZkhIpllxyIbHYhIcxF5DJgFZKtqabT823oTkSHAE8BKYJyIPCQigyIcFuD5N54DPAu8oKq3RTomf0SkO/A4sAToCswQkfGRjcohjoeA54E5qnp5pGMKhUi/4bsCzVS1N/A/QDpwlYg0iqJPzlnAKFUdrqqPQ9TV0FsCTYE+wMU4Hzo3ikjTKInzVmAEMNbr9YuWf1tvw4Dlqvo08DsgDyexp0U2LM//t1bAWlX9N4CIpEfhB+PRwDpVfQ64EcgCziirpEWS+3+uKfCVqj4PICI9oqHSE0xh/2NEZIiI9HJ3k4BMEUlS1XU4NfUmwLnhjsubG2Mfd/d/gQQRSRKRM0VkuoiME5GUCMbXzev5U4FjgcaqmoNTU98NXO2eG/Y3vRtfY3f3eSAHaCMi54nI/4rIhSLSJdxxeROR80XkBhE51i36EmgqIu1UdRvwPs6cHsdFOL6RbtFkYKyI3CQiS4BHgNkiUu38HiGMcYTXexlgOdBJRDqr6h5gKbAXOCdK4rsRGC4it4vIUuAB4DkROToS8YVC2BK6+yZfCDwG/EtExqjqt8Bi4DfuaV8DXwEDRaRluGKrJMbn3BizgM+AbcDvgQPAHcC1IpIa5vgyROQt4GngPyLSV1W/Bz4CbnBP2wq8AgwWkQ7hrA0fFt+/3PjWAh8D7wBXAeuBicBNItIpXLF5xZgoIncAt7hFT4nImcBBYCMwyi3/ENgHhLUJ0E98T4jI+W6CfBin/fwu4BqgGXCxiIR1bWC3GXIh8B5wvog0dQ/lA58A57v764G1QOtwVoD8xNcEQFX347y3zwWmA7/Geb+cG8kPxmAKaUI/7E3wRyBLVY8BFgCXuOUfA8e4yecgkA10Ag6FMrYAYnwN56s3OG+iO1V1jKo+CtwGDAaaRyC+Zao6Gqed8s8i0hd4DhghIt1VtRjYjvPmahTh+Ga47aoPAHep6smq+g/gdpyvv91CHd/hVLUE6A3cqKoPAn8GrsVZMH0rMMj9ICrGSUjnuI8Lywejn/juBK4WkV6qOgPoo6ofquou4EVgghtrODXB+YC+1t0+wS3PAT4HjhKRYe7fshk4TlXzoyA+VPUR4CRV/UhVC3De55k4TWwxL9Q19BTwvOkPAkVueXNgg4h0xald7gBuco8tBjoShmRZTYwtgNXum/uAqs7ySl6fAG0Iz3+CsvjKamFrAFR1Fk6774XAFpyvu/e7x1bj3J8oiHB8RwNTgSaqOqfsAW6tvR3wSxjiQ0QuEZFRXt/6tgOtRKSBqs4HfgBOwfm/lw/c457XEVge6hpwNfG9AnwDXCQioqr7vB7aA1gmbhfBMMXYXFU34wyPn4fzeg0TkY5uAv8c51v2Q27NvR/wi1cTXCTiGy4iHcrOdb/tlDkapxJZEsr4wiUkCV1ExojIe8AD7tdFxUmCPUXkK+A0nBrRXOBI4BngFHHuQn+D0/SSG4rYahhjIjBHRMaKSIKqqjh37d/B+Sq5P4zxFeO0jQ8WkYEiMhBYjVPLTcRJQp1E5FERWY0z7/y+UDUV1CC+TkBbr8edJU63sS3A7hDGJyLSXpz25sk4N4wfc5PMTuAonG8J4DRlTAJ2qOqfgb3uV/YLgadDUQOuYXyP4nxTKOs7PVpElgEnA/9wE2nQVRLjEyKSpqr5qpoHLMK5YXsygKpuU9WHgWXAP3GaU+9zz414fO7jkkXkRBFZAZwKzAzzN4jQUdWg/gBH4Pxjno3TLPEC8Ef3WG/gFa9z7wAecbczgDOBXwU7pjrGeDvwEM6H33ic2sfZYY7vRZz252ZuPG/gfPhkurH/wX1cW5wbpGdFWXzXuI87Fqdb4IQQx5fo/u4F/NvdboDTpe4ZnJ5B7+B8FW/sHp8HXO9uJwHpURbfXK/X8SzgnAi9ho96vz/c8utxKhQtcHqtgVPJaBaF8TXy+r8Y0v+HkfgJ1oubACS42xcDj3sduwznTndbnG6JD+O0AwKMBOaXPTakf2jdYxSgQYTim+LGl+7ud/c6djXwO3dbojC+a8riC8O/cQPgL8B9ODc3z8Tpc+z9N+zAaQaY7CbQC9xj/wGG1+f4AoxRcO41jPIqawr8HfgCp7moQ5TGtzzU8UX6p85NLiJyKU4b1Ay36Bvg1yKS4e4nAT+6x3Nxutn9XkSuA57C+UoU0htOQYhxMYCG6OZTAPE1wGnnfcjd/8l93FScZPqlG19IXsc6xndZWXyhJCKjcGr/rYDv3ViLgJNEZBh4+nP/GXhAnTb9d4FL3Ca2Bu7fVS/jq0GMCtyN09OmzHicb2hfA0ep6pYojS8rlPFFhTp+WjbFuUt8Hc6b9ki3/O84X8OXAv/GaQ98C+eOcx+cu89zgBGh/sSK9hhrGN9CoK17/A84NY6h9Tk+rziPByZ57T+OM1jtt8BKtywBpx16PtDZLWuH1zeK+hpfLWKcB2S4ZWcDJ9T3+KLhJxgvchf390xgrrudiFPLHenud3aTY8OI/JFRHmMN4nsOSHb3G1t8PjE2BpIpb1u9GPiru50FXOtuZwIvRuDfOKrji4UYoz2+aPipc5OLqpZ1Pfs70E1ETlXnrvs+Vf3EPXYlTpfAiHQNivYYaxBfHlDsPiZs/WajPb6y51PVAi3v8TEGp180wKVAHxF5A+dbRcibgGItvtrGGKpeSrEYX1QI8ifoFcCHXvvDcAYRvQm0i/SnVyzEaPHVOb5EnK/dbwFHuGVH4PQcGQl0tPhiO8Zojy+SP0Fbgs7tp10qIvNx7jIX4Nzw3KCqPwTlSeoo2mO0+OrOrZE1xJl+4FWcm7K7cL6Oh2zcQKCiPT6I/hijPb6ICvInZ2OckZ87gd9H+tMqFmO0+IIS4wigFKcv/JRIxxNr8cVCjNEeX6R+gj2k+Sqctqsx6syTEI2iPUaLr+6ycebbeTBKY4z2+CD6Y4z2+CIiaE0uUP6VPGgXDIFoj9HiM8bUVlATujHGmMiJq9U6jDGmPrOEbowxccISujHGxAlL6MYYEycsoZu4JSIlIpIlImtE5GtxFl2u8v+8OOuiXhSuGI0JJkvoJp4dUtVBqtoPZ96PcThrdFYlA7CEbmKSdVs0cUtEDqhqU6/97jhT+qbhrLn6L5zpksFZDehTEfkcZ/rkn3Bm33wEZ5bJE3Fm+ntMVZ8K2x9hTA1YQjdx6/CE7pbtwVnHNhcoVdV8EemJM91qpoiciLMc4Rnu+VOBNqp6j4gk48z/PlFVfwrrH2NMAEK6mrkxUahsOtUkYJaIDMKZMrlXJeePBQaIyHnufgugJ+6qTMZEE0vopt5wm1xKcNbtvBNnfcmBOPeSKlv1XXBm8XsnLEEaUwd2U9TUCyKSDjwJzFKnnbEFsNWdl2YSzhzb4DTFNPN66DvA/4hIknudXiLSBGOikNXQTTxrJCJZOM0rxTg3QR90jz0OvCwiE4ElOKtVAawCikXka5wl9R7G6fnypTsPdw4wIVx/gDE1YTdFjTEmTliTizHGxAlL6MYYEycsoRtjTJywhG6MMXHCEroxxsQJS+jGGBMnLKEbY0ycsIRujDFx4v8BgKt+wbQYX2YAAAAASUVORK5CYII=\n",
"text/plain": [
- ""
+ ""
]
},
- "metadata": {},
+ "metadata": {
+ "needs_background": "light"
+ },
"output_type": "display_data"
}
],
@@ -230,12 +228,14 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAKHCAYAAACl7s3RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XecVNX9//H32dnGsvQFpClVEAtFBBWxoiL2xJiYxBij\nwcTEmMQSjMZoihL1m+IvmsQkJsaS2KNGbChIjAUBQUCQIr0uHbbOztzfH3fKnV526u7r+Xj4uHXu\nfFCy+845555jLMsSAAAA0lOS7wIAAACKGWEKAACgFQhTAAAArUCYAgAAaAXCFAAAQCsQpgAAAFqB\nMAUAANAKhCkAAIBWIEwBAAC0Qmkuv6ympsYaOHBgLr8SAAAgLQsWLNhpWVbPRPflNEwNHDhQ8+fP\nz+VXAgAApMUYsz6Z++jmAwAAaAXCFAAAQCsQpgAAAFohp2OmonG73dq0aZMaGxvzXUpWVVZWqn//\n/iorK8t3KQAAIIPyHqY2bdqkTp06aeDAgTLG5LucrLAsS7t27dKmTZs0aNCgfJcDAAAyKO/dfI2N\njerRo0ebDVKSZIxRjx492nzrGwAA7VHew5SkNh2k/NrDnxEAgPaoIMIUAABAsWr3YWrv3r168MEH\nU/7c1KlTtXfv3ixUBAAAiglhKkaYamlpifu5mTNnqmvXrtkqCwAAFIm8v83ndOdLy/TJlv0ZfebI\nvp310/OPjHl9+vTpWrNmjUaPHq2ysjJVVlaqW7duWrFihVauXKmLLrpIGzduVGNjo66//npNmzZN\nUnBpnIMHD+qcc87RSSedpHfffVf9+vXTCy+8oA4dOmT0zwEAAApTwpYpY8xwY8wixz/7jTHfN8Z0\nN8a8YYxZ5dt2y0XBmTZjxgwNGTJEixYt0r333quFCxfqd7/7nVauXClJevjhh7VgwQLNnz9f999/\nv3bt2hXxjFWrVuk73/mOli1bpq5du+rZZ5/N9R8DAADkScKWKcuyPpU0WpKMMS5JmyU9L2m6pDct\ny5phjJnuO/5Ra4qJ14KUK+PHjw+ZC+r+++/X888/L0nauHGjVq1apR49eoR8ZtCgQRo9erQk6dhj\nj9W6detyVi8AAMivVMdMnSFpjWVZ6yVdKOkR3/lHJF2UycLypWPHjoH9OXPmaNasWXrvvfe0ePFi\njRkzJupcURUVFYF9l8uVcLwVAABoO1INU1+S9E/ffm/Lsrb69rdJ6h3tA8aYacaY+caY+bW1tWmW\nmT2dOnXSgQMHol7bt2+funXrpqqqKq1YsULvv/9+jqsDAACFLukB6MaYckkXSLol/JplWZYxxor2\nOcuyHpL0kCSNGzcu6j351KNHD02cOFFHHXWUOnTooN69g5lwypQp+uMf/6gjjjhCw4cP1/HHH5/H\nSgEAQCFK5W2+cyQttCxru+94uzGmj2VZW40xfSTtyHx5ufHEE09EPV9RUaFXXnkl6jX/uKiamhot\nXbo0cP7GG2/MeH0AAKBwpdLNd5mCXXyS9KKkK3z7V0h6IVNFAQAAFIukwpQxpqOkMyU95zg9Q9KZ\nxphVkib7jgEAANqVpLr5LMuqk9Qj7Nwu2W/3AQAAtFvtfjkZAACA1iBMAQAAtAJhCgAAoBXafZja\nu3evHnzwwbQ++9vf/lb19fUZrggAgALl9UqN+/NdRcEhTBGmAABIzpy7pRkDpPrd+a4kaMtH0t/P\nk9wNie9d9YZ0RxfpYGZXZEll0s7se2W6tG1JZp95yNHSObFnbZg+fbrWrFmj0aNH68wzz1SvXr30\n1FNPqampSRdffLHuvPNO1dXV6dJLL9WmTZvk8Xj0k5/8RNu3b9eWLVt02mmnqaamRrNnz85s3QAA\nFJplvhmS6ndJVd3zW4vfS9+Xti6Stn8i9T82/r3v+xpP1r4tHX1JxkoorDCVBzNmzNDSpUu1aNEi\nvf7663rmmWc0b948WZalCy64QHPnzlVtba369u2rl19+WZK9Zl+XLl3061//WrNnz1ZNTU2e/xQA\nALRTWxfZW8ub+F5/g81rP27DYSpOC1IuvP7663r99dc1ZswYSdLBgwe1atUqTZo0STfccIN+9KMf\n6bzzztOkSZPyWicAAAjjaU58z5EXS/MekoadmdGvLqwwlWeWZemWW27RNddcE3Ft4cKFmjlzpm67\n7TadccYZuv322/NQIQAAiKqiU+J7qnvb20VPSB89Jt28NiPdle1+AHqnTp104MABSdLZZ5+thx9+\nWAcPHpQkbd68WTt27NCWLVtUVVWlr371q7rpppu0cOHCiM8CAIAcO7A9uO9tSXy/2/fSmL9L8J5B\nGSmj3bdM9ejRQxMnTtRRRx2lc845R1/+8pd1wgknSJKqq6v12GOPafXq1brppptUUlKisrIy/eEP\nf5AkTZs2TVOmTFHfvn0ZgA4AQK49cFxw3+tJfH/dzqyU0e7DlCQ98cQTIcfXX399yPGQIUN09tln\nR3zuuuuu03XXXZfV2gAAQAyN+4L7Xndwv7le2jxfGnRy6P0et7Kh3XfzAQCANsDZzffkV6RHzpca\n9oTe05LEXFRpIEwBAIDkWFa+Kwhq2Bt67Gx12rzA3jbXhd7T0hR6XNklI6UURJiyCuk/Tpa0hz8j\nAKCNO7DN3m76ML91SMHB5H7+MVPPXh3s/gufLiH82FWRkVLyHqYqKyu1a9euNh02LMvSrl27VFlZ\nme9SAABIn9vX0jPvofzWIUUOOPePmVrydPDcpgWh9zhbryZ8S2ppzEgpeR+A3r9/f23atEm1tZld\nJ6fQVFZWqn///vkuAwCA1iuEBhB/eKo5XNq50p43avjU0Hueu1rqO1qqGWYfO8OUq0xq2m//WYxp\nVSl5D1NlZWUaNCgz8zwAAIBcKIAw5fENOB95kTT3HunTmdGnR1jyjHTqdDswed1SRRfpnF9JM2+y\nry/+lzT6slaVkvduPgAAUGSSWQcvm7Z+LL31M3u/rEPwfLSJO9+eId3ZVXI32mOmDjvBDk/dfQ05\nDbtbXQ5hCgAApCbf3XzPTZOWv2Tvl1UFz8ebBf334+zWrBJfp9ykG+ztaz9udTmEKQAAUNhamqU1\njpVGapcH98scL3c1hk2X4LRvo7RjmeQqt48rO2esvLyPmQIAAIjrFz3t7bQ5UlVN6DXnXFIvfDfx\ns/ZvtrcHHS++7Vgh9RqRdnm0TAEAgNTkq5uvcZ9kwqJL9yHB/c8crVfO7j+njR/Y294jg+f+fm6r\nyiJMAQCAFOUpTJWURU5jMOys6PceNjH+sw452n6eZE+R0JqyWvVpAADQ/uSrZergdmnWnaHnSmJE\nmb6jpZ/siv+8WzbZ2xOS6B6MgzFTAAAgRXkKU89cGf18zyNCB6Vf8jfpiPMlV4KYU1Zpdwd63fHv\nS4CWKQAAkJp8zzMV7vLnQ4+P+pw9w7kk9fQNLD/ttuifLesgNddHv5YkWqYAAEBqctnN500iuHXu\nE9w/+ebQa1e+Iu1dL/UdI5VWSINPCb1e1lFyN7SqRMIUAABIUQ7DlBVliZhoRpxnv6nnn4zTr6q7\n/Y8kTfxe5OfKq4ILOKeJMAUAAFJjXLn7rmjr7fk539j70uPpPZ9uPgAAkHPlMeZwyoZYS8R8b5FU\n3av1z6ebDwAA5Fznfrn7rmjdfCf9MLhQcWuVV0l1tYnvi4O3+QAAQHKOu9reHnZi7r4zWjdfWYfM\nPZ9uPgAAkDP+RYJz+TbfwR32trRSamn0fX8Gp2b4bI69TI3XG3sC0ARomQIAAEnyL+WSwzC14j/2\n1h+kJKnrYZl7fuM+33Zv2o8gTAEAgOT4ZxTfvCB331m7IvJczeGZe/6J19nb5oNpP4IwBQAAklPW\n0d527Jm771zydOS50vLMPb/vWHu7ZVHajyBMAQCA1ORyzNTU++ztRX8InnNVZO75Jb7WtqcuT/8R\nGSoFAAC0eVbYNgdKfBOEdnNMhVBRnbnnOxc5vqOL9PSV0nsPxJ8sNAxv8wEAgNTksmXK/+aef0kY\nSercN3PPH3JG6PGy5+x/ugxI+hG0TAEAgOTkMkT5+Rc6ruqRned36Br9vP8tvyTQMgUAAJLz9gzf\nTh5apkyJdOv23H3vG7cnfSthCgAApCan3Xy+sUumRCqrzN33NuxO+la6+QAAQIry0DLlH4hegGiZ\nAgAAqcnkci4Rz7akZc/b4cnbIr1+m33eZLH9p7Jrq2ZAJ0wBAIDUZLObb/5fpZdviDxvstgy9d35\n0n1D7f0J35LcDdLCR5L+ON18AAAgRVkMU9GClJTdlqnqntIlD0ud+0sn3yQd/+2UPk7LFAAASE0e\nZkjI+pipoz5v/yNJDal1+dEyBQAAUmN5pQPbpBevk1qa039O7Uppz7rk7s1my1TEd5mUbidMAQCA\nFFnSzBulhf+QVr6S3iN2r5UeOE763ajgxJzxpBhwcokwBQAAUmNZjkHoaYac/VuC+x8/Gf/eq99K\n7zvS1WOIdPGfkr6dMAUAAFLz8b+CYSoTLUZ1tfGv9xvb+u9I1agvJX0rYQoAAKShlaPQ/TObS1JZ\nh8jrlz8f3C/gLj6JMAUAANLhHxBuee1WqnX/S23+KY9j4HrHGsnjlpoOBs8NOd3eDju79bVmGWEK\nAAAkp8ew4H6Jb3Ylr0da/C/p71Olj59K/lked+izHr9Eurtf6D137JO+ksIz84QwBQAAkuPsjvOH\nqXl/lnavsfeTneZAklzlwX1vi/TZnNZWlzeEKQAAkBxnN55/HNOGd4Nr9aUyF1SJY95wZytVESJM\nAQCA5DgHja+eFdz3ttjbveuTf5b/M1JkmJp6X+q15RFhCgAAJMdyTK7ZsCe47+/e++jR5J/lDFPe\nsDBV2TXl0vKJMAUAAJJjxZipPJ2lXpytUeEtU66y1J+XR4QpAACQHK8n+vn63Wk8y9EyNfPG0Gs7\nV6b+vDwiTAEAgOTEapla+3ZwP9lgtfK12NcqOiVfUwEgTAEAgORYMVqmnD78S3LPWvxE7GsTvpXc\nMwoEYQoAACQnmRnOZ/8y/vVkWq4KfPmYcKWJbwEAAFDsMVPJWjVLevzz0tgrYt9T2aV135EHtEwB\nAIDkxBozlax1/7W3Cx+Jfc9Na1r3HXlAmAIAAMmxPFKvI+Pf07Fn/M/Hc+iJRTctgkSYAgAAyfK4\npYEnxb4++FSp26DI800Hpe3LJOMKPX/L5tDjz/+5tRXmBWEKAAAkp6VRKq2Ifb2kNHrr05Nflf5w\notSxJvS881nfflfq0j8zdeYYYQoAACRmWXaYKusQeW30V6XpG6SmA9LmBdJnb4de3/CevXU3hp4v\nKZVqhtv7rvLM15wjhCkAAJCYfxFjd33ktcrO9lt4Gz+wj9/6eej1Fl+Icq7nJ9lTIHzrv9IVL0k1\nwzJbbw4RpgAAQGJ/OsXeLnk2eG7MV+2tc2kYSdr0ofTk5ZHPeP+B4P55v7W3pRXSoJMzV2ceEKYA\nAEBijXvtrbve7p6TpOOvtbeHT4m8f/mL8Z837srM1ZZnTNoJAACS53FLP1whNe2XegyR7tiX+jO+\n/V7m68ojWqYAAEB8Hz8V3K/uJVX3tINUuIsfSu55vUdmpq4CQZgCAADxPffN4H68RYhHfVEqjfK2\n36BTMl9TASFMAQCA5E24Jv71qFMcOBZIboPBijFTAAAgecbEv+5yRAuP295ajjDVfXDma8qzpMKU\nMaarpL9IOkp2vPyGpE8lPSlpoKR1ki61LGtPjEcAAIBi5AxCZVWJ729pDu6/eJ20+J+h17d8lJm6\nCkiy3Xy/k/SqZVkjJI2StFzSdElvWpY1TNKbvmMAANCWOMOU5U18f/OB4H54kOozSrr4T5mpq4Ak\nbJkyxnSRdLKkr0uSZVnNkpqNMRdKOtV32yOS5kj6UTaKBAAA+ZJimIrnmrmt+3yBSqZlapCkWkl/\nM8Z8ZIz5izGmo6TelmVt9d2zTVLvbBUJAADyxNky5Y2yiHGy+o5tfS0FKpkwVSpprKQ/WJY1RlKd\nwrr0LMuyFBJdg4wx04wx840x82tra1tbLwAAyClny1QrwtS02a0vpUAlE6Y2SdpkWZZv9UI9Iztc\nbTfG9JEk33ZHtA9blvWQZVnjLMsa17Nnz0zUDAAAcmXfxtTu/9F66ZbNkhK89deGJAxTlmVtk7TR\nGDPcd+oMSZ9IelHSFb5zV0h6ISsVAgCA4tGhq1RRLZVXB88NPzd/9eRAsvNMXSfpcWNMuaTPJF0p\nO4g9ZYy5StJ6SZdmp0QAAJA3Hz2e3udKXPa2/3HSZU9krp4ClFSYsixrkaRxUS6dkdlyAABAQalL\nc7yzP0x5muPf1wawnAwAAIgt6vIwSajfZW+3Ls5cLQWKMAUAAGI74vx8V1DwCFMAACC2RGvxJTL1\nvszUUcAIUwAAIDYr6jSSyTtsYmbqKGCEKQAAENvyF+3tST+QblqT+ufLOmS2ngJEmAIAALFtX2Zv\nLa/UsSb1zxOmAABAu3bc1fZ21GXpfb6yS+ZqKVCEKQAAEJt/zFRJsvN8h6FlCgAAtGuf+RYo9k/C\niQiEKQAAENsi33IyJsUwVd4p87UUqDTb7AAAQLuSajffjSul5oPZqaXAEKYAAEBiqXbzlVfZ/7QD\ndPMBAIDE0h2A3g4QpgAAQGKGyBAL/2YAAEBivM0XE2EKAACgFQhTAAAgsdK2P/lmuhhNBgAAYhs4\nSfJ6pNLyfFdSsGiZAgCgPfB6JK83jc+1SC7aXuIhTAEA0B78rLv00vdS/5zHzbQICRCmAABoLz56\nNPXPeFsIUwkQpgAAQGzeFqmkLN9VFDTCFAAAiK1hjyQr31UUNNrtAABAbPs32/8gJlqmAABo66w0\nW5bcDZmto40iTAEA0NalG6Zamuxtp76Zq6UNIkwBANDWWWnMLyXZg88l6aQfZK6WNogwBQBAW7f6\njeD+yzck/zmP294yaWdchCkAANq6f34puP/hX5L/nNcXpphnKi7CFAAAbdn+LZHn1rwl7Vmf+LP+\nbj7mmYqLqAkAQFu2elbkuUcvtgPS7Tvjf3b/Vnub7pirdoKWKQAA2jQT/bS/C2/9e9Krt0S/5/Vb\n7e2nMzNfVhtCmAIAoC0zMcKU39+mSO8/GP1aS7O9pWUqLsIUAABtmXGl/9lhk+3tcVdnppY2ijAF\nAEBbVtYh/c9W1djbAeMzU0sbRZgCAKAtK6tK7r41b0k7V4eea2m0t6WtCGTtAG/zAQDQlsWacLPX\nkaHLzDx6sb29Y1/wnLvBnmOKSTvjomUKAIC2zOuJft7THGx5cmppkpoO+vYbaZVKAmEKAIC2zL8k\njN/U+6QjP2dPjbDlo8j7Z94o3d1Pevf3UvNBqbQ8N3UWMdrtAABoy7xhYWr0l6UtiyRPi92NF27h\nP+ytf44pJETLFAAAbVl4y5R/DFSsbj6kjDAFAEBb5l9fz8+4JFe53WK1+F+JP3/UJdmpqw0hTAEA\n0JZFtEy57HX5PC3S8hcTf768Y3bqakMIUwAAtGWeptBjY+xuPnd9cp83RIVE+DcEAEBb1hwlNH36\nimTFmDIh4vN1ma2nDeJtPgAA2jL/G3tX/Eda9Zq9v3Nl8p9PtFAyaJkCAKBNc9dJrgpp0CTprF9E\nv+eqWdKYy6NfK63MXm1tBGEKAIC2zN2QeLHjAcfFXsPPxaSdiRCmAABoyz5+UmrcG3rurF9G3ufs\n+hv7NemI8+39aLOkIwRhCgCAtmD3Z9LO1ZHnG/dFnusxNPJcVffg/gX/T+oz2t73hyrExAB0AADa\ngvvH2Ns7ooSncOEtVZJ08UPS0meDxyd8157w8/hvZ6a+NowwBQBAe1O7Irg/6jJ76wqLBGWV0qnT\nc1dTEaObDwCAtmTDB4nvcc5qPuLc7NXSThCmAABoSx4+K7hvWdHvOf7a4D4znLca/wYBAGirLG/0\n8yWOLj3CVKvxbxAAgLbKG2PJGOMK7h/cHtzvMVQqTTAnFSIwAB0AgDbFsfyLtyX6LSWOMPXZHOnY\nr9v735mXraLaNMIUAABtimOclD9M9R0Teotzvb0xXw3uO0MWkkY3HwAAbUlVj+D+9mX21r/YcTT9\nx2e3nnaAMAUAQLHbtCC47wxTf5tib53zSoWr7JydmtoRwhQAAMXuL6cH951v8JVX29uxV+S2nnaG\nMAUAQFvSwbHG3onfs7dn/iw/tbQThCkAANoST1PkuYpOua+jHSFMAQDQlrQ0B/eXPmNveUsvqwhT\nAADE4/VKd3SR3vplvitJjrNlquuh+aujHSFMAQAQj9dtb+fek986kuVsmercT6o+JH+1tBOEKQAA\n4om1vl2hcrZMeT108eUAM6ADABBPrCVZCpWzZWrRY7Hv+95H2a+lnSBMAQAQT6zFggtVtLf5ouk+\nOLt1tCOEKQAA4im2MNXSKDXXSQd35LuSdoMxUwAAxOPs5vMUSZdfwx7p/tH5rqLdIEwBABCP5WiZ\n+nRm/upIRbG1phU5whQAAPE4W6aeujx/dcTjX4PvhO/aW2cA9C8pg6xhzBQAAPEUQytPdS+p7xSp\nzyj72OuYzqG0Ij81tSO0TAEAEE8xhKmWZjs0Gd+vdWfLlLshPzW1I4QpAADiKYZ5pjxNkqs8OEGn\nMwB6mqN/BhlDmAIAIB6rmFqmfGHKWbOrPD81tSOEKQAA4imKlqlmyVUW2jLVY6i9P+mG/NXVThCm\nAACIJ3zM1O9G5aeOeDxNksvRMvXJv6Vdq6Wuh0lV3fNbWzuQVJgyxqwzxiwxxiwyxsz3netujHnD\nGLPKt+2W3VIBAMg+j9fSA7NXq67J1yIVHqb2rMt5TXF5WuzFmEsrpLpa+9w7v7G3e9fnr652JJWW\nqdMsyxptWdY43/F0SW9aljVM0pu+YwAAitqLizfr3tc+1ZE/fc0+UejdfP61+Epc0val+a2lnWpN\nN9+Fkh7x7T8i6aLWlwMAQH7VN4e1RL33+/wUkqxtS+zthw9LY68IvXbI0bmvpx1KNkxZkmYZYxYY\nY6b5zvW2LGurb3+bpN7RPmiMmWaMmW+MmV9bW9vKcgEAyK79DWEtUSv+k59CkrXmLXt7wnekLv1D\nr3UbmPNy2qNkZ0A/ybKszcaYXpLeMMascF60LMsyxljRPmhZ1kOSHpKkcePGRb0HAIBCsGr7Af3q\n1RWJbywkb//K3nbpF1xWxq+8U+7raYeSapmyLGuzb7tD0vOSxkvabozpI0m+7Y5sFQkAQC68tSLO\nr7LDJgb3927MfjHJcM5ubkqkkrBf66fdktt62qmEYcoY09EY08m/L+ksSUslvSjJ3zl7haQXslUk\nAAC5UGJM7Iu9jwru//vb2S8mkQPbpV8eEjw2UX6lV0cdgYMMS6Zlqrekd4wxiyXNk/SyZVmvSpoh\n6UxjzCpJk33HAAAUrZKSOGFq6BlSWUd7312fm4Li2b859Ng/x5QTs5/nRMIxU5ZlfSYpYoYyy7J2\nSTojG0UBAJAPrjhZSt4WacB46bPZ0VuBcq20IvQ4Wk3xWtqQMQXwtwEAgMLgCmuZsixLGnK6fTD4\ntOCad85WoN1rpfXv5ahCh4qwweXuutzXAEmEKQAoOBt21eux99erxePNdyntjglryfHOuceeeqD6\nEKm8Surtm7epulfwpvtHS3+bksMqfaywF+Qb9uS+BkhKfmoEAEAODL7lZXl9vyNv+/dSrZtxbn4L\namfCB6C73r7L3vF3oZ1+q/T+A9Ihx0g7VgSXbykE9bvyXUG7RcsUABSAFo9Xp947OxCk/L728Lz8\nFNROeRytPUaOlsEDW+xtaQd7a3mkBydIj5yXw+rChf1lOfbK0ONzf527Uto5whQA5Nmj763T0Ftf\n0bpd9htib/zgZD377RMkSXNX1uqB2avzWF37cqDRHdi/vfTRyBtKSiSZ6Ov1uRuzV1g04d18HWtC\nj4+7Kne1tHOEKQDIs5+8sCywf8s5IzSsdycde1h33XT2cEnSva99qt11zfkqr13ZujcYiK4sfS36\nTSWlkscdeT7nc0+xqEihIEwBQB41OBbVfeyqCbrmlCGB4++cNlTDetnLg4z9+Rtav4u3tbKtxZvE\noP8Sl/S/30aeXz0r8wXF42+ZOuaL0tT7guc//1fp9NtyW0s7R5gCgDyadM9sSdL/fWGUThpWE3H9\njR+eEtg/5d45Gjj9ZS3ful/e8MFVyIjXlm2PfuHaD4L7JTHe3Wran/mCkjHkDGn8N4PHR18inXxT\nfmpppwhTAJAnq3cc1M6DTZKk/t06xLzv4zvOCjk+53f/1bceW5DV2tqrqN2p3YdIvUYEj6PNNJ4P\nlq8VjYk5844wBQA59O7qnfp4015J0l/++1ng/ITBPWJ+pnNlmdbNOFc3nnV44Nzrn2wPBDFkWXlV\n6HFJjDDVqW/2a3Hyj9tyleX2exGBeaYAIEc+3XZAX/5LsLuoY7n9S3lJWMtTLN89fZjOPvIQnfmb\nuZKkS/7wrubcdFrmC4UkaY5nlE51LZb6hK2oFitMHdgiNddJ5R2zX5wkeXytaKy/l3e0TAFAjpz/\n/94JOa7zDT7vVJl8y8Kw3p209u6pkqR1u+o1cPrL8jB+Kiu+7r5ZNzR/K3RwtxS/my/aW37ZEmiZ\nIkzlG2EKAHKkOUPLwxhjNMkxWP2iB/6XkecinNGz3pOlsrDxbLEGoEu5DVNeuvkKBWEKAHJkZJ/O\nkqQ1d03V6z84WZLUuTK90RaPXjVB9182RpK0ZPM+DZz+sg42RZlIEkmzwifBjKUkzq9OTw7HsTX7\npsqgZSrvCFMAkCMer6UpRx4iV4nR4b076b83n6b//uj0tJ93yuE9Q47vfHFZjDuRjKS7S/dusLdV\njpcGzr/f3iaaBd3jljwZCr0zb7S3jfsy8zykjTAFADnS1OJReWnwx+6A7lXq0iH9LpouHco0+Yhe\ngWNXCa/It0ZLqmPPnAsLV/v+OySaa+rnNdIDx6X2PbHsWWdvG/M0vxUCCFMAkCO76prVvWNmu2T+\ncsVxWjfjXEnSvz7cqOv/9VFGn9+eeJPt5oumopO9TWbizt2fJb4nFaV08+UbYQoAsmD7/kbt8s0D\nZVmWGt0eHWhsUc9OFVn93hcWbVFLhga6tzfRWqb6dqmM/6E+o6VhZ0klvhbG+t3JfdmsO6Q7uqRW\nYLjDTrK+x6orAAAgAElEQVS3h57Quueg1ZhnCgCyYMJdb0qSulaVaW998A2veDOdt8bau6fq3Pvf\n0Sdb9+vOlz7Rzy48UoaZsVPiX6Ln5inDNfmI3jrrN3Pj/zvsN076pv3fWZvm29tnrpR2LJdOvzX+\nl73zG3tbt8t+WzB8YtBkHHaCtP5/UqdDUv8sMoqWKQDIsO8+sTCw7wxSknTGEb2z8p3GGD3wlbGS\npEffX68V2w5k5XvaMn/LVHVFqTqU2XNJxc2jB7YG943j1+nce5L/0nsHS78fl0KVDh430yIUCFqm\nACANu+ua9cKizapv9ug7pw0Nufafj7eGHF88pp/+7wujVJLlAeKHdg+2bhTjRJ479jfKVWLUozq7\nXaGx7G+wg69zIH/cYVTdBwf3w2dFv6OLNG2OVF5t3xdr1nRJ2r855VolSd6WYPci8oowBQBpGPvz\nNwL7Dc0eXT95mMpcJWp0e0Lue/G7E3VM/645qckZAv45b4N+efHROfneTBnv6xr1D6jPtdP/721J\n0qrtB3XacPvtPOfblxEmXBPcjzYr+kOn2tuTfihN/mmGqnTwuCUXv8YLAd18ANBKv5+9Wre/sEyv\nL9umET95NXD+V58/OmdByu+2c4+QJC3csDen39uW/HdVrfp0qdT3Th+qh78eZRqDq9+SjrzYHnju\nF6/laX2WZqj3ummZKhCEKQBohV6+t/P+OW+Dpj26IHD+5xcdpS8ed2jO67l6kt31tHzr/qLq6vM6\nav3ZS5/ksRK7hc8Yox+eNVyDaqIsWtz/WOkLf5dKHd2R8dbr8/cVxusz9KbxBiZjpgoGYQoAUuDx\nWtqyt0GS9PUTB2rerZM14pBOIfeUu0o0aWhNtI/n1NZ9DWl/dtX2A8kvr5IBjS3B7tGH/7dWv379\n05x9d7jSeMvFxNKwJ/a1TfPsrdcT+x5Pc+rfyZipgkGYAoAU3PvapzpxxluSguNpBvcMtl78b/rp\nWvnLczQwWotGjjx0+bGSpPc/S3LOozALN+zRmb+Zq0G3zNRRP30tIzXt2N8Y0vrkNHPJVv157tqQ\nc2+v2pmR701HVqavqNspWXHClH+dvVQwZqpgEKYAIElNLR498cH6wPHXTjhMknTHBUdq9ICuev7a\nE9Wva3bmkUrFKcPtNftufHqxPqs9mNJnV+84oM89+G7g+GBTiw40uuN8IrFNe+o1/q43deMzi6Ne\nv/bxhfrNrJUh55pb8jfxaGVZnC67WEoShJrmg5IV58+0Lfq/m7i2Lkr8vcgJwhQAJOnGpz/W/sbg\nIrX9u9lTEfTqVKl/f2eixhzaLV+lhagoDYYB/xtqyZr867kR5xZtbN1g9k177O7G5xZGTgEQ3pX4\nwJftubKWb92ft5ncb/UN4k9Jv7Hxr3s98bv5mutT+77170q7Vks7Vya+F1lHmAKAJL22bFu+S0ha\nL8eyNb+dtVI79jem/Iw/f82eTPLyv85rVS2lcebXcntCw1S3quAYoF11aYwjyoCuVWmMQ0o023xL\nY4JuvrAWxOY6qSnOxKsHdyRfG7KOMAUASbAsK6Tr6ecXHpnHahKbe/Npgf3fzlql8Xe9qeVb92vg\n9Jf11PyNST3D5fgNsXlveoPZvV5Lt7+wLOb1hubQgNGhPNiqdtMzH6f1na1V7krzV+MxX5QGn2rv\nj7wo9Jq7MX43n9vXMrV2rt2C9ZujpLv7x76/snN6NSIrCFMAkISdB0NbSS4/YWB+CklSZZlL915y\nTMi5JZv2SZKeW7gpqWfsrguOlZroG3Sfqqfmb9QnW/dLUtRpBhrCJjk9sm8XTT7CnjBz7sratL6z\ntdJe0/BzD0lfe0G6Y5/UK6yrcOEjkdMfXPqoPWeVZHfzbfhAeuR8ae59UkOClwe2fJRejcgKwhQA\nJKG+uSXxTQXmC+MGqMrR0vPXd+w35t7/bLcemrsm4efPO6ZPxLQPqdrjWJuwe8fyiOvhYaq8tETT\nz0ljzFIrZXwaiIawcWZ71kZ28428QOozyt5vrpN2+qaDqF0RvGfHCkX15s8yUycygjAFAEk44Bh4\nHneJkQKz7M6zNXFoD0nSp9uDY3DumrkiZKqCfQ1uXft4cNLRn114pCrLXHr1+ye36vvLXMFWnpYo\nUyP4u/mG9OyoxbfbM4oP7VXdqu9MR8bnN/UvfNx/vL1dO1f697X2/gnflb79nr3vKpXKOkpN+4Nz\nVTkXTZ5zV/zv+epzmasZaSuenwgAkEf7fdMDPHH1BH368yl5riZ5xpjAOnPhBv94ZmD/2QWbNHOJ\nPcD+u6cN1dcc3Zj+ebTeXZ363E81vkWLa6oror6d9/vZqyRJ5x3TV12iDPzO1Rt9LenMQB6PvxVq\nwPjgudW+9Rz7jJJ6jwyer+wsNe4LhqmlzwSvffJC/O8Zekbra0WrEaYAIAkHfS1TnTuUpT+mJk9e\nWRr6FuKRfYODlwdOf1m/fmOlnC/cOQeBS5LL9+dduyv1iSWbfDObH9KlIuryNv4AN2FQ96ifP/7u\nt7TrYFPK35uqFt9bhV89PkNLALl8XZpVPSKvlVVFHrsbpHd+E/+Z9wyxx1Oh4BCmACAJ9b7uqI4V\nxTdJ4k1nDw85fvl7k0KO739zVcgUBeGh57bz7FaUdLrC7nnVHge0fOsBrdh2QGt3Rg9kxwwIXRD6\nutOHSpJ2HmzSD55KY0LLFPm7IAf2yNDM9SMvtLdDTpMuezL0Wlll2LEvTMWy9FmpbpdUv1N66+f2\nufJq6dATMlMrWo0wBQBJONhkt0x1LE9jduw8O35wDz121QT94xvjNeuH9hioNXdNDbnHUjApucO6\n1jpX2gHyJ/9emtL3er1WYK4of0A77b45gesDp78c2HeFtfZdc8qQwP6++uzPN+WvL96cWCnpP85+\nq6/vGKkibAyYK2wgflmH4NQI0TzzDemVm4PHn7xgB7CawzNTK1qNMAUASXj4f/abcF2rIt9IKwYn\nDavRyYf31NBe9tt5rhKjdTPO1Z0X2PNl7W8IDrBvClvKZUD3YLfUct80B8kIf1MvnvCe02pHC2Aq\nz0mXf8xUabpzTMVT2SX0ODxMVVTbA9A7Rh/bJil0HNVTX7MnAS3L/9JFsBGmACAJn9Xa3VPF9CZf\nMirL7D+Pf+4pY6TPjw2dLLKmukIj+9jjrFKZIuKx9+11DMtLSzTnxlMlSZeNHxD13pI449BWbk9t\nfcF0ZLxlyik8TFWETTdRXm3PMxV+XzwtjVJpZeL7kBNt66cCAGTY3TOXh3RHtTX+dfy27LOXm/ns\nrqkaHmVuqdvOs+d+Cl/+JR7/jPHfPmWIBtZ0VE/HEjfhEo3pXxdjrFWm+Aegu3IRpnqNDD12lUte\nt9QSNtD+m7NjP9PTTMtUASFMAUAcf5r7WWC/U2XxDT5PpCKspS3Wm4pV5faf/aMNyS963K+b/cv+\nc2P7Bb6rye3VroNNIUvadKoojRgzJUnHDw6+4XeqY6xVNvzn462SpPc+25X5h5eHhdPwP2vTAXvR\nYne9NO4bwfP9xkrdB8d+Li1TBYMwBQAxWJYVGHB+4ei++vinZ+W5osyrKEvu14D/38OvXo0xI3cU\ndb5B+/4gVu4qUbPHq2N/MUs3+9bd69e1g5bcebZKorQIde0QOrbo8Q/Wy+3x6kCjO+Le1lq9w+5K\nXFObhRawkgT/jle9Zm/rd9oB6SvPBifjPP/+0HvHXxPcp2WqYBCmACCGBrdHdc0eTT9nhH73pTFF\nN79UMvzdfJI9C3kslWWpv8VYF5hOwv6sq8RETLtw85ThEZ/z+8ZJg0KOb31+qUbe/qqOvuP1lGtJ\nZNQAuytu+pQRGX92Sj6bIw2bHJyMM3x81eb5wf3S2N2myC3CFADE4F/qpEMaQaJYOLv5xg+KMsGk\nTzoD7+ubWmSMVOkLbKt2HIyYQPT8Y/rG/Pz4Qd219u6pOnV4z8C5VMZspeL2F5ZJkmpzMEFoXOFd\nd91DA6WO+nxw37Tdv5fFhjAFADHMXVUrKTiLd1vkbJnauDv2XEdlaUwZsL+xRdXlpVG78PziXZPs\nMVzDe0cOiPd3y2VatLFbGXXpo5HnTpke3A+fMb3cMUfVxO9Lx10dPN68QCgMhCkAiOEHT9ozb7+w\naEueK8keZ4vTO3HW3ku1ZerZBZv093fX6UBT7KkUvj95WFLP6t+9KuLckx9uSKmeZHUoz9KvxW++\nJV36D2nkBZHXTr4puB8e5kocrU9n3ml37fkHtJfQMlUoCFMAkMB9XxiV7xKyxjnz+a1Tj4h5X7mj\nZeof762L+8xGt0c3PB1/CZg1d03V9WckF6a+Mv5QzQxbAmdvfeYHoUtSz+osvSHX79jgEjPhXKXS\npBvt/ZLIxZ511RvSDSuDxzevkSZ8W5ryq8zXibQQpgAggRFR5l1qK3pWBwcxj+gT+89Z5gq2mNz+\nwjINnP6yXl26TU/P36h/f7Q55N79DcGgM2lYTWD/918eo06VpfrDV8bKVWKSHtBfUmI0sm9nXe0Y\nkD6wJkNr6Pmc5huXdXT/FCbOzKRTp0vjrpLOjbKQ8YDxUqfewePSCumcGXYIQ0HgvwSAdulAo1uu\nEhN4bV+yB5z/68MNmjSspz7asEeSNKp/lzb5Fp+fc5LKI/vGDhLR/h1867HgmJ3vP7lIxkhrfjlV\nH6zdHTj/lyvGBfbPO6avzosz4DyR284bqesnD9PRd7yecJLPVM3+tDazD0yVq0w679f5rQFpI0wB\naFdWbT+gb/5jvtbtqlfnylJ9fMfZ2nGgUZv3NOjiB9+NuH93DhbZzSdnmOresXXrDlqWNPjHMwPH\nP7vwyJAB7pngf57Xm523+oB0EKYAFJ1Gt0cL1u/RxKE1iW/2aWrx6MVFW3STb7JIyX7b7NR7Z2vd\nruhvsfXuXKFnv31iq+stZFlZPsXn8uMPy/gz/WvntRCmUEAIUwCKzh0vLtO/PtyoWT88RUN7VSe8\n3+u1NPy2V6Necwapmupyzb/tzIzVWQziLTAc7lefP1o/enZJ4HjUgK76/hnDdOXfP4x6fza6R/1T\nKfx21ip9f/LhGX8+kA4GoAMoOos22uvDJTv/0xf+9F7I8awfnqwFt00OObfi51PaXZCSgi093zpl\nSMJ7v3jcoSHH/772RJ02opcuGGWPg1o349zAtbV3T81gldkz5bdzdevzSxLfCMRByxSAolPXbM9d\nlOwSJwvW7wk5HtrLfmvN+cu/vSp1laT07+G3XxytgTUdNXpA18C5+y8bo/svGyNJGtqrWqt3HCya\nQfsrth3Qim0HJEnTz8nzUjIoWoQpAEVn4+4GSfaA50Qsx02/+9JonTgk+XFWiHTRmH5xr79y/aSk\n/rtkQqPbk9aagc7PO5WnMcs7IBGmABSReWt362BTcA4jb4Lf2vsa3FpTG1x25Lxj+mZ1wDXSW3Ym\nXa0JU5v21OukX80OOZfO+oOARJgCUEQuDRv7lChMjbrz9ZBjglTbUt/sUdfIlWaSEh6kJMIU0sff\nHABFy+N4PX5fvTswIP2v76zVtH/MD7n3ZxcemdPakD0nH27PVv7fVZmdaLOCMIU00TIFoGide/87\nmn3jqXIZo5PvjWxp8Pvx1BH6yoTMz3mE/Ljt3CN01srajK/Pl8suSrQthCkARe20++bEvX7tqUM0\n7eTEr/2jePTv1iErz2UAOtLF3xwARaGuqSXk+Mlpx0fc8+Opka+2r91Zl7WakB/+FiS3x9vqZ50x\noldgnzFTSBd/cwAUhZcWbwnsnz6ilyYM7qFHrxofOHfuMX007eQhWjfjXM2/bbIe/vo49evaQb+4\n6Kh8lIss8k802uxp/RwMXauC6xESppAuuvkAFAXngsN/vWKcJGnSsJ566poT1Oj26CTHOn011RU6\nfURvnT69d87rRPYZY1TuKslIy9Qpw3vq2YWbJAVDGpAqwhSAotC7U2Vg3zm79vhB3fNRDvKs2ePV\nvob0BqBbliVjpG9MHKSzRgYDNwPQkS7+5gAoCq8s3SZJgWVLgCc+2JDW51q8lixL6t6xXJVlLr11\nwyn6xsRBOqpflwxXiPaClikARWHW8u2SpIE90pylEfDxdw+WuewWzsE9q3X7+SPzWRKKHC1TAIrC\n2Ufa3THH9O+a4E4gPneLPXCdbj1kCi1TAIpCVXmpDu1OqxRsEwZ1T3sAepPHnimfMIVM4W8SgKJQ\n19SiqvL0FrVF21NZ5gpZTigVbt+UCkzSiUzhbxKAotDg9hCmEFDmKgmEolS5W3xjpkqZCgGZQZgC\nUBTslilGJsBW5jL6ZOt+zVu7O3Du7/9bq0+27E/42eAAdH4FIjP4mwSgKNQ3e9SBlin4+APRpX96\nL3Dujpc+0dT7/yvLit9i1UyYQobxNwlAUahv9qgjYQo+s5bvCOyv21mnhmZP4Hj1joNxP8uYKWQa\nbeYAioLdMsWPLEQ69b45ITOZJxqXTjcfMo2/SQAKTl1TS8S5+uYWWqYQ03trdgX2fzlzedR7PF5L\nLy3eoiZ36KSdQGsRpgAUlDW1B3XkT1/TUx9uDJzbuLte9c0e7alPby02tH2dKoOtlhWl0X+1PfzO\nWl33z4/0zw/tZWgqywjnyAzCFICCsmq7Pd7lDd/yMZL0L98vv3fX7MxLTSg8b/zg5JBjj2PQ+fKt\n0d/o859fue2AJOmQLpVR7wNSRZgCUPD8S8jcdfHRea4EhWJY704hx9v3NwX2N+1piPqZ5z7aLCk4\nZsrZmgW0RtJhyhjjMsZ8ZIz5j++4uzHmDWPMKt+2W/bKBNBemDjDWHp2qshdIWizmlu8MkbqQDcf\nMiSVlqnrJTlH9U2X9KZlWcMkvek7BoCM8/pez3KVMGAYQReM6pv0vc6pE7bsa1S3qnKZeMkdSEFS\nYcoY01/SuZL+4jh9oaRHfPuPSLoos6UBgM0/HoYwBaf7LxujF787Ue9OPz1w7qqTBkV96/N3b64K\nOe5FKycyKNkO499KulmSs5O6t2VZW3372yT1jviUJGPMNEnTJOnQQw9Ns0wA7UWj225B8I9rkRRY\n0LaElgSE8Y+nWzfjXEnSva+tUGOLN+I+jzf03Jra+BN7AqlI2DJljDlP0g7LshbEusey5+6POk2a\nZVkPWZY1zrKscT179ky/UgDtwitLtkmSlm6237zavr9Rv5tltyrQMoVEKktd8nitkDAuKWJdx3QX\nSQaiSaZlaqKkC4wxUyVVSupsjHlM0nZjTB/LsrYaY/pI2hH3KQCQQH1zi+qa7Qk7Pze2nyRpwl1v\nBq7XVJfnpS4UjxJf4B526ysaP6i7zh/VV5cff1hEN9/nxvTLR3looxKGKcuybpF0iyQZY06VdKNl\nWV81xtwr6QpJM3zbF7JYJ4B24KZnPtZ/V9lzSXUsL9VHG/YErh3Rp7M6VZblqzQUiQXrg39n5q3d\nrXlrd6vJHRx8/sTVEzRqQNeYE3sC6WjN36YZks40xqySNNl3DABp+3jT3sD+nvpmXfzgu4HjV66f\nlI+SUGQmDauJOPeLl4Mvop84tEYdK0pVyrp8yKCU/jZZljXHsqzzfPu7LMs6w7KsYZZlTbYsa3d2\nSgTQXmzcHZxs0TlAeMXPp+SjHBShK04YGPPaOUcdkrtC0K4QzQEUpC177WD15g2nsIYaklYS5yWF\nV5Zuy2ElaE8IUwAKgmWFvl21bV+jJOYDQuscP7h7YP/JacfnsRK0ZYQpAAWhKWxuoLpmj6rKXaqu\nYP00pOal756kqUfbXXrXn3G4rjjhMP37OxM1YXCPPFeGtoqfUgAKQpM7cqLF+mYPS34gZUf376IH\nv3KsPF5LrhKjE4YQopBdtEwBKAhNLZ7ENwEpYJJX5AphCkBB8Hfz3XvJMXmuBABSQ5gCUBD8LVPO\nN/dm/fDkfJUDAEkjTAEoCI2+MVPOmamH9uoU63YAKBiEKQAFwd8yVcGcUgCKDGEKQEFocrRMMW4Y\nQDFhagQABcE/AL2yzKX5t52pRjdv9wEoDoQpAHG5PV6Vlpisz/cU6OYrLVH3juVZ/S4AyCS6+QDE\nZFmWht36iu54cVnWv8vfMuUcgA4AxYCfWgBi8njt9fIeeW991r/L361XTpgCUGT4qQUgJk/Y4sPZ\n1Oyxv4swBaDY8FMLQEzeyOXysqbFY39ZWQk/lgAUF35qAYgply1TLb6WqVIX8yIAKC6EKQAx+cdM\n5UKzv2XKxY8lAMWFn1oAYvLmMEz5W6YIUwCKDT+1AMSU024+r1fGSC6mPwdQZAhTAGLKZcuU22Mx\n+BxAUeInF4CYctky1ej2MC0CgKLETy4AMWV7ALplWao90CRJ2nGgUb06V2T1+wAgGwhTAGJyeyzH\nfuYnnbrhqcU67peztG1fo7bsbVS/rh0y/h0AkG2EKQAxOQPU0s37Mv785z7aLEmau7JWW/Y2qE+X\nyox/BwBkW2m+CwBQuJpbgmHKmOy9ZXfzsx9LkuqaPVn7DgDIFlqmAMTkbJlqyXA3n39hY6cGwhSA\nIkSYAhCTc8xUS4YHo+9rcEec+/2Xx2T0OwAgFwhTAGJat7MusJ/Km33Pf7RJe+qa497j70IcP6i7\nJOkf3xivqnJGHgAoPvzkAhCTfyyTFPk2344DjXrs/Q363ulD1eD2qFNlmf45b4Nmr9ih1z/ZLkka\n0rOj1tTWqV/XDvr1paNUVlqisYd2kxRci+8rEw7VU9eckKM/EQBkHmEKQFT++Z/8wlumfvTMx5r9\naa0emL1aHq+lWT88Rbc8tyTknjW1dsvW5r0N+uJD74dcO3FIjyxUDQC5RzcfgKgONIaOaXKOn5KC\nY578IWvyr9+OeMaXjhsQ8/nvrtklSfpow95W1QkA+UbLFICA5Vv3655XV+ieS0apwfe23ZUTB+pv\n/1sX0TIVHq6cRvbprJnXT5Ikzfj8MZKklz/eKskeI/XEBxv0m1krJUnTzxmR8T8HAOQSYQpAwOvL\ntmv2p7V6av5GTfANDD+se5UkqcUbOmZqiWMSzy8dN0DjB3XX5JG9VV1eqpKSyDmpzj2mT2D/+snD\ndP3kYdn4IwBAzhGmAAT4B5l7vJbqfXM+daoskyS1+FqiFm7Yo3teXRHyOX/rEwC0R4QpABGMpLqm\nFklS5w52mLrh6cU6vHcn3fDUYq11TJnwyc/OzkeJAFAwGIAOIMBScBzUks375CoxOtTXzSdJ//xw\nQ0iQksTcUADaPX4KAgiwfFnKGOnBOWskST2qywPXd+xvDLn/kmP756w2AChUtEwBCPC3S933+srA\nubKS4I+J8CVlnl24KRdlAUBBI0wBiOnPXxsnlyv4Zl749Ah/+/pxuS4JAAoO3XwAAixHVjqiT2ed\nObK3Gn3zTUnSJ1v2B/bfvulUHdajYy7LA4CCRMsUgADLkabu8U13UOqYM2qXY/FighQA2AhTAAKa\nHYsZj+jTSZLkijIB5/2XjclZTQBQ6AhTAAIa3cEwVeayfzwYExmmzju6T8Q5AGivCFMAApoc46Pi\nibZcDAC0V4QpAAH+xY2fu/bEPFcCAMWDMAVAknTj04v1ytJtqqku19hDu8W8b9rJg3NYFQAUPqZG\nACBJemaBPQHnzoPNMe9ZN+PcXJUDAEWDMAUgxLBe1RHnxhzaVYNqmAoBAKIhTAEI8dr3T4449/y1\nE/NQCQAUB8IUkGO7DjapR3VFvsuI0L9bB40f2J039QAgRQxAB3Jo7spaHfuLWZq9Yke+S4lgWZLI\nUQCQMsIUkEMLN+yRJH20cW+eK4nOkKYAIGWEKSCHvF577btC7EmzLEtRJjsHACRAmAJyyJel9Mi7\n6/JaRzT08gFAeghTQA75W3721LvzW0gUliVapgAgDYQpIIdKCjitWLIYMwUAaSBMATlU6hgsZVlW\nHiuJ1OKxVFZKmAKAVBGmgBxyuYJhxeMtrDDV7PGqtIQfCQCQKn5yAjlUUeoK7LcUWJhye7wqL+VH\nAgCkip+cQA55HQGqkFqm9tW71ej2am997EWOAQDREaaAHGr2eAP7ngIaM/Xo++skSU/N35TfQgCg\nCBGmgBxyO8OUp3DCVO/OlZKkkw/vmedKAKD4EKaAHHKGqUIaMzWge5Uk6VsnD85zJQBQfAhTQA65\nPfkbM7VuZ53++PaaqNeaW+yQV+riRwIApKo03wUA7Uloy5Q3zp2Zd+p9cyRJJw2t0VH9uoRc+/N/\nP5MkDejeIac1AUBbwP8NBXLIGaa272/KSw1NLZ6Ic3t9y9v06UKYAoBUEaaAHHK3BLv2rn18QV5q\nuOGpxSHHbo9XSzbvy0stANAW0M0HpGnuylp97eF5mnvTaTq0R1VSn3ly/sbA/vb9Tbrm0fm6cHQ/\nXfv4Qv1oygh97YTDZIx0sKlF5VHGLy3dvF9b9jborCN7x/2e37+1Wn95Z63OH9VXXTuU6brThwau\nrdtVr4HTX5YkHd2viz4/tp8kadKwmqT+DACAUCaX64ONGzfOmj9/fs6+D8gmfyDp1alC826dnNJn\nCtF/rjspYiwVALRnxpgFlmWNS3QfLVNAK+04kPzYp9ISoyP7ddFZI3vr3tc+Dbn2xXEDNKRXR7k9\nlt5ds1NnjOgtE7bucH2zRxt312v4IZ3ifs+STfskIzW5vaooLdHoQ7uqstSlc44+RHe+9Ik27KrX\nvga3vJalcQO76QeTD1cv31xTAIDUEKaANHWuLNX+xpaUPtOvWwcN7FGlE4b0kCR97/Sh+uFZwyPu\n+85pQyPOZcp9XxiVtWcDQHtEmALS1KmyLBCmGt0eVZa5EnxCavFYKi0p0dhDu2nt3VNlwpueAABF\nh7f5gDQ5l145ccZb+uKf3tPclbVR7317Za1ufHqxNu9tUFW5HboIUgDQNhCmgDQ5X97YXdesD9bu\n1tcenqctext07eML9P5nuwLXr3h4np5ZYC8ifHjv6pzXCgDIHsIUkCb/Eizh9ta7NXPJNl35tw8l\n2V2AThMG98h6bQCA3GHMFJCmJo9XHctdqmsODUvlpXb3nX+28ya3vT28d7X+c90klZfy/2EAoC3h\np17+gw8AACAASURBVDqQpuYWrwZ0j5ysc/FGezbxFt9Cxvsa7KVajunflSAFAG1Qwp/sxphKY8w8\nY8xiY8wyY8ydvvPdjTFvGGNW+bbdsl8uUDiaW7wqLy3RNacMDjl/w9Ohy7X4w9SIBHNDAQCKUzL/\nN7lJ0umWZY2SNFrSFGPM8ZKmS3rTsqxhkt70HQPtRnOLPSFm/26xl5K58enFuvzhDySJ2cUBoI1K\nGKYs20HfYZnvH0vShZIe8Z1/RNJFWakQKFDNHrtlqqZjecx7nlmwSXvr7ZapblWx7wMAFK+kBnAY\nY1zGmEWSdkh6w7KsDyT1tixrq++WbZLir7wKtDHNLV6Vu0rUpaosqft7darIckUAgHxIKkxZluWx\nLGu0pP6Sxhtjjgq7bslurYpgjJlmjJlvjJlfWxt9QkOgGPnHTDmVlhj9/stj9Pcrj1MH34zonxvT\nT+MO66auSYYuAEBxSWlqBMuy9hpjZkuaImm7MaaPZVlbjTF9ZLdaRfvMQ5IekqRx48ZFDVxAMXJ7\nvCpz2UvDnDS0Rredd4SG9+4UmNl8+c+n5LlCAEAuJPM2X09jTFfffgdJZ0paIelFSVf4brtC0gvZ\nKhIoRC1eS6UlRpVlLj129QSNOKQzS8QAQDuUTMtUH0mPGGNcssPXU5Zl/ccY856kp4wxV0laL+nS\nLNYJFByP11JJCeEJANq7hGHKsqyPJY2Jcn6XpDOyURRQDLyWJRctUQDQ7jEdM5CG1TsOauu+Rs1f\nvyffpQAA8owwBaRhwfrdkqS1O+vyXAkAIN8IU0AaOlawRjgAwEaYAtLQsZwwBQCwEaaANHQod+W7\nBABAgSBMAWko8b3Fd/GYfnmuBACQb4QpoBUuObZ/vksAAOQZYQpIg70cJQAAhCkgLf4oxZSdAADC\nFJAGizQFAPAhTAGtYEhTANDuEaaANFhizBQAwEaYAtLhy1KscwwAIEwBaWDIFADAjzAFtIKhaQoA\n2j3CFJAGppkCAPgRpoA0+Aeg0zAFACBMAWnwt0yRpQAAhCmgFWiZAgAQpoA0MGQKAOBHmALSYLGe\nDADAhzAFpGH2ih2S6OYDABCmgLQ88t56SbRLAQAIUwAAAK1CmAIcmlu8uuW5Jao90JTU/cyADgAg\nTAEOb3yyXf+ct0F3vLQsqfuJUgAAwhTg4Cqx45G7xZvU/TRMAQAIU4BDmcsXpjzJhamuHcqzWQ4A\noAgQpgCHUpf9P4nZn9Zq4PSXtbe+OeKeS//4XmC/a8eynNUGAChMhCnAoXNlacjx6J+9oV+9ukIv\nLNost8erT7cd0Lx1uwPXS+jnA4B2rzTxLUD7UVHqijj3hzlrJEnX/2tRxLXqCv4nBADtHS1TQJqu\nOmlQvksAABQA/m81EMe3ThmijXvq9avPH6N3VtXq1OG9VO4bV1VSQhcfAIAwBYSwZIUcTz9nRGB/\nylF9cl0OAKAIEKaAKH56/kidNrxXvssAABQBxkwBUfTt2kEDazrmuwwAQBEgTAEOlpX4HgAAnAhT\nQBQMLQcAJIswBQAA0AqEKQAAgFYgTAFRGJaJAQAkiTAFAADQCoQpwIG3+QAAqSJMAVHQyQcASBZh\nCgAAoBUIU4BD+Np8AAAkQpgCouBlPgBAsghTAAAArUCYAhx4mw8AkCrCFBAF3XwAgGQRpgAAAFqB\nMAU40MsHAEgVYQqIwjBtJwAgSYQpAACAViBMAQ4Wr/MBAFJEmAIcvL4sVVJCNx8AIDmEKcDB62uZ\nIksBAJJFmAIcvL6mKRcTTQEAkkSYAhw8vpYpQ5gCACSJMAU4+Mefu+jnAwAkiTAFOHi8jJkCAKSG\nMAU4BAagk6YAAEkiTAEOwbf5CFMAgOQQpgAHr9fe8jYfACBZhCnAIfg2X54LAQAUDcIU4GDRzQcA\nSBFhCnDwMjUCACBFhCnAgakRAACpIkwBDkyNAABIFWEKcGBqBABAqghTgMOO/U2SmBoBAJA8whTg\ncPcrKyQxNQIAIHmEKcBn+db9gf0e1eV5rAQAUEwIU4DPnE9rA/tV5aV5rAQAUEwIU4DPo++tkyT9\n85vH57UOAEBxIUwBPlv2NUqSThjSI8+VAACKCWEKkOT1T30OAECKCFOApF/OXC5JmnxE7zxXAgAo\nNoQpQNLclfbg82tPG5LnSgAAxSZhmDLGDDDGzDbGfGKMWWaMud53vrsx5g1jzCrftlv2ywUyb09d\ns1btOChJGnsof40BAKlJpmWqRdINlmWNlHS8pO8YY0ZKmi7pTcuyhkl603cMFJ3d9c35LgEAUMQS\nhinLsrZalrXQt39A0nJJ/SRdKOkR322PSLooW0UC2dTk9kqS/vjVsXmuBABQjFIaM2WMGShpjKQP\nJPW2LGur79I2SVFH7hpjphlj5htj5tfW1ka7BcirOSt3SGKiTgBAepIOU8aYaknPSvq+ZVn7ndcs\ny7IkRX233LKshyzLGmdZ1riePXu2qlggG+559VNJkofpEQAAaUgqTBljymQHqccty3rOd3q7MaaP\n73ofSTuyUyKQG6MHdM13CQCAIpTM23xG0l8lLbcs69eOSy9KusK3f4WkFzJfHpBd2/fbs54f2r1K\n3TqyuDEAIHXJDBKZKOlySUuMMYt8534saYakp4wxV0laL+nS7JQIZM+KbQckSTdPGZ7nSgAAxSph\nmLIs6x1JJsblMzJbDpBbVzw8T5JUWsL8tQCA9PAbBO1WfXOLuvu69k4cyuLGAID0EKbQbp3xf29r\nd12z+napVOfKsnyXAwAoUoQp/P/27ju+6vre4/jrkxDCBpEpoAEFZRo1oixFQZSqdVxnXWjrwFG9\nt2rVVhyUSuut1966x1WrFZW6qthSUZwgsnHgANmgESEMCYEk3/vH95dDAoSMM35nvJ+PRx75zZPP\nJyfn5HO+3+/v+8tYazb4weeH7qdbyIiISP2pmJKMdci+rWjRqAF3n3Fw2KGIiEgKUzElGams3DF3\neRHtWzSiccPssMMREZEUpmJKMtIrc1cBO7r6RERE6kvFlGSkDxatBeDes/NDjkRERFKdiinJOM45\nXg5apo49qF3I0YiISKpTMSUZZ9InayLLWVnVzUcrIiJSO7W5nYxISps4awXTF//AS0FrVIVJvxwc\nUkQiIpJOVExJ2rvh7wt2u71bm2YJjkRERNKRuvkkI916Ui9NiSAiIjGhlilJa2s2FEeWH7+ogGE9\n24cYjYiIpCO1TElau/a5eQAM6d5GhZSIiMSFiilJax8vWQfA6KH7hxyJiIikK3XzSVpZuX4Lg/8w\ndZftPTu0CCEaERHJBGqZkrSxrbScD4OZzXe2V9OGCY5GREQyhVqmJC18v6mEw8dNiawX7LcXs5at\nDzEiERHJFCqmJOWVlpVXKaQAJl4xgNJyx5xl6+nbuWVIkYmISCZQMSUpq7zcUeYc4yYtjGy77eRe\n9GjfHDMjJ9s4otveIUYoIiKZQMWUpIyH313MxNkrWVS4mU6tGrOqqLjK/o9uHkaHlo1Cik5ERDKV\niilJendP/oL7py6usm3nQurF0QNUSImISChUTElSKy93uxRSzXMb8KsRPXhp7ioevbCANs1yyc6y\nkCIUEZFMp2JKklJJaRkbi0t3GVj+ylWDyO/SCoBRg7qGEZqIiEgVKqYkKfW7/d+UlJZH1vt3bc0L\nlw8IMSIREZHd06SdknTWbCiuUkgBKqRERCRpqZiSpDPgrrerrH89bmRIkYiIiNRM3XyStMae0psW\njXPIyVbNLyIiyUvFlCSVFeu2RJYvGJAXXiAiIiK1pI/8klTeWvgdAPecdXDIkYiIiNSOiilJGuXl\njttf+xyAEb07hByNiIhI7aiYkqRx9iPTI8vNctUDLSIiqUHFlCSF7WXlzFy6HoDnLzsy5GhERERq\nT8WUJIUPF62NLB/Rbe8QIxEREakbFVMSuhXrtjDqiZkAzLhlWMjRiIiI1I2KKQmVc44hf5waWW/f\nolGI0YiIiNSdRvlKKO6e/AX3T11cZdundxwfUjQiIiL1p2JKEq7f7ZPZuLW0yrYFt4/QFXwiIpKS\n1M0nCVe5kDqoQ3M+v/N4WjTKCTEiERGR+lNTgCTUJys3ALDf3k24eGAeFw3Mw8xCjkpERKT+VExJ\nwqzdXMLJ930AwF8v6c9+ezcNOSIREZHoqZtPEuaY/34nsqxCSkRE0oWKKUmIucvXsykYK/XylQND\njkZERCR2VExJQpz2wDQA2jbP5ZB99wo5GhERkdjRmCmJqwsen8H7X++4Vcw71w8NLxgREZE4UMuU\nxFXlQgqgqeaSEhGRNKNiSuJm6/ayyPK5/bvw9biRIUYjIiISH2omkLiZsWQdANeP6MHVx3YPORoR\nEZH4UMuUxM3K9VsA6N2pZciRiIiIxI+KKYmb37z8KQCH6uo9ERFJYyqmJC6cc5Hllo113z0REUlf\nKqYkLp6fuQKAW35yUMiRiIiIxJcGoCeprdvLePPz7zipX8e43wh4y7ZSsszIzjI2FG+nTbPcqB4v\n76ZJkeXhPdtHG56IiEhSUzGVpO547TMmfLyCaybMZen4E+P2c46+eyrLfvADxds0y2Xt5hJm/mY4\nbZtXLajunfIV9075mlED81hUuJncBll03qsxP83fh4++Wcfdk7+kW9um/OnMg6uc161ts7jFLiIi\nkgys8tiWeCsoKHCzZs1K2M9LZZVbd+JVTC1cs5GRf35/t/suHdKVG084iJzsLIq3ldFzzL/q/Pjx\nLAJFRETizcxmO+cKajpOLVMZYM2GYtZu2kbfzlWnKKgopMae2odbX/m0yr5H31/ClIWFtGueG5kv\nqi7e+OWQ+gcsIiKSQjQAPQkVbdlWZX3J2h/rdP7qomLybprEpAVrABjyh6mcfN8HVY7Jv/PfkeWf\n9d+XpeNPZPJ1R/HeDcdU+bmVC6n5Y0Zw8aA8hvdszxOjDq/yeCP7dOD6ET0AuHhQHr32aVGnmEVE\nRFKVWqaSTElpGfl3vlll238+P48ju+3NTSNrd2Xc14WbAXhu5nJO7NeR0nLflXvOI9N5YlR/npu5\nnKIt2wH405kHk53lB7gf2KE5ALed3Is7Xvu8ymM+MepwWjbJ4baTe0e2zR8zgu83lzD8nnc5sV9H\nTujdgVPyO9GldZN6ZC4iIpKaNGYqyUz9spCLn5gJQKdWjVlVVFxl/8tXDuSQPUyCuaqomOtfmM/0\nb34A4LKjuvHIe9/s9tjJ1x0VKaB29srcVVz3/Dyg5tvBbN1eRqOc7OqTEhERSUG1HTOlbr4k8+6X\n3wMw67fDuf+8Q3fZf9oD0wD4YXMJP39yJttKy6vsP/+xGZFCCqi2kPrjGf2qLaQATj2kE6cf2omh\nB7Zl9NAD9hizCikREclk6uZLIp+u2sCT05YCfpqC4m1luz1u/D+/4KF3FwMw9vXPGXtqn8i+msZX\nnX5IJ+45O79W8dxzVu2OExERyWQqppLE1u1lnPQXP0i8V0c/eLu6HtjPVm/AzO9/+4tC+sxczrwV\nRUz4eEW1jz/n1uN49P1vuOKo/WMeu4iISCZTMZUEzn54euSqueaNGvDCFQMAaNdix8SZbZrl8sLl\nR3LOIx/x/aYSDunSijnLi1hVVMyvX/xkj48/6ZeDad20Ib8+Qbd2ERERiTUVUyG76tk5VaYfmHDp\nkTTL9U9Lo5xslo4/kS++3chBHXxrVeGmEgo3lezxMSdeMYA5y9ZzZkEXWjdtGL/gRURERMVU2Crm\nggLo0roxfTq13OWYikJqT/Zp2YhnLz2SVk1yaNWkIYfntY5pnCIiIrJ7KqZCNGvpjhapObceV+9W\npCV3/STuN0MWERGR3dPUCCF6bf5qwM8dVdtC6vM7j99lmwopERGR8KhlKgTOObre/EZkfU+TcO6s\nScMdT9ns3w5ne1niJl0VERGRXamYCsH0xTsm1ay4n11dNczOYu9muTUfKCIiInGlYioEb39RCMC/\n//MoerSvfhby6vz5nHz67maguoiIiCSeiqkEW1S4mcc+WMLph3aqVyEFcEp+pxhHJSIiIvWlYipB\nVhUVM2j825H1iwd2DTEaERERiRVdzZcgDwf30qvQt7O66URERNKBWqbiqKzckWXwxbeb+Ov0ZQCc\nmr8PFw3MCzcwERERiRkVU3Gwc5dehSuO3p+bRur+eCIiIulE3XxxcMPE+bvdrkJKREQk/ahlKsZe\nnL2SacE8UvPHjOCTVRvYtHU7I/t2DDkyERERiQcVUzH07Izl3PLyJ5H1lk1yGNy9TYgRiYiISLzV\nWEyZ2f8BJwGFzrk+wbbWwPNAHrAUOMs5tz5+YSan0rJynpy2lI3F2+nWtlmkkBrQbW+evfSIkKMT\nERGRRKhNy9STwH3AXyttuwl4yzk33sxuCtZ/HfvwkpNzjgUrN3DK/R/usu+h8w/jhD4dQohKRERE\nwlBjMeWce8/M8nbafAowNFh+CniHNC2mtmwrpXhbGZc9PZvZy/bc+PbgeYeqkBIREckw9R0z1d45\ntyZY/hZoX92BZnYZcBnAvvvuW88fl1hbt5eRk51FWbmj15jJezz241uG0a5FowRFJiIiIskm6gHo\nzjlnZm4P+x8BHgEoKCio9rhk8c6XhYx6YiZtmuXSvV2zao9bNG4kDbI1s4SIiEimq28x9Z2ZdXTO\nrTGzjkBhLINKlKIt21hdtJWiLdu4582vmFWpG2/t5hLWbi4BYNxpfTjviP3CClNERESSWH2LqX8A\nFwHjg++vxiyiBNlcUkr+nW/WeNzYU3qrkBIREZFq1WZqhAn4weZtzGwlcBu+iHrBzH4OLAPOimeQ\nsfT0R8vo1bEFs5au22Vfp1aNeeC8Q8nbuylzV6xn+botnFnQJYQoRUREJFXU5mq+c6vZNSzGscTV\nsh9+5KF3FzPh4xVVtndr05Ry57hkcFcuHJAX2T70wHYJjlBERERSUVrMgO6cY/Qzczi+T3umLfqB\n977+nsuP2p+LBuaxvaycv7z9NfdPXbzLeef278Jdp/cLIWIRERFJF+Zc4i6wKygocLNmzYr5464q\nKmbQ+Ldrdez0m49lwF3+2KXjT4x5LCIiIpIezGy2c66gpuPSomXq/Mdm1HjMwV1a8epVgwD45vc/\nISvL4h2WiIiIZICUL6a+3bCVJWt/3GX7vDHH0SA7i8KNW9mnVWMa5WRH9qmQEhERkVhJ+WLqyLve\niiyPP70vgw5ow6LCzbRq0hCAZm2rn3hTREREJFopXUz9WFIaWZ435rhIAdWldZOwQhIREZEMk9L3\nQ+l924775lUUUiIiIiKJlLLF1KPvfRNZ7tmxRYiRiIiISCYLpZvPOcc/5q9mRK8ONG6YXfMJgVfn\nreL3byzku40lkW2XH92N60ccGI8wRURERGoUSjF1498XMHH2SvK7tOKVYLqCmry+YDXXPjevyrYD\n2jXj5pE94xGiiIiISK0ktJtvY/F2np2xnImzVwIwb0VRrc+9+tm5VdZPzd+HydcdFdP4REREROoq\noS1Ty9Zt4ZaXP6mybfJn3zL4gDY0zd19KL94aiZTFhZG1t+/8Rg679UYM80VJSIiIuELbQD6mJN6\nAXD507Ppfdtk/uPBaRRu2soHX69l6/YyAGYtXVelkBrSvQ1dWjdRISUiIiJJI5QxU69dPZi+nVtS\n7hy/m7QQgNnL1tN/3Ft7PO/RC2u8PY6IiIhIQoV+o+O8mybVeN5HNw+jYYMsWjfVXFIiIiKSGClz\no+PP7jienOwsGjbY0eNYWlbOwjWbmLeyiHMO70JOdspOhyUiIiJpLvRiancDzxtkZ9G3c0v6dm4Z\nQkQiIiIitacmHxEREZEoqJgSERERiYKKKREREZEoqJgSERERiYKKKREREZEoqJgSERERiYKKKRER\nEZEoqJgSERERiYKKKREREZEoqJgSERERiYKKKREREZEoqJgSERERiYKKKREREZEoqJgSERERiYKK\nKREREZEoqJgSERERiYKKKREREZEoqJgSERERiYKKKREREZEoqJgSERERiYKKKREREZEoqJgSERER\niYKKKREREZEoqJgSERERiYI55xL3w8y+B5Yl7Afu0AZYG8LPDYNyTV+ZlK9yTV+ZlK9yTX37Oefa\n1nRQQoupsJjZLOdcQdhxJIJyTV+ZlK9yTV+ZlK9yzRzq5hMRERGJgoopERERkShkSjH1SNgBJJBy\nTV+ZlK9yTV+ZlK9yzRAZMWZKREREJF4ypWVKREREJC5UTImIiIhEQcWUiEicmZmFHYPEh55bgTQr\npjLlj9rMGoQdQyJlyvNawczS6nUpQJq91+6JmRWYWbuw40ignLADSBQzaxN8zw47lmST8i9wM+tp\nZgMAXJqPpjezAWb2KHB42LHEm5n1NrOhkP7PK4CZ9TWzXwE458rDjieezCzfzC41sw5hxxJvZtbf\nzJ4B7gqe45R/z61O8JqdBtwGtAo7nngL3o8nAv9tZr3StcAwr4mZTQBeBXDOlYUcVtJJ2Re2mbUM\nCovngLFmNs7MDgg7rngxs0vxl57OAeam8Qs3y8weAF4EbjGzsWZWULEv3Ojiahzw+4oCMh2fXzPL\nMbOHgceBo4FxZnZEyGHFRfB3fBvwGPBPoAFwFXBwqIHF17XAy865k51zX0H6tioHLW/3AW/gb6Fy\nLXBJsC+tcnbelmC1jZmNhrR/P66zVP5l3Iif2uFg4HJgbyAv1Ijia1/gN865B51zW9P4k0EroJlz\n7iDgPOAH4Fdm1iwdW2wqFU3vAX8Gfgf+k18avln1AVo65w5zzp2Pf/9Jx3t5VbQurgRGOef+hi+W\n9wPSrkiGSPePwxcYmNlpZtYZaBysp1WBgf9b/tI59wTwJ+Al4BQz6+Gcc+mUb9Ay1RH4Dvg5MNrM\nWjnnytPwPareUuoXYWaHmtmBweqDwBgA59xi/D/hvmHFFmtBrt2D5Zb4F+/HZnasmU02s1vM7PRg\nf0q/cM2sq5k1ClZbAwPNrKlz7nt8C9V64Org2JTOFSL55gar5UFOxwOPAoVm9gvw/5BTPd+dnlsD\nzgpalU8HjgSGmdkhwbGpnuu5Znanmf002PQsMM/Mcp1zPwCbgI7hRRg7Qa53mNnJwaYfgSHAsUG3\n5uX4Dwb3Qup31ZvZ0Tu1os4HDjez/Z1zPwIzgVn4vFM638q5mllW0DK1Bt9YsRR4F7gpyD3tPuDW\nV0oUU8Eb8iTgfuCvZnasc26lc2617RiMXQwsDi/K2Ngp12fMbLhzbgOwEXgaODXYtwYYY2YHp+oL\n18zyzOyf+K6Qv5lZL+fcInwrzX8Fh63BF1T5ZtYxVXOFXfJ9tuKDQZDTAmAF/h/QDWY20cw6p2q+\n1Ty3c/AtNA8FX78HugB3VnyiDy/i+gs+uV+Bby1fgh9DczHQwDlX7pwrMbMcoDPwZZixRmunXJfi\nc73UOVeMH4bwIPBv59wJwG+APmY2MrSAo2Rmzc3sJeBl4HIz2wsgKI6fB64JDi0CpgBNglaclLO7\nXCuKJTPrAXzjnFsJvAlcCUw0s9zgbzvjJW0xtdOn1OuBec65AcArwC92c0on/D+jlOvLrSHXS4Pt\ntwL5wBrn3D+C5uU3gFMSGmyUdpPrDOfcMGAqcIeZ9QKeBI40s27OuVJ88/JWoEmi441WDfmOBXoE\nrVRtga74rs32QDvn3EpLobFTNeUaFEy3Ap8BZzjnnsa3XCwBBiU84BgJisABwPjgdXklMAwYUul3\n0gv4zjn3VfBPq39I4UZlN7leBRxjZicA/4cfG9Y2OHYV8AGQyq0X24C3gfOB1cCZlfb9HTjIzIYF\nRccP+P9DGxIeZWzsKdfVQHcz+wdwN751aplzrsQ5tz3hkSahZC46GkHkDfpHoOIJawksrPSpvjTo\nDlvnnJtrfnDcrWaWSleT7CnXT82sp3NuOf5T/hmVzmsHTEtkoDFQkWtFi+LnAM65+4D+wLn4F+7H\nwB+DfZ/ix5uUJDrYGKgp31H44qkMn3Mz4FhgXzPrl2Jj4/aU62HAJcEHna3AWcG+in9Anyc82iiY\n2YVBd0jrYNNCoJOZNXDOTQE+AQbj/27Bd19vMbNR+Nds31Tp1qxFrguAY/D/jK8BLjJ/xeZoYDi+\nBStlVMq3lXOuBP++OwX4CiiwHUNNFuAvgLrX/MVPw/Bd2Q3DiLs+apFrj+DQ5vhegm+Aw5xzJwNd\nzOywUAJPQkk3X5GZHYdvQv7SzN5zzr1gZh8AZ5vZXPwf6yv4LrDfOucm49+w+pvZVPwb9XXOuaKw\ncqitWub6KvC0md3onLvZzLqb2XhgKL7o+Cys+OuimlzXAYeYWUXXx6f4fvlsfBfQe2b2F/wb9Sxg\ng5lZKnQH1TLfz/CFRAtgIv7T/pfB+WPwXQdJrw7PbRegB75F9XUzuxs/bmoV/k06qQXFTwf8WKhy\n/LCCpkHRsAI/ZvMA4At8F9D/AHvhi4mR+A8KJcB5zrkFiY6/LuqY63P4FsZezrkXg5bWs4DewAUV\nf9PJrJp8LzOza51za4NjpuP/fs8CxgatUU+aWVvg5mDfZcn+v6eOuZ6Nz3WNmd0QDDmpMGyn9czm\nnEuaL/yLcwa+6+oQ/JN9fbDvQOClSsfeCvxvsHwesA4YHnYOccz1vmC5BXAQMCLsHKLIdQK+K6R5\nkNvr+O6AguD3cF1wXntgIPDTsHOIY77PAaMrnZsFZIWdQ5xynQBcHZyXjx+se1rYOdQyz+zgew/g\nmYptwAPAU/iJGx8HLsBfsQi+u/p3wfIg4Oyw80hErsG6hZ1HDPL9S+X34WD7acHv4QCgacVrFWgY\ndh5xzrUxkBtsT5n3p0R+hd4yVTG+yfkq/whgtnPu1WDfFOAeM3saXyytCLq8FuLHYVxn/mqDvwF/\nCyeD2otBruac24gfjP5FKEnUUi1y/RMw0Tk3Nhgb9U2w70N2dOcVOue+S3z0dRdFvu8TdOsGz2/S\njy+J8rndGpw7D5gXRvx1EYxZGwtkm9kb+A8zZRCZvuIafPdHL/wHgdPwA83vwn/qnx4c+2Hi8BD6\nPgAABLFJREFUo6+bWOUaHJ8Krcc15XstsNrMjnbOvRtsf9nMegL/wnfJHwMsdM5tCyWJWopxrkn/\nHhWGUMdMmb/iZSX+SQY/zuAcM+sarOfgm//H4i8rbg38MnjiHwbeAlJiTo8Y5DolsRHXXy1ybYBv\nWv6fYH1JcN5l+HlM5kBqvCFDZuUbZa6XEOSaCszsaGA2vqtuET7n7fgB1/0hMhP0HcAfnHNv4a9o\nG2xmM4Lz3gkh9DrLpFyh1vmWA7cHXxXnnYm/SnEq0C/4sJvUMinXUIXVJIavdF/Bzxw7Bzgo2H4v\nvjvgQ+AZfN/8P/FNqj3xAxyfAo4Mu1lPuUad6ySgfbD/OvxcLYeHnYPyVa5B3EPwY34q1h8ARuMv\nGpgdbMvCjz+ZCOQF21oBncKOX7nGLN8XgK6VzhsSdvzKNfm+wn6S9w2+jweeD5az8a0yg4P1LviC\nIiX6pJVrnXJ9kh398E3Cjlv5Ktedcm0C5LJjnMl5wF3B8jzgmmC5AJgQdrzKNW75Pht2vMo1+b9C\n7eZz/nJ/8J9su5rZ8c43JW9wzn0Q7LsCP11AKl0ivgvluttctwClwTlbdn2k1JBJ+WZYrlucn0en\n4vV4HPB9sHwx0NPMXse3yqVM9+XuZFKuUOd854YRY6xkUq5hsqAiDZ2ZXQ78zDl3dLDeH99fmwNc\n4pz7Nsz4Ykm5pmeukFn5ZkquweBdh++6vMY5t8j8vEJr8bd5WuL8BJUpL5NyhczKN5NyDUNSFFPB\nFXnlZvZ3/NUiJfgB1187f9+9tKFc0zNXyKx8MyzXiokYH8PfauMS/GzX1zh/dW3ayKRcIbPyzaRc\nwxD61AgQuaFrE/yM3kOBO51z/wo3qvhQrumZK2RWvhmWqzN/M+bz8Lf8ecI593jIYcVFJuUKmZVv\nJuUahqQopgJX4vvij3N+Wvt0plzTVyblm0m5rsR3Yd6jXNNOJuWbSbkmVFJ088GOboOw40gE5Zq+\nMinfTMpVRGRPkqaYEhEREUlFoU6NICIiIpLqVEyJiIiIREHFlIiIiEgUVEyJiIiIREHFlIgkJTMr\nM7N5ZvaZmc03s1+Z2R7fs8wsz8x+lqgYRURAxZSIJK9i51y+c643/n5iI4HbajgnD1AxJSIJpakR\nRCQpmdlm51yzSuvdgJlAG2A/4GmgabD7aufcNDP7COgJLAGeAv4XGI+fpT0XuN8593DCkhCRjKBi\nSkSS0s7FVLCtCDgQ2ASUO+e2mll3YIJzrsDMhgLXO+dOCo6/DGjnnPudmeUCHwJnOueWJDQZEUlr\nyXQ7GRGR2soB7jOzfKAM6FHNcSOAfmZ2RrDeEuiOb7kSEYkJFVMikhKCbr4yoBA/duo74GD82M+t\n1Z0GXOOcm5yQIEUkI2kAuogkPTNrCzwE3Of82ISWwJrg3oAXANnBoZuA5pVOnQyMNrOc4HF6mFlT\nRERiSC1TIpKsGpvZPHyXXil+wPk9wb4HgBfN7ELgX8CPwfYFQJmZzQeeBP6Mv8JvjpkZ8D1waqIS\nEJHMoAHoIiIiIlFQN5+IiIhIFFRMiYiIiERBxZSIiIhIFFRMiYiIiERBxZSIiIhIFFRMiYiIiERB\nxZSIiIhIFP4fstD31No8O5gAAAAASUVORK5CYII=\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAKHCAYAAACl7s3RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xd4HNXd9vH77KrLcu+9YDBggzHCmGK6AQOhhfCEQCDVCUmAPAkJBgKBhOKEhDReAjyUkBBCr7EhlNCbsbHBDXDFvcmWbVlty7x/zFZpJa22zezq+7kuX9NnfzZCunXmzDnGsiwBAAAgNR6nCwAAAMhnhCkAAIA0EKYAAADSQJgCAABIA2EKAAAgDYQpAACANBCmAAAA0kCYAgAASANhCgAAIA1Fufywvn37WiNHjszlRwIAAKRk/vz52y3L6tfReTkNUyNHjtS8efNy+ZEAAAApMcZ8kcx5POYDAABIA2EKAAAgDYQpAACANOS0z1QiPp9P69evV2Njo9OlZFVZWZmGDh2q4uJip0sBAAAZ5HiYWr9+vaqqqjRy5EgZY5wuJyssy1JNTY3Wr1+vUaNGOV0OAADIIMcf8zU2NqpPnz4FG6QkyRijPn36FHzrGwAAXZHjYUpSQQepsK7wdwQAoCtyRZgCAADIV10+TNXW1urOO+/s9HWnnXaaamtrs1ARAADIJ4SpNsJUIBBo97o5c+aoZ8+e2SoLAADkCcff5ot14/NLtHTj7oze84DB3fXLLx3Y5vGZM2dq5cqVmjhxooqLi9WtWzcNGjRICxcu1NKlS3X22Wdr3bp1amxs1BVXXKEZM2ZIik6NU1dXp+nTp+voo4/Wu+++qyFDhujZZ59VeXl5Rv8eAADAnTpsmTLG7GeMWRjzZ7cx5sfGmN7GmJeNMctDy165KDjTZs2apTFjxmjhwoW67bbbNHfuXN18881aunSpJOn+++/X/PnzNW/ePP35z39WTU1Nq3ssX75cP/zhD7VkyRL17NlTTz75ZK7/GgAAwCEdtkxZlvWZpImSZIzxStog6WlJMyW9alnWLGPMzND2VekU014LUq5Mnjw5biyoP//5z3r66aclSevWrdPy5cvVp0+fuGtGjRqliRMnSpIOPfRQrVmzJmf1AgAAZ3W2z9SJklZalvWFpLMkPRja/6CkszNZmFMqKysj66+//rpeeeUVvffee/r44491yCGHJBwrqrS0NLLu9Xrl9/tzUisAAHBeZ8PUVyX9K7Q+wLKsTZIUWvZPdIExZoYxZp4xZt62bdtSrzRLqqqqtGfPnoTHdu3apV69eqmiokKffvqp3n///RxXBwAA3C7pDujGmBJJZ0q6ujMfYFnWPZLukaTq6mqrU9XlQJ8+fXTUUUdp/PjxKi8v14ABAyLHTj31VN1111066KCDtN9++2nKlCkOVgoAANyoM2/zTZf0kWVZW0LbW4wxgyzL2mSMGSRpa+bLy42HH3444f7S0lK98MILCY+F+0X17dtXixcvjuy/8sorM14fAABwr8485rtA0Ud8kvScpEtC65dIejZTRQEAAOSLpMKUMaZC0jRJT8XsniVpmjFmeejYrMyXBwAA4G5JPeazLKteUp8W+2pkv90HAADQZXX56WQAAADSQZgCAABIA2EKAAAgDV0+TNXW1urOO+9M6do//vGPqq+vz3BFAABkSMAnNe91uoqCR5giTAEACtVDX5ZuGex0FdIzP5A+eazj8+46WnphZvbrybDODNqZfS/MlDYvyuw9B06Qprc9asPMmTO1cuVKTZw4UdOmTVP//v312GOPqampSeecc45uvPFG7d27V+eff77Wr1+vQCCg6667Tlu2bNHGjRt1/PHHq2/fvnrttdcyWzcAAOla/YbTFdgW/tP+c9D57Z+3eZH9p52f227krjDlgFmzZmnx4sVauHChXnrpJT3xxBOaO3euLMvSmWeeqTfffFPbtm3T4MGDNXv2bEn2nH09evTQ7bffrtdee019+/Z1+G8BAIBL1blvXt5Mc1eYcjiJvvTSS3rppZd0yCGHSJLq6uq0fPlyTZ06VVdeeaWuuuoqnXHGGZo6daqjdQIAkDf+eZ7TFWSdu8KUwyzL0tVXX63vfe97rY7Nnz9fc+bM0dVXX62TTz5Z119/vQMVAgCQZzYtTO68gC+6fkMP6X/+Ke1/RnZqyrAu3wG9qqpKe/bskSSdcsopuv/++1VXVydJ2rBhg7Zu3aqNGzeqoqJCF110ka688kp99NFHra4FAABp8DfGbz96oTN1pKDLt0z16dNHRx11lMaPH6/p06fra1/7mo444ghJUrdu3fTQQw9pxYoV+tnPfiaPx6Pi4mL99a9/lSTNmDFD06dP16BBg+iADgBAS8FAdL1qUPvn+hpb7wsGJY/72326fJiSpIcffjhu+4orrojbHjNmjE455ZRW11122WW67LLLslobAAB5a29M5/MBB0bXfY3Sxo+kEUdG9zXXtb7e3yCVVGavvgxxf9wDAAD56a3fR9djW6nmXCk9MF2qWRnd52tofX1TgoDlQoQpAACQHXFhyIqubv7EXjbuiu4LxnRAD/Plx8DYrghTlmV1fFKe6wp/RwCAS9XvcOhza6Lr4Zap126RNn1srxsTPR7wt74+kCBguZDjYaqsrEw1NTUFHTYsy1JNTY3KysqcLgUA0BVt+MiZz+3WL7oeDIWlN34T3bdlSczxmODUb397GWjKXm0Z5HgH9KFDh2r9+vXatq2wR0gtKyvT0KFDnS4DAIDcGXyItOAhqahMWvte60mXn/2hNPZkqVv/+Fao8OO/2JYtF3M8TBUXF2vUqFFOlwEAQAFz6OlPeLiD8BhSb97W+pw1b0vjz422TI2cKu17qvTStdIT35Z+vrL1NS7j+GM+AACQZU50pVn8lLTgH/H7Gmpbn/fEN6W7pkb7TJ10o91SJSUeLsGFHG+ZAgAABeiJb7be5/EmPnfzJ9KeTfa6t0ja5yR7veWo6C5FyxQAAEifZUnLX7GX/jY6jq96ve3rn7/cXnqKpaLSjJeXTYQpAAAKXg4e891zrPTPL0sLH5bevzP+2JQf2MuaFR3fx1sseWIenC17PnM1ZglhCgCAQpeLPlPhsaN2rZP2bIk/NumS5O9jPHbrVNijF6VfW5YRpgAAQOZYwfi+UaOPT9xXyrQRQYyxJzc+6H+yU18WEKYAAEDm1KyQ3rsjur1zTeKWsQPOkq5LMI6UCQWvs/9qLw/+WsZLzDTe5gMAoODlcGiExU/Gb+9cLVmB+H3n3C2NO91+c6+lcIuVxyt1H9J2C5aLEKYAACh0Tk/Z1n//+O0J59uP8hKJDU9FZZK/IXt1ZQhhCgAA5FZskLrsI7sVKhiQPnlM6j44eqy4QvK5P0y5v+0MAACkxwo699nH/Mxenvt/9vLyBfHH+4yReo20l8dfbXdADysuz4swRcsUAACFrq2Rx3Nh0ER7edD59p/OyJMwRcsUAACFrqgs+5/RfWiLzyyXLn1X2v+M1O9ZXC756tOrKwcIUwAAFLpcTM/S8lHiyb+WBhyY3j2Ly/Nifj7CFAAAhcobClG5eJuv5fAHmWgNowM6AABwVEUfe9ky6GRDXYspZIrL07/nmrfs6WkCvvTvlUWEKQAAClV4zKZsv83nb2q9r8fQ1vs6q3atvdy7Lf17ZRFhCgCAQpWrMFW/o/W+qoHp3/fYq+ylyx/1EaYAAChU4TGbglkOUytfbb3PW5L+fQeMt5dbFqd/rywiTAEAUKhy1TI1cIK93Hd6dF8mwlS4r9djF6d/rywiTAEAUKhyFabC9x81NbovEx3QY+u+oYf0xm+l5S+nf98MYwR0AAAKVSRMZfltvnDoKe8V3VdSmf59x5wYv/3azfbyhl3p3zuDaJkCAKBQ5aplKtwnq7Kfvew5PDP3Le+ZeH8uxs3qBFqmAAAoVNs/s5fBHLVMGY90zUbJU5zdz2vaLZX1yO5ndAItUwAAFLpc9ZkyHvvxXlEGOp+3Z8kz2b1/JxGmAAAodLkMU7nw/OW5+Zwk8ZgPAIBCl40wtWO1tO0zaf1c6a3f2/tyFaYkaccqqffo3H1eOwhTAAAUumyEqT9PbL3P483853znVene0Ft93/qPdP8p9nrDzsx/Vop4zAcAQKHL9mO+sGy0TA2ttqeVGXyINPSw6H6Pe9qDCFMAABS6bL/NF2Gyc9vjr5FmvB7f8uWi4REIUwAAFDorKH30D2nRE6ldv2OVtH1FzP3aCDLeHLYW7VyTu8/qgHvayAAAQHZYgegbcBPO69y1zfXSnw+x16/fKXk80qLHE58bnpg4F0YcmbvP6gAtUwAAFLqAL/Vr/Y3R9Y8ftpfrPmh9XtVgqag09c9J1uULpIuekrr1z/5nJYmWKQAACt0LP0/92thHenu3t94XNmRS6p/RGb1Hu2ZIhDBapgAAQNtiJ0kuLg/vbH3eyKNzUo4bEaYAAOhqNi9Kfpym2EeEFX3sPlQ1oc7olf2lE6+31w/7bmZrzCM85gMAoGAZJWxFuutoacAE6dK3O75F0B9zOyPdMii63bRHmvpT+08XRssUAACFqqxH633+Znu5ZVFy94gNU57i+GNn3ZFaXQWGMAUAQKFK1FF8z6bO3SN2wM/YYCVJ/Q/ofE0FiDAFAEChSjSNjL+pc/cIxvSZahmm+o3rfE0FiDAFAEChshJMI+Nv6Nw9YgNUoDn+mIcYIRGmAAAoXIlappr3xhxPYn672DDVUJt+TQWIMAUAQKFKFKYemB5dT2Z4hNg+Uy9dm35NBYgwBQBAoUoUpmJt+KjjeySaOgZxCFMAABSqYII+U7EePr/je7z0i8zUUsAYtBMAgEJkWUo4YGfcOe2EraY9krek7eOlCcaw6qIIUwAAFKJkOpe359ah7R8/fEZ69y8gPOYDAKAQddRfKh2jj5OOpzN6GGEKAIBC1N4jvHRNutiepw+SCFMAABSmQGjk8p4jEh/vNkCq6Nt6//blUv2O+H0XPxu/vd/p6ddXQOgzBQBAIQpPG1NUmvj4sMnSmrdb77+jWuo+JH7fliXR9au+kIrLMlNjgaBlCgCAQhQIhanqb7U+9pNldstUw05p0ROtj+/eEL89eJJkvPa6x5vZOgsAYQoAgEK0eZG9TNQy1X2w9MW79vqT347ub2sS5BFHSDO/kL71H6m0KrN1FgDCFAAAhSg8IOeG+YmPb10aXX/6+/Zy+/K271daJQ2fkpnaCgxhCgCAQuYNtUxV9JV6jZJ6DG99zsf/spfF5a2PXb4ge7UVCDqgAwBQyKyA9IMPpKqBUnnP6P6ew6XatfHneotbX997dHbrKwC0TAEAUGiWPR9dL+km9R8XH6Qk6aw7W1/XctT0c+/NfG0FiDAFAEChefSi6PqYExKfM2pq6yEQWo6aPu60zNZVoAhTAAAUsn1ObPuYp0Vvn5ZhqqQy8/UUIMIUAACFqrii/eOxYSoYkIL+7NZToJLqgG6M6SnpXknjJVmSviXpM0mPShopaY2k8y3L2pmVKgEAQOe17APVkq8+un77AVLd5uzWU6CSbZn6k6QXLcsaJ+lgScskzZT0qmVZYyW9GtoGAACu0UGY2rMpuh4bpPqNk468LDslFaAOw5QxprukYyTdJ0mWZTVbllUr6SxJD4ZOe1DS2dkqEgAApKCjlqm29BwhnXxTZmspYMm0TI2WtE3SA8aYBcaYe40xlZIGWJa1SZJCy/5ZrBMAAHRaimHqlJszW0aBSyZMFUmaJOmvlmUdImmvOvFIzxgzwxgzzxgzb9u2bSmWCQAAOi3QnNp1fcdmto4Cl0yYWi9pvWVZH4S2n5AdrrYYYwZJUmi5NdHFlmXdY1lWtWVZ1f369ctEzQAAoC2debQ3c53040XZq6WL6DBMWZa1WdI6Y8x+oV0nSloq6TlJl4T2XSLp2axUCAAAkhfwJX9uWXeprMXI6Bc+kdl6uoBk5+a7TNI/jTElklZJ+qbsIPaYMebbktZK+kp2SgQAAElb+27nzvd4o+tTfiiNnZbZerqApMKUZVkLJVUnONTOsKoAACDnGnd17nwTE6a8ybaxIBYjoAMAUEhMJ3+0x7ZMffJ4ZmvpIghTAAAUkn7jOnd+bMsUUkKYAgCgkHR2oE5PTBSY8Vpma+kiCFMAABSUmDDlKe7cpZWMv50KwhQAAIVk40J7OeIo6crPO3eth1iQCv7VAAAoJLVf2MumPVJFb2dr6SIIUwAAFJJRx9jLE37hbB1dCGEKAIBCEgzYy6JSZ+voQghTAAAUks2hufYY8iBnCFMAABSSF6+yl811ztbRhTBuPAAAhagzwyLMXBt9PIhOI0wBAFCIrGDy55b1yF4dXQCP+QAAKERbFjtdQZdBmAIAoBB1G+B0BV0GYQoAgELEgJ05Q5gCAABIA2EKAIBCUjXYXg6c4GwdXQhhCgCAQjLudKm8t9RjqNOVdBmEKQAA3MqypIC/k9cEJA+jn+cSYQoAALf69/9Kv+7TuWuCfsnDMJK5RJgCAMCt5j9gL5vrk78m4O/c6OdIG2EKAAC3Co9MXr89+Wt8e6Xi8uzUg4QIUwAAuFVpKEw11CZ/TUNt56aSQdp4qAoAgFt5Qm0eVicmIV79RnZqQZtomQIAwK1M6Md0kJYmNyNMAQDgViaFlinkHI/5AABwq0jLVCfCVGU/adwZ2akHCdEyBQCAGzXukrZ/bq8/cKrUtCe564J+ycvQCLlEmAIAwI3+/ZP47XUfJHddMMCgnTlGmAIAwI0WPxG/velj+09Hgn6mk8kxwhQAAPng1V9Jdx/T/jkBv+Srl+q25qYmSCJMAQCQf5Y+K71/V+v96963l588mtt6ujgeqgIAkG8eu9heTvm+s3VAEi1TAAAUDm+JvTzwXGfr6GIIUwAAFIpAs7089BuOltHVEKYAAMhXH/1D8jdFt/2N9rK43Jl6uijCFAAAecPYg3mGPfcj6bVbotvhYFVUmtuyujjCFAAAblRS1Xqfp0jasiR+X/12ac8WybKiLVNFZdmvDxGEKQAA3Khb//jtQ78pBX3SZ3Pi96/7UPr9vtJfJklbltr7CFM5RZgCAMCNKvtF14dOlroPttd9DfHnbf/MXu5YJb31O3udMJVThCkAANwo6JOKK+1144nOt9e8t+NrK/pkry60QpgCAMCNAr7oHHvGI3mL7fVPZ7d/XfchkpcxuXOJMAUAgBsF/XaIkkItU6Ew1bS7/esYFiHnCFMAALhRoDmmZcpE1ztSsyJ7NSEhwhQAAG7ka4x2JDceactiZ+tBm3ioCgCAG/nqpf2/ZA/EedxM6ZELna4IbaBlCgAAN/I3SqVV0rl3S71HRftPhV34pDN1oRXCFAAAbmNZdstUcUV0nzHx54w9Kbc1oU2EKQAA3CY8lpSvPrrvpF+2f82VdDx3CmEKAAAn7dkibfokft9nL9jL9+6I7qvo2/Y9+oyVuvVr+ziyijAFAICT7jxcuntq/L7eo+3l4ZdG97V8zCdJx11tL/uOtZdf+pP0ww8zXyPaxdt8AAA4qWFn633z77eXsdPCxM7Jd8jX7WX/A+KvO/QbGS0NyaFlCgAAN1jxanR91Rv2cufq6D5vSXR97Mn20gray8YORkVHVhGmAABwg4fOja5bVuvjQyZF18PDJITn6fvi7ezVhQ4RpgAAyDfhMLXPifaytIdztYAwBQCA+4RaphJ1Opek2i/s5ejj7OWJ12W7ILSDMAUAgNsEA/ay5ajnYeHHe1UDpeu2S4d9Jzd1ISHCFAAAbhN+K+/IKxIfP/6a6Lq3uO0WLOQEYQoAALd5Y5a9rOyT+PiII3NXCzpEmAIAwCl7trR/PBjMTR1IC2EKAACnPPnt9o9X9M5NHUgLI6ADAOCUxtroet/9ouuDD5Eq+9EXKk/QMgUAgFP8TdF1KxBd9zXEj3gOV6NlCgAAp2z/PLoeaI6ub/tU2vZZ7utBSmiZAgB0DXVbpRt6SAsfdrqSqKLy6HrAF39s+BG5rQUpI0wBALqG7cvt5TOXOltHrLEnRddjH/mV95IGHJj7epASwhQAAE6piBlHKrZlKhiUPN7c14OUEKYAAF2Dv8HpClqzYsaRCoRapgJ+qWmXtPip1uf/eJH0o3m5qQ1JowM6AKBrKK5wuoLWLCu6Hmi2t3ets7f3bm19fs/huakLnULLFACgayjt7nQFrcWGKUlq3CUte86ZWpAywhQAoGsI+p2uoDWrxXQxjbXSy9fb6+fcnft6kBLCFACga4gdFLN2rXN1xIqtSZKCMdt99sltLUgZYQoA0DXEThr8tEuGR/CEui7vM81exrZUVQ3MfT1ICWEKANA1xLYCuWXOO8uSegyTJl5gb8e2THlLnakJnUaYAgB0DbFBxbjkx1/Qb7dOmdCYUrEtU95iZ2pCp7nkqwkAgCyL7YDutjAVHqAztvWMiY7zhku+mgAAyLLYoOKW0cUjLVOe6HYYLVN5gzAFAOgaYjugt5xU2CnBQPxjvti6PIyrnS8IUwCAriG2ZWr1G9KCh5yrJSzos1vJwi1lL11nL4+/1j2d5NGhpMKUMWaNMWaRMWahMWZeaF9vY8zLxpjloWWv7JYKAEDnPLtwg5Zt2m1vBFuM6fTsD3NfUEsBn/04b+82e3vd+/by3Tucqwmd1pmWqeMty5poWVZ1aHumpFctyxor6dXQNgAArnHFIws1/U9vKRC03DkCetAveYqlLUvi95d2c6YepCSdx3xnSXowtP6gpLPTLwcAgMxr8gek125xuozWAj7JWyQdfEH8/jP/4kw9SEmyYcqS9JIxZr4xZkZo3wDLsjZJUmjZP9GFxpgZxph5xph527ZtS79iAAA6yRewpG3LnC4j3tZP7cd63hKpx5D4Y2U9nKkJKUn2VYGjLMvaaIzpL+llY8ynyX6AZVn3SLpHkqqrq60OTgcAICMuuOf9yLovEGznTIc8dnFoxUglLR7rFTH6eT5JqmXKsqyNoeVWSU9LmixpizFmkCSFlluzVSQAAJ313qqayHqbYcpy6Hf8gF/a/ll027QY96r/gbmtB2npMEwZYyqNMVXhdUknS1os6TlJl4ROu0TSs9kqEgCAdPj8bYSm5r25LSTs/46PrhsjeWJ+HPcYHr8N10vmv9YASW8bYz6WNFfSbMuyXpQ0S9I0Y8xySdNC2wAAuE5zbMvU99+JrluB1ifnwuZPoustp7bZtTa3tSBtHfaZsixrlaSDE+yvkXRiNooCACCTmv0xYSq2P1LLsaec4G9yugKkiXZEAEDBCQbjH+v5AkGp3zh7o9eo6AErFLKa9kjLns9RdS2ses2Zz0XGEKYAwEG19c3619y19qCSyJhAi47lZevekrZ9KvXZxx7XKSzcMvX8FdKjF0lbXTZ8AvICYQoAHPL1+z7QxF+9rKufWqQx18xxupyC0jKc7vfSRaG10Hx3U68MndgsffR3aVOoD1PjrtwUiIJCmAKAHAsELb2zYrveWr49bv8fXv7coYoKT5stfTXL7WWvEfby7T9Iz10W3R/wZb+4lsaeHL/91YdzXwPSQpgCgBxq9AU05po5uvDeDyRJf71wkmadO0GS9KdXl2vhulonyysYjb5ox/LzvQn6JHlCj/rm3Re/v25LFquKMe6M6PqYE1ocOz03NSBjCFMAkENXPv5xZH1030pNnzBIX508XIeO6CVJOvv/vdPWpeiELbujb8gd71nY+oTwIJmDJ8Xvf/LbWawqRmyfLkY7z3uEKQDIodIi+4f4KQcO0Ks/PTay//HvHRFZHzlzds7rKjSxj/k8SvDIzxMKUxs/ylFFLVlSt4HS5O9JB3/N3nXmHdLJNzlUD9JBmAKAHFm8YZee/Gi9JOnur1fLGBM55vEYLbx+WmR75MzZuuT+ua1e8UdyNu1qiKyXKKYf1I/m2cuWA2XmmmVJ3fpJp/1WKi6z9036unTkZc7WhZQQpgAgR874y9vtHu9ZUaK7v35oZPuNz7dp9DVzCFQpmPGP+ZH1ctMcPdB3rL30tJgLL+csRd4sRN4jTAFAFr24eLPWbI+f/+0Xp+/f5vmnHDhQb/38ePWqKI7su523/NJSpgQjjLecWDhWLiY/Dvgkb0n2Pwc5QZgCgCz5eF2tvv/QfB33u9cj/aBOGNdf35k6ut3rhvWu0ILrT1b3MvuNszteW0HrVBqeDBwjSQr0GBHd2V7L1Bc5eAkg0Cx5izs+D3mBMAUAWXJWgjfzSrzJf9v95IZTIuujr5mjXfUOjIFUAP4ROFk/bL5c3u+9Ht3ZXsuUvzHrNSnojw7PgLxHmAKAHNpR39zxSTH+fMEhkfWDf/VSpsvpMmYHp0gVvaM72muZ8uUgTPGYr6AQpgAgSw4e1lOStPrW03TiuP6SpBkdPOJr6cyDB+v5Hx0d2R45c7b8gWDmiixQ51cPbf+E9sJULh6/7VglBWlpLBSEKQDIksbmgE45cICMMbr3kmrNuXyqTjpgQKfvc+Dg7nHbTy3YkKkSC1ZZcQdv6yV6zHfqb+xlcXnb1wUDkj9Bh/bOatghrX4z/fvAFQhTAJAlexp9qiqzWzmMMTqgRShKlsdjdNbEwZHt7XUZ+GFe4Nqcmy8sUctUjyH2smlP29c9+nXppv6pF4aCRJgCgCzZUd+s3pWZ6Rfzp68eopW3nCZJ+u2Ln2nOok0ZuW+hCnY0vIGV4FFpRV972VTX9nWfMTo9WiNMAUAG+ANBfb7FbtGwLEv1zX41+oLqVZG5TsZeT3SQxx/806lpUPJDhy1TQX90/fhr7WVlP3vZsKPjD3jjt9INPVIbkypIn7dCQ5gCgAz4/cuf6+Q/vKm/v7dGo66eowOu/48kaXDPsox+zvKbp0fWP1yTxA/9LsoftDS4R5kWXDct8QmxYeron0g37IpOOPziTOm/HcyR99rN9nL3BsnfuTc0Ix3PT7iuc9fBtQhTAJCmj9bu1F9fXylJuv7ZJXHHjtsvs/1rir0e3XbeQZKkr9z1XkbvXUiCQUtFXo96tfWYNRiIrntD4z3Fztf35m3JfdAfDpQeuaCTxYWCHIN2FgxGDAOAJNU1+fXUR+tVU9es/522b2T/L55e3OrclbecFvdYLpNG96vMyn2zIRC0tGJrnfYbWJWzz7QsS9uokFQSAAAgAElEQVTqmtr/949tmQpr2Sn9hh7Sz1dLjbuk3qPavteKVzpXYCDUMsWgnQWD/5IAkKTxv/xPZL3JH9RVp+4nY4xKi6MtGredd5DOPmRI1oKUJA3qEX11v9kfVEmRex8yHHTDf7S3OaAnLz1Sh47olZPPfHz+er2zoqb9k7oNbL0v0XAJvw2FqOu2Z64lKdwq5qFlqlAQpgAgBXe9sVJVZUVasnGXFqytjez/SvWwrH/24J7RMLV2R7326d8t65+Zqr3NdnBYsnFXzsLUuyu2x23fdPZ4jW35bzT0UOnwS6WRR0X3mXZCaSbn0gv3mWpv4FDkFff+OgMALnfbfz7TnEWbI9trZp2es8/+aegx40m3v5Gzz0zF1LH2cAPXP7uk4zfssuSiKSN0+Og+rQ9MnyXt/6XotqeDMJUp9JkqOIQpAEjC5l2N6lFerEnDeyYMTRdMHp7Tei6cMiKt61duq8vJtDQ9yqOBYcw1c7L+eZLkMSk+Ym2vZWrPltTumQh9pgoO/yUBoANra+p1zG2vSZKWbtrd6viSG09RZWluv532rizR4B5lqm3wybIsmU4EiG17mnTi7+0Wrf5VpZp77Ukp17Gr3qfiIqOKkvi/f0NzQPe/s1r//sSBwUVT7q7WzoV3Hm4Pn5AJ9JkqOLRMAUAHPlq7M7L+k9DjtTmXT9W4gVX66LppOQ9SYTOOGa365oAufSj5ATx37m3WRfd+ENneuie9qWkO/tVLmnZ76znm/vDK57rtP5+lde+cSyaQFrUxblhjJ4LW3q32kj5TBYMwBQDt2Lq7UT9+dGFk+/jQuFEHDO6uF398TMami0mF12t/C39xyWZt3d2Y1DXfevBDfbYlfu65mjTn+ttQ29Bq3469ifsYrd6+N63PSoZJtWmqNInhGwYcmHh/fScGUH0gNPBqW8EMeYcwBQDtqGkRCkb0cc8YTxOG9Iisf/fv87RofcetI7FvHl5+wj6SpENv6uQ4SUloaA4k3H/3Gysz/lkthUel6NstC0E30Zx+kuSrj64Hg1Ldto7vVZbaxNdwH8IUALTjNy9+GrftpjGdJg7rqZ+fup8k6eP1u/SlO97W0o27NXLmbD0yd22H1/eImTewyZ84/LTn7eXb2zy2pyl+UMzvHG2P1/TIh+s6/TmpKmrv7by2HPZdqfeYto8H2/h38jVIezZLW5dJb98u/W4faffG9j+rxD3BHOlxz3cFAHCh1z+LtjA8MmOKg5Ukdumx8T/4H5tnh5VnFm7o8NolG6MtWb9sMQ1OMi6674M2j8U+OrzlnAk6/aBBnb5/qvyhIRiKi1J43Hf676TLP2q7s3nsxMZfeVD60p/sdV+9dOcR0p1TpM9esPfVdNAKV1zR+frgSoQpAEhSN4c6mrfHGKMHvnFYZPtv766RJL2/aoeeXrC+3Wt/+aUDIyO1v7hkc7vndsSy4seQim3B+9rhw+Omk6lrSjCVSwb5QkM+FKfSMtWR2GloDjxbGjDBXm+ulxpC/aY2zLOXCx5q/17J9NFCXiBMAUA7Dh/VO7Lev3upg5W07fhx/TVz+rhW+//30Y/jtu99a1Vk/cLDh6tHebFW3nKaJKm23pdWDS0H5Az357rzwkmSFDd0wu6G9D6rI/6AXUuRN8NT+jx0nrRtmb3+7VA/s3Agaq5rff4nj7R/v+6DM1cbHEWYAoB2BIKWjhzTR5/ddKr6V7n37avJMaEv1v+9GQ1QN81eFlm/+ZwJGf18f4sw9ff3vpAknTah9eM9X5YHC60qs4PblESjnqdjxcvR9WGh1sDS0DQ1Ta3HH5Nkt1jFagydN/q4TFYGhxGmAKAduxp86l5WrNIid48J5PMnDig3z1mmkTNna2+GH60FQ+GpssT+d0lmqpgpo+3Ad+xtr7c5dEImDOxhh97rzjggMzf8zn/bPlYcmiexrbf3dqySmuqkG3pInzwmrQ6NybWr4z5tyB+EKQBox+5GX9yUKG7VsmVqxc3T47Z/9kT8I79Y5x4yRJLU6Ev+jb53V9ZIksIZ6vF5Hb+ld9PZ0dawKx9vu550+YOWSrweFXvT/BF31I/t5dBDpUETE59TFApT6+cmPv7KL6Utoc79r90SfSw4/Tfp1QZXIUwBQDt2N/jVvdx9Hc9bMsbomR8epXsvrtacy6eqyOvRfZdUR46XtdOy9skG+821r9z1XtKfF36TryEUwG54fqkke4T1kTNnJ7xmn/7dIus767PXMhUIWu3OWZy0aTdG3+or65H4nKJSSab147ywFa9Ij3/DXt+5WtowP3S/nhkoEG5BmAKANuxq8KnBF1C3Uve3TEn2uFMnHTBABwy2B4M8cf8BWjPrdI3qW6ndjW13+p5xzGhJ0qINnZ97rntZfNDcsie5kdjbGtQzEwJBK7UxptpT3kb4MUYq6Sapncece2LGm3r1RntZ5M6XGZAawhQAtOHUP9r9W/6VxACYblZa5NH6ndEpX351VvyUKOdXD0v53u9dfaIkab8B9uOr8uLk+pZ9unlPxyelKBC0IkM+ZExsy1R5i87+JRVSw874fe0N/CkxlUyBIUwBQAIjZ87Wpl12K8v51UMdriY9JUWeSHipHtFLFx8xstU551cP1cDunf8BX1lapKlj+6qyNPmO6GFbk2zF6qyd9c0Z73AfF6bOuz/+mKdYamoRDk+5pf370TJVUAhTANBCbYv+PF87fIRDlWRGSUxH7LY6ZVeUFGnz7sakO6H3qyrVuZPsjuulRR41+oLaXteka59eHDnnwsOHt7ru+P36RdYn3/xqUp/VWc8u3NhqqIa0lcbMo9erxdfD7vXS7tDbeT1Dx0oqpEO/0fb9aJkqKIQpAGhh2aZoK8O/vjsl8qp9viotjn6rH9a7POE5n4Varn7976VJ3bPRF1D3MrsvWWmRV03+gKpvekXvrbLf8vvNlyckHMuqe4s3I99fVaNdDb6sjz2Vtr0x8xC2Nw3MOXdLJ/xCGnG0dMRlbZ9Hy1RBIUwBQAt7Qp21/33Z0TpiTIYHfnRAbMvU1dP3T3hOcyjMrKnZm9Q9G5oDqgiNMVVabLdMxUo0WKckXXxEfKvOV+95Xwff+JKueWpRUp/rmLqY6Xbaa1WqGiAd8zPJ44kO6JkILVMFhTAFAC2EX/cvL3H3QJ3Jip0nr6I08d+pLNR61TIUJdLsD8oftCJhas32vdpQ2xB3TlVZ4jcgDx3ROzKFTazH57c/j6DjTMy/W3Hi1j1J8SGp24AW94j5kevNjzdEkRzCFAC0cPvLn0tSJCzku5KYMaZK2ugzFR7hPZk+U+GJiitDEz9/tLY27viQnu2EDUlej4lM+ZI3esa88djeI7rYMGVi3ig84kfSDz9MfAx5jzAFAC18UWMPwJjx1+sdsmZ79NGdaeOHeHhIg47C1M69zbr+WbuTeZ9uiUPFlafs22FNJ4zr3+E5rnL8L6Tjrpauq2l97LhrouttPb47+Sap7z7ZqQ2Oy7NfDQAgd9w8sXFnJDMYZ2noUeDKbXu1ZXejBrQxTMK1zyzSnEV2/6Fw8Koo8ao+NAjnyltOSyqE/va8g3T8fv3140cXJvV3SJZlZfgtvrCiEum4mYmPHXOl9HpoKISWYWrGG1JFn2hL1Lf+Y8/Xh4JCyxQAxAhm+pV6F/j20aM6PKfIGw1Ah9/yqr5y17t6a/k23f3Gyrjz1u2I9o06a+JgSdLfvjlZHiPdfv7BSbfmlRZ5dXZoTsBMagpN+HzB5NbDMmSNxyt99zXp2KvUah6bwRPjHxEOnyJN/FruakNO0DIFoMvZuqcxrtWpyR/QE/PXa+Kwnnpruf0K/GUnFM4jmWQG0vS0ePz34Zqd+vp99uS9t77wqXpVFGvB9SdHWrkOGtoj0s9q8qjeWnXr6SnVtvKW0/SHlz/XHa+tkGVZbT6GTFZ4sM79B1WldZ9OGzLJ/oMuiTAFoMt4fN46/eyJTyRJv//KwTr9oEFav7NBJ93+RqtzC6O3lO0f738hqf0Wqo5CzM56X9wExs/96OiM1Ob1mMhAokFL8qb5D3//O6slScu31KVbGpA0whSAvBMMWnpz+TYdu2+/pFoy9jb5df/bq/X70Ft6kvTTxz/WTx//OOH55x06VJceV3gtU7FDJLTk5JuL4RcMMzGn3uufbZMkbdrV0MGZQOYQpgDknb+/t0Y3PL9U/+9rk3T6QYkHhwwLBi0d+Mv/dHjPVbecJk+BvL3XlkuPa3vy3f+dtq/ue3t13L6rTh2n37z4aatz7/n6oRmt62/v2i1nD7yzWt87toMJgjvQ0BweI4wfb8gdOqADyDvLt9qPcGr2NnV47iUPzI3bXvarU3XFiWMj23++4BCtmXV6QQep74cCSmU7AaNbaZHOPHhwZPt3XzlYlx43JtKRe82saJ+okw8cmNH6ttfZ/x3/8t8VKd+joTmgkTNnR16au+CwYe1fAGQQ0R1A3gm/ht9eOAgLdygPKy/x6n+n7av/ndbxWEiFYub0cZo5fVyH591w5oHad0A3/eC4fSLh8tZzJ+jWc6Nz7E0d2zfj9Z158GA99/HGtIY1mLNokyR7aAdJ2ndgjjugo0sjTAHIO3sa40fgTsascydoehvzxcHWu7JEPzphbJvHP/31qSrKQgvehCE99NzHG7W3uePR19vS0GKw0eI2RnoHsoEwBSBv7NjbrCfnr1ddkz0RcXtz5wWClt5fFR2t+pxJQyKv8iM1ZcXZ+fdLdw7E5Vv26BfPLI7bV9pOZ3sg0whTAPLGtU8v0guLN0e223ssdNG9H+i9mDBFkHKvdN/gm/aHN1vto2UKucRXG4C8EX68FxabpbbtaYosT/jd63FB6htHjsxFeUhReCT1TCqUeRWRH2iZApA3Wo6T9M2/fag3f3a8HnxvTavX+sOuPHnftF+3R3ZVMIwB8hxfwQDyRqJpUY657bU2zy/2mnY7VMM9Lpg8TK8u2+p0GUBKeMwHIG+88fm2yPr51UNbHS8rjv+W5gsU3qTFharI45G/ACeZRtdAyxSAvPSrs8brkOG9dPVTiyQpMhp6MGhp6abdmvH3efr9+RMdrhLJKvZ65PMH07yHIUDDEYQpAHnnw2tPUlmxVxdMHq6+3UrVv6pUBw/rKUnyeIzGD+mhd68+0eEq0RnFXiNfML0wte+AKi3ZuDtDFQHJ4zEfgLzTr6o0sj7tgAGRIIX85fUYNfo6H6b8Afua7x0zWr84/YBMlwUkhZYpAHmhOc1HQHC3e9+y38Zcv7NeQ3tVJH1d+LFez4oSHTGmj24//2CGRUDOEaYA5IWNtQ1Ol4Asag61MG3Y2dC5MBV6NFjstQPUuZNav5gAZBuP+QDkhbome8DO2El3UThG962U1Pkxp8Kd1hnxHE7iqw9AXmgMTWQ7tFe5w5UgG648ZT9JUpG3c4/owsMpdPY6IJMIUwDyQn2zHabKszTZLpwVblnyd3Jog2ZapuACfPUByAsNoZap8hLCVCEKtyx1dniEcMtUMS1TcBBhCkBeaKBlqqAVe+wfR3e+tiKy7/63V+uzzXvavc4XoGUKzuNtPgB5IdwyxaS4hSncMvVKzPx8v/r3UknSmlmnt3kdYQpuwHclAHmBlqnCFhuGNu9qjHts19AcaPPxbnicKR7zwUmEKQB5IdwyVVZCC0RhinY8n3LrqyqJCVfN/mCbYcpPyxRcgK8+AK60NzSuVFhDc0Bej4n7IYvCsacx/r93eBBPSfr7e2sSXvPK0i3asbdZklTk4esCzuGrD4DrvLtyuw785X/0zortkX13vLZCgaAlY3icU4jae3xbUtT6R9Xamnp95+/zdNm/FkiSSov5cQbn8NUHwHXmrt4hSfogtEThmzyqd5vHFq6rbbVvW12TJKkpNM5U/5jJr4FcI0wByBvMX1u4jDGaOrZvwmMvLN7cat+tc5bFbXcrpQswnJN0mDLGeI0xC4wx/w5tjzLGfGCMWW6MedQYU5K9MgF0JVaCQbBH963UaRMG5b4Y5MzO+uakz533xc64bQZzhZM60zJ1haTYXwV+I+kPlmWNlbRT0rczWRgAxApYlrw0TRW0v3/r8JSuqyjxqrSIMAXnJBWmjDFDJZ0u6d7QtpF0gqQnQqc8KOnsbBQIAJIUtCx56Hxe0HpXluiNnx2n//702Mi+E8b11/gh3ePOa/mmZ68KHozAWck+ZP6jpJ9Lqgpt95FUa1lW+Ct6vaQhiS40xsyQNEOShg8fnnqlALqMXQ0+SZIV87wvGBRhqgsY0adSUnTU8x/8c76afPHz9YXn4wvbUNuQm+KANnTYMmWMOUPSVsuy5sfuTnBqwqm+Lcu6x7Ksasuyqvv165dimQC6kofnrpUkbaxtlCQt3rBLG2obtHVPo5NlwQGlRd7IG3th/kDnJkMGsi2Zx3xHSTrTGLNG0iOyH+/9UVJPY0y4ZWuopI1ZqRBAl9LoC0TezDpyTB+9+fk2nfGXtyVJdS0e76Dw7W7wae2Oek27/Q2NnDlbu+p9uvvNVXHnTBnd9rAKQC50+JjPsqyrJV0tScaY4yRdaVnWhcaYxyWdJztgXSLp2SzWCaCLuPbpxZFRrYuLPLrm6UWRY4997winyoJDXv3Unvh4+dY6SdLBv3op7viyX50amSQZcEo640xdJeknxpgVsvtQ3ZeZkgB0ZUs27oqsPzJ3rdbvtPvDfPWwYcy/1gWN6lvZ5rGF109TeYmXrws4rlNfgZZlvW5Z1hmh9VWWZU22LGsfy7K+YllWU3ZKBNCVfLp5T2T93ZU1kqTvTh2lWV8+yKmS4KBZ505o81hP3uKDSxDnAbjaAYO669rTD3C6DDgkkGgEV8BlCFMAXK2qjGlCurJDhvVyugSgQ4QpAK5WVVbsdAlwUHmJV/deXB3Zfu5HR+mSI0ZExqEC3IBf+QC4mo8xhbq8kw4YoNW3nibLkjweo4OG9nS6JCAOYQqAayQajLGhOeBAJXAbY4wYAB9uxWM+AK7RHApTM6ePi+wb2rvcqXIAICmEKQCu0RyaNqS0KPqt6ZZz2n41HgDcgDAFwDXCc7CVxISpsmKvU+UAQFIIUwBcI9wyVcKI1gDyCN+xALhGuGWqlNYoAHmEt/kAuEaT335zr8Tr0ftXn8gEtgDyAmEKQNIsy5IvYMX1acqk2A7oA3uUZeUzACDTeMwHIGmzXvxU+/7ihUgLUqY1JXibDwDcju9YAJL28AdrJWVvIM3mBG/zAYDb8R0LQNK8HrsPU9DKzv3DU8cU8zYfgDzCdywASQt3Bw9a2UlTvoB933BoA4B8QJgCkDQTmhwtmKWmqUDovrRMAcgnfMcCkLRwg5E/S2HKH7Qf8zEkAoB8QpgC0Al2yAlkKUyFH/MVe/jWBCB/8B0LQNJMtlumArRMAcg/hCkASdvV4JMkbdrVkJX7+0IhjTAFIJ8QpgAkLTwO1OINu7J6fx7zAcgnfMcCkLRDR/SSJA3vXZnR++7Y2yx/IKiauiYVeYx6lBdn9P4AkE2EKQCdNm/Njozdq9EX0KRfv6wrH/9YW3Y3qV9VqTyMMwUgjxCmAHTavW+vzti93lq+XZL0zMKN2lZnhykAyCeEKQBJG9yzXJI0fkj3jN3zvrdXRdbf/HybPlmfnf5YAJAthCkASQuPfD6oR3nG7hkOaACQrwhTAJIWnog4PB5UZu4ZP2bVbecdlLF7A0AuEKYAJO2lpVskJT9o58frajX/i/Y7q/v8wUg/qfOrh+or1cPSKxIAcqzI6QIA5IdGXyCy3nI6mbU19Zq9aJO+edRISVKTP6grHlmg1z/bFnfeyD4V+vXZ49W7skQHDu4hyW7tGtC9VB9ee1J2/wIAkCWEKQBJOfOOtyPrLVumvvHAXK3avle/efFTSdLM6eNaBSlJWlNTr6/fNze7hQJAjvGYD0BS/DF9m1q2TO1p8sdtz3rh07jtAwZl7u0/AHAbWqYAtGn+Fzt01xur9If/magT9++vVW+t1pFj+mhvcyDuvL0twlSslbecJm/MIJx/emW5Rver1DFj+2nKra+qwRfQr886MGt/BwDINsIUgDY9/ME6vbx0i95bWaMGX0B9KktUXuzV7kZf3Hn1MeFq1rkT1L97qY7dt7+M1Go08ytOGhtZX/brU7NaPwDkAmEKQJvqmuzQ5A8E1dAcVFmxV16PiTzyW1tTr8seWRB3zVcnD895nQDgJMIUgDZZoa5Rxkj1zX6Vl3hV5DX6dPMeXfv0IjX7g/p4XW3k/M9vmu5QpQDgHMIUgA4FgtLm3Y3qU1kir8d+b+WfH6xtdV5JEe+0AOh6+M4HoE3hd/Y2727UgrW1qiorVlGLPlBhF/B4D0AXRZgC0KFf/3upJOmIMX3i3syL9eiHrVuqAKArIEwBaJPVYtaYbx01ss2Wqfu/cVgOKgIA96HPFICk/N/F1TLGJGyZeuUnx2if/lUOVAUAzqNlCkA7ok1TJ47rL0kJW6YIUgC6MsIUgDbFPuYLD74ZfpsvbED30lyWBACuQ5gC0KbmQLDVvm5l8b0D7vjapFyVAwCuRJgC0KZEc+5VlHjjtntVlOSqHABwJcIUgDZVlRVLkl796bGRfS8v3RJ3zog+FTmtCQDchjAFIKGHP1irNz7fptH9KjWmX7fI/tr65rjzir18GwHQtTE0AoCErnl6kSRp1ba9cfu7ldrfNp7+wZE6ZHivnNcFAG7Dr5QA2jVuYPywB5cet48kaUz/bolOB4Auh5YpAO2ac/nUuO1Txw/UmlmnO1QNALgPYQpwkUZfQP6gFXmU5qQDB3fXwO5lkfGlAACJ8ZgPcJGjZv1X43/5H6fLkGQP2GnIUQDQIcIU4CI1e5s7PilH7MHPSVMA0BHCFICELMuiZQoAkkCYAlxoy+5Gp0uQRLsUACSDMAW40M2zlzldAn2mACBJhCnAhd5dWeN0CbJkydA2BQAdIkwBLjRxWA+nS5A/YKnIS5gCgI4QpgAXip0Lzym+YJB59wAgCXynBFzIDS1C/oClIgbsBIAOEaYAFxnco0ySFLScraPZH9SmXY36Yke9s4UAQB4gTAEu4gulqKDDaeqT9bWSpLmrdzhaBwDkA8IU4CL+QNBeOhymyku8kqQqF8wRCABuR5gCXMQXsENUwOkwVWyHqRvOPNDROgAgHxCmABfxhVqmglZuwtR/P92il5ZsTlCH/fmlxXyLAICO0IYPuEj48V6uHvN962/zJElrZp0et/+ZhRskSb0rS3JSBwDkM37tBFwiGLQij/deWLQpp59ttWgJq61vliQdNrJ3TusAgHxEmAJcwhcMRtZ31vty+tnPLtwYt/2vueskiUE7ASAJPOYDsuiG55bob++u0apbTpOngwEwv6iJH9Np5MzZ+ts3D9M3HvhQ+w7opqd/cJSMkeoa/Sopig8563Y06L1V23V+9bA2779ia52+94/5mjyqtyYM7aHqEdFWpx8/ulA/fnShvX7S2M7+NQGgSzMtm/ezqbq62po3b17OPg9w2siZsyVJ//zO4Tpqn77tnvvQ+1/oF88szkVZSZl17gR9dfJwp8sAAMcYY+ZbllXd0Xm0TAE50OwPdnjOvgOqJEl3XXSovv/Q/LhjZxw0SAcN7aGtu5u0aVejqkf2ijvuD1hasnGXDh7Ws837r9/ZoOVb69SnskTFXqP+VWUaO6Cbxg3sruueWSyvx2j51j0a0rNcN58zQeOHOD/ZMgDkA8IUkAMz/jFPy28+rd1z/KE+Uz0riiP7Wr5lly2Pff+InHwOABQiwhSQA8kMwhk+p8hjchaiAADp41UdIIuqyqK/r4ycOVv/eP8L7Urwpt4D76zWzx7/RJJUFhp9HACQH2iZArJoaK8KLdu0W+GGqeueWazZn2zUwUN7akz/bjq/eph27m3Wjc8vjVwzqm+lQ9UCAFJBmAKyqMkfaLVvxdY6vb9qhyTp/Oph2tUQ31JVyeTCAJBXeMwHZFGTr/VbfN4W403tafRLki4+YoRW3tJ+J3UAgPsQpoAsavIHNG5gVdy+Lbub4rYXrtspSTp8VJ9WQQsA4H4dhiljTJkxZq4x5mNjzBJjzI2h/aOMMR8YY5YbYx41xjAjKtBCky+oKaP7tHtO+C2+ffp3y0VJAIAMS6ZlqknSCZZlHSxpoqRTjTFTJP1G0h8syxoraaekb2evTCA/NQeCraZ+ifWTRxfqhlDn8wHdS3NVFgAggzoMU5atLrRZHPpjSTpB0hOh/Q9KOjsrFQJ5LGhZKmrn0d1TCzZE1qvKits8DwDgXkn1mTLGeI0xCyVtlfSypJWSai3L8odOWS9pSHZKBPKXP9h+mIpFfykAyE9JvYNtWVZA0kRjTE9JT0vaP9Fpia41xsyQNEOShg9n0lR0HcGgJcuSvJ7431n+euEk7Wrw6Xcvfa7tdU2aOKyn9h/U3aEqAQDp6tSANpZl1RpjXpc0RVJPY0xRqHVqqKSNbVxzj6R7JKm6urrjOTWAAuEPTw/jNbrja4fonRU1uuWc8TLGboH66mR+uQCAQpDM23z9Qi1SMsaUSzpJ0jJJr0k6L3TaJZKezVaRQD4Kv6XnMUZnHDRYt547IRKkAACFI5mWqUGSHjTGeGWHr8csy/q3MWappEeMMTdJWiDpvizWCeQdf9AesDPZPlMAgPzUYZiyLOsTSYck2L9K0uRsFAUUglCWomM5ABQ4RkAHsuSpBeslqdXcewCAwkKYArLkH+9/Icme2BgAULgIU0CWlBZ5JUlN/taTHQMACgdhCsiS8DQyzQHCFAAUMsIUkCXFoY7nfsIUABQ0whSQJVPH9pMkfe/YMQ5XAgDIJsIUkCW9K+2Jiw9gqhgAKGiEKSBLwnMnMeg5ABQ2whSQZWQpAChshCkgSyym9QaALoEwBWSJFUpTTG4MAIWNMAVkSaTPlKNVAACyjTAFZBkNUwBQ2AhTQJbQZwoAugbCFJAl0cd8NE0BQCEjTAFZEu6ATpYCgMJGmAKyjD5TAFSv49sAACAASURBVFDYCFMAAABpIEwBWcJTPgDoGghTQJYxaCcAFDbCFJAllhgbAQC6AsIUkCVPL9goicd8AFDoCFNAlizbtFsSb/MBQKEjTAFZxqCdAFDYCFNAClZs3aObZy+NDswJAOiyCFNACr75tw/1f2+t1sZdjR2ey2M+AChshCkgBeFHd/5A0OFKAABOI0wBKSjy2mHKF+j4MV+Rh6YpAChkhCkgBcUe+3+dk25/Q7fOWdbq+Nn/753IepGX/80AoJDxXR5IQbeyosj63W+u0siZs/XSks3atqdJC9bu1MJ1tQ5WBwDIpaKOTwHQkjfBo7sZ/5jvQCUAAKfRMgWk4Nh9+yV13u3nH5zlSgAATqNlCkhBy07lR4zuo5+fup9q6306eFhPVZR4VeL1yEPncwAoeIQpIE0XHzFCvzprvNNlAAAcQpgCUhAeEOHv35qsw0f3drQWAICz6DMFpOGwkb1VWuR1ugwAgIMIUwAAAGkgTAEAAKSBMAWkwOp4FhkAQBdBmALSYBj5AAC6PMIUAABAGghTQAos8ZwPAGAjTAEAAKSBMAUAAJAGwhSQAt7mAwCEEaaANPA2HwCAMAUAAJAGwhQAAEAaCFNAGox4zgcAXR1hCgAAIA2EKQAAgDQQpoAUWIyNAAAIIUwBaWBoBAAAYQoAACANhCkgBTzlAwCEEaaAFARDYcrLcz4A6PIIU0AKgqGmKbIUAIAwBaQgaFkyRjKkKQDo8ghTQAqCliUPQQoAIMIUkJKgRX8pAICNMAWkIPyYDwAAwhSQAssSj/kAAJIIU0BKAkFLHrIUAECEKSAlQcuShzQFABBhCkgJj/kAAGGEKSAF9tAITlcBAHADwhSQAsaZAgCEEaaAFASCjH4OALARpoAUWJYlL//3AABEmAJSwmM+AEAYYQpIwZqaejX7g06XAQBwgSKnCwDyjS8Q1NzVO5wuAwDgErRMAZ300PtfOF0CAMBFCFNAJ934/FJJ0pcnDXW4EgCAGxCmgBTNnD7O6RIAAC5AmAI6wR+IdjrvV1XqYCUAALcgTAGdsLPeJ0k6YFB3hysBALgFYQrohEvunytJOm3CQIcrAQC4BWEK6IRPN++WJJ136DCHKwEAuEWHYcoYM8wY85oxZpkxZokx5orQ/t7GmJeNMctDy17ZLxdwzva6JgUte31gjzJniwEAuEYyLVN+ST+1LGt/SVMk/dAYc4CkmZJetSxrrKRXQ9tAwdq5t9npEgAALtRhmLIsa5NlWR+F1vdIWiZpiKSzJD0YOu1BSWdnq0jADXwBu1nqrosmOVwJAMBNOtVnyhgzUtIhkj6QNMCyrE2SHbgk9W/jmhnGmHnGmHnbtm1Lr1rAQe+tqpEklZcwCxMAICrpMGWM6SbpSUk/tixrd7LXWZZ1j2VZ1ZZlVffr1y+VGgFX+PW/7ZHPG30BhysBALhJUmHKGFMsO0j907Ksp0K7txhjBoWOD5K0NTslAu5SPYJ3LQAAUcm8zWck3SdpmWVZt8ccek7SJaH1SyQ9m/nyAHcIhF7jK/Ya9enGyOcAgKhkOn8cJenrkhYZYxaG9l0jaZakx4wx35a0VtJXslMi4LxNuxokST87ZT+HKwEAuE2HYcqyrLclmTYOn5jZcgB3+vEj9u8R63c2OFwJAMBtGAEd6EAgaMnrsX+fuOTIkc4WAwBwHcIU0IE/vfK5Pli9Q5I0pl83h6sBALgNYQrowNJNe5wuAQDgYoQpoANj+ldKkhZcN83hSgAAbkSYAjrw8PtrJUm9KkscrgQA4EaEKaAd9c1+7WnyO10GAMDFCFNAOzbW2kMhDO1V7nAlAAC3IkwB7Zj2hzclSb8+a7zDlQAA3IowBbShvtkvy55FRkft09fZYgAArpXMdDJAl3Hj80v0/qodWrZpd2Tf1LF9VVLE7x0AgMQIU0CMB95Z02rfJ+t35b4QAEDe4NdtIKTJH2i1r3pEL7191fEOVAMAyBe0TAEhd/x3RWT94+tPVvfyIhnT1hzfAADYCFNAyF9CYeq+S6rVo6LY4WoAAPmCx3xAC0eP5c09AEDyaJlClxUMWhp9zZxW+0uLvA5UAwDIV7RMoctaU7O31b7RfSsdqAQAkM9omUKXdNYdb+vjBEMe+IJBB6oBAOQzwhS6nKufWhQXpF796bEa1qtCH67ZocmjejtYGQAgHxGm0GU0+4PyGOlfc9dKkn7z5QmqawpoTL9ukpgyBgCQGsIUCtZD73+hXzyzWJLUv6pUW/c0RY5Vj+il/zlsuFOlAQAKCGEKBefZhRt0xSML4/bFBilJ+teMKbksCQBQwAhTKDgtg1S30iJdMHmYNtY26rfnHaTKUr7sAQCZw08VFIzNuxr1zw++iNt310WTdOr4QQ5VBADoCghTKAibdzVqyq2vxu1bM+t0h6oBAHQlDNqJgvD1+z6I237qB0c6VAkAoKshTKEgLN9aF1m//MSxmjS8l4PVAAC6EsIU8t6G2obI+g+OG6NLjx3jYDUAgK6GPlPIez9/4mNJ0k1nj9dFU0Y4XA0AoKuhZQp5r7LE/p3gwsMZhBMAkHuEqf/f3p2HSVVeeRz/HrqbfRcRlKVBRVEBkXZDxQ0YBNdRicYQ45rEaGKiTtQomqCJiTMSRTEaneAycWI0ap5Bg4oGUUABBRfigizKKrKDNNDdZ/54b3d1A71Addet5fd5nn761q17q06drq576n3f+17JaGs3b+PleSsZdmgnzCzucEREJAepmJKM1n/MKwC0bqYeaxERiYeKKclYi1dvrlj+1VmHxRiJiIjkMhVTkrGenBFmO//ewEKaFuTFHI2IiOQqFVOSkWYvXsMfpy4E4LYzDok5GhERyWUqpiTjlJU55z44HYBTD+6ogeciIhIrjdqVjDF78ZqKIqrcQ6MGxBSNiIhIoJYpyQivzFu5UyE197ah5OfpLSwiIvHSkUgywhWPz6pye87oIbRpVhBTNCIiIgnq5pO05+4Vy9cOPpAfnLi/zt4TEZG0oWJK0t53Hn0bgGGHduLawb1ijkZERKQqdfNJWispLeOt+asBuPT4HjFHIyIisjMVU5LWDvjFSxXLR/VoH2MkIiIiu6ZiStLWhuLtFcuzbhkcYyQiIiLV05gpSTvbS8voc/skireXVazr0LJJjBGJiIhUTy1TknY+WbGxSiH15GVHxxiNiIhIzVRMSdrZWpIopCZcciTHH9ghxmhERERqpm4+STvPvrsk/P7hQAZ0bxdzNCIiIjVTy5SknU3FJQD07twq5khERERqp2JK0oq78/e5ywBo3lgNpyIikv5UTEla2RC1SomIiGQKFVOSVv4w5XMAxl90RMyRiIiI1I36UXLAq/NWUlTYjrbNGzfI428s3k7Tgjy2bC+loFEjmjXes4sQ97hpIuXXNNZs5yIikilUTGW55eu3cPnjswBYdNeIen/8Xre8xLZKUxns6nmemL6IW1/4iMuP78Hzc5ZyyXE9+HzVJn46uBen3TuVTVtLeOYHx1YUUqBJOkVEJHOomMpyX67ZUrG8dN0W9mvbrN4e+9OVG3cqpAAKb5zIc1cNpH+3drg7t77wEQCPvLkQgLsnfQLA395dWrHPeX+YXrHcEEWfiIhIQ9GYqSw38qFEkbJ287Y9fpy3F6xm/ZbtVdYNHfsGANcN6bXT9ueMn8Z9kz+jx00v7tbz/O68vnsco4iISBxUTGW5/EZWsfzyRyvqvN/7S9ZReONEZi9ew6atJXzr4Rlc/ed3K+6/bMLMiuUfnXwAi+4awZ+vOJqu7RMtX/e88mnF8pQbTmJw7458f1BPDuncuspzPf+j4wBo27yA8wd0qfuLExERSQPq5stiZ4x7k5KyxECk+16bT3FJGTcP713rvm/O/xqAl+etZGt0nbypn33NtM+/Zq8WTZj88VcAfH9QTxpFBdvA/Tsw6dpBHDJ6UpXHGtRrb7rv1YJHLj4SgOtKythWWsaZ495k1aatHN61La9ffxI9OrRI/kWLiIikmHnlUb8NrKioyGfNmpWy58t1hTdOBKCRQaWain5d2vCnS46ifYtdn923Yn0xQ8ZOYWM051On1k1ZsaF4p+1+d25fRh7ZtcbnBljw6+EVBVdlJaVlOFCQpwZSERFJP2Y2292LattOR7EsN7xPJ+bfObzKurlL1nPEmFcAeHz6Ip6e9WWV+y9/fGZFIQXsspA6ukf7agspgD9dciSdWjdl+k2n7LKQAsjPa6RCSkREMp66+bKQu3PdX+cC0LV982qLmXnLNjA6OtNuZFGiMPpw6YYaH3/hb4ZjtuvHLHfyQR2ZcfOpuxO2iIhIRlIxlWXcnZmL1lZMO3DZcT2q3fbDpesrluct28ADr89n4gfLq93+gW8fQbPGjWotpERERHKJiqksU3kqgjFnHUrH1k132uZ/rzyGCx6ewXPvJeZ5Gn7f1Bof9/NfDyevmhYuERGRXKZiKku4e8U4qHKjji2sWF501wg+XrGBg/ZpxeZtpQBMX7C62scbf9ERLFu3hW8d2ZVWTQsaJGYREZFsoGIqS5SWOWu/SUyqOfr0Q3ba5uBOYX6nlk12/Wfv2r4ZPxvSi+MO6EDHVju3aImIiMjOVExliZc+TEzIOf/O08jfzbPk9mvbjKn/cUp9hyUiIpL1dF56lnj9kzCJ5uxbBtepkLo0GpheuFdzAK44ofqB6iIiIlI9tUxlgcoTZO7Vskmd9mnXPIyDGtG3MyP67Evvzq0aJDYREZFsp2Iqwy1Ytali+efDDq7zfk0L8gBo26wxh+zbupatRUREpDoqpjJc+TX0HrzoCE7r07nO+108sBDHuXhgYQNFJiIikhtUTGWw7aVljH7hI/p3a8uwwzrt1r6N8xtx5aD9GygyERGR3KFiKkNVHifVd782mpVcREQkJjqbLwNtLy2rcvsng3vFFImIiIioZSqDlJSWUVxSxs+ffb9i3fcH9aR9i8YxRiUiIpLbVExlgFfmreSKx2fttP7TO06jcb4aF0VEROKkI3EG2FUh9dJPTlAhJSIikgbUMpXmHpm6oGL54zHDeGL6Ys7qv6+unSciIpImVEylsWdmL+GOif8C4ICOLWlakMcVg3rGHJWIiIhUVmsxZWb/DZwOfOXuh0Xr2gN/AQqBRcBId1/bcGHmjqmfreLZ2UsYuH8H/iMaaD64d0ceufjImCMTERGRXanLoJsJwLAd1t0ITHb3A4HJ0W1JwpZtpTz4z88Z9eg7PD9nWUUhNebsw1RIiYiIpLFaW6bc/Q0zK9xh9VnASdHyY8A/gZ/XY1xZrXh7KZu2llB0x6s1bjeib2dGHdM9RVGJiIjIntjTMVP7uPtyAHdfbmYdq9vQzK4ErgTo1q3bHj5d5istc7aXltE4rxEH3/qPare7ZURvLj9B46JEREQyRYMPQHf3h4GHAYqKiryhny8dlZU5+9/8IgDfq+bCwucP6MLd5/dLYVQiIiJSH/a0mFppZp2jVqnOwFf1GVSmW7ZuC2s2b2PF+mIu32GOqAnTFgFqgRIREckWe1pM/R24GLgr+v1CvUWU4b7etJWBd71W4zbDDu2kQkpERCRL1GVqhKcIg807mNkS4DZCEfW0mV0GfAGc35BBZoLJ/1rJ9tIy3vty3U73/fbcPpzZbz9mLFzN0rVbGHroPjFEKCIiIg2hLmfzXVjNXafWcywZadPWEv73nS8qJtcs13PvFrRsks+vzjqMw7u2BeDkg6odpy8iIiIZSjOg18H1f51Lr31aMnfJeia+v5xnf3gsh3dtx/tL1nHO+Gk7bf+toq789ry+MUQqIiIiqaZiqhbfbCvhmdlLqqw798HpO2037sL+XPPUewAqpERERHKIiqlaXP/XubVuM+uWwXRo2YTT+3bGzFIQlYiIiKQLFVM1cHde/GDFTuvfuvEU2jdvzIoNxfTo0KJivQopERGR3KNiqgZjX/2sYvnOcw6jX5e2FG8vZb+2zQCqFFIiIiKSm1RM1WDG56sB+N25fRl5ZNeYoxEREZF01CjuANLVI1MX8M6iNQAM69Mp5mhEREQkXamY2oVvtpVUmTeqddOCGKMRERGRdJa13XylZc4Lc5ZyZr99yc+rvWZ0d25+7kOeeueLKuvfuOHkhgpRREREskDWFlOXTpjJlE9XMXvxWu48p0+t218yYSb//GRVlXXv3z5UrVIiIiJSo6wqprZsK+W1j79i2botTPk0FEYfLF1f635lZb5TIfXcVQNVSImIiEitsqqY6j36Hzute3/JejYWb6dJfh6N83fu7rvw4RlMXxDO2htyyD7cec5hdGzVtMFjFRERkeyQVQPQzz583yq3TziwAwB9bn+ZXre8xNTPVjHl01Ws2bwNd2fOl+sqCimAUcd0VyElIiIiuyWrWqZ+f0F/3l64huXri3nmB8fSp0sbho59g8WrvwFg1KPv1Lh/efElIiIiUldZVUwBTL/p1Cq3//CdAZx279Qa93njhpNp16JAl4MRERGR3ZZ1xdSOenduzdzRQ2nTPDGYvKzM+XrTVl78YDkXHt2NJvl5MUYoIiIimSzriymgSiEF0KiR0bF1U753XI+YIhIREZFskVUD0EVERERSTcWUiIiISBJUTImIiIgkQcWUiIiISBJUTImIiIgkQcWUiIiISBJUTImIiIgkQcWUiIiISBJUTImIiIgkQcWUiIiISBJUTImIiIgkQcWUiIiISBJUTImIiIgkQcWUiIiISBJUTImIiIgkQcWUiIiISBJUTImIiIgkQcWUiIiISBJUTImIiIgkQcWUiIiISBJUTImIiIgkQcWUiIiISBJUTImIiIgkQcWUiIiISBLM3VP3ZGargMUN/DQdgK8b+DkyifKRoFxUpXwkKBcJykVVykdCLuaiu7vvXdtGKS2mUsHMZrl7UdxxpAvlI0G5qEr5SFAuEpSLqpSPBOWieurmExEREUmCiikRERGRJGRjMfVw3AGkGeUjQbmoSvlIUC4SlIuqlI8E5aIaWTdmSkRERCSVsrFlSkRERCRlVEyJiIiIJEHFlIiIiEgSMraYMjOLO4Z0YmYZ+7esb3pvSE30/gAz6xD9zvlcAJhZXvQ75/NhZp2i3zmfi92RUQdgMzvIzPoAuEbOY2ZHmdmtAO5eFnc8cTKzQ83sJNB7AyreG79WkQ1mdryZPWhmV0Fuvz/MrL+ZvQj8FHI7FwBmdpyZPQbcYmbtczkf0XtjMjAG9N7YXRnxQWtm+Wb2KPB3YJyZXWdmXaP7cq56NrO2ZjYOGAesjtZlxN+yvplZIzMbDzwL3GxmY8ysqPy+eKNLPTNrbWYPAPcDS9y9LBf/R8qZ2RHAg8BsYLiZjTWzw2MOK+Wi/5PHgD8Bf3b3X8QdU9zMrCcwHngd6A6MMbMR8UaVehaMBR4HHnP3K+KOKRNlysGmO9DK3Q8CfgjsDVxlZs1ytHq+HzjR3Y929/GQ0y1TbYGWQG/gIkJxeZ2ZtczRnNwMHAMMrfTeyMX/kXJHATPd/RHgcuAbQlHVId6wUiv6X2gHzHP3JwHMbO9cLrSBAcC/3H0CcB0wBzi9/It6rog+H1oC77n74wBmtn8ufhlNRtomy8yOMLNe0c0CoMjMCtz9X4QWqhbAubEFmGJRPnpHN/8TaGRmBWZ2hpndZGbDzaxpnDGmipn1qPRa2wMDgebuvorQQrUG+FG0bdYfLKJ8NI9uPg6sAjqa2Xlm9p9mdoGZdYsxxJQxs5Fm9jMzGxitehdoaWad3H0F8BrhYq3HxRZkilTKxfHRqouBoWZ2g5m9DtwHPGxmtV7ENRuY2TGVjikAM4EuZtbV3dcCbwHrgHNiCTCFdpGL64CjzexWM3sLuBuYYGYD4okw86RdMRUdGCYCDwBPmNkQd/8YmAx8J9psLvAe0M/M2sYUakrskI8JUT7mANOBFcCPgU3AaOAaM2sfX7QNy8wKzewl4BHgf8zsEHefD7wB/CzabDnwN6C/me2bza0yO+TjiSgf84CpwCTgKuAT4HzgBjPrEl+0DcvM8sxsNPDzaNVDZnYGsBlYBJwYrZ8CrAeydpjALnLxoJmNjAqGewnjpW4HrgZaAReZWX4swaZANCxiIvAKMNLMWkZ3FQNvAiOj258A84C9svWL6S5y0QLA3TcQjjHnAjcBFxI+S8/NlWI7WWlRTO3wgXY9MMfdjwVeAL4brZ8KHBsdIDcDS4AuwJaUBpsCNeTjeUJXBYQPxNvcfYi7jwN+AfQHWqc02Aa2i1y87e6nEsY5/NLMDgEmAMeYWU93LwFWEj4om6U63oZWSz7GRONA7gZud/dT3P2PwK2EZvweKQ84Rdy9FDgIuM7d7wF+CVwD5BMOCodHxWYJ4aB5TrRf1hXbu8jFbcCPzKyXu48Berv7FHdfDTwFnB3lJVu1IHy5uCZaHhStXwXMAPqY2VFR3pYCx7l7cSyRNrzqcoG73wec7O5vuPtWwvGmiNA1LrVIi2IKaAoVB4rNwPZofWvgMzPrTmh9+Aq4IbpvMrAfWVY8RKrLRxvgw+igsMnd7690cH0T6Ej2vfHLc1H+zfkjAHe/nzAe5gJgGaHJ/nfRfR8SxtltTXWwKVBTPgYAVwIt3P2x8h2i1qpOwBepDbVhmdl3zezESq3TK4F2Zpbv7s8AnwODCZ8VxcAd0Xb7ATOzqTWmllz8DfgA+LaZmbuvr7Tr/sDbFk0NkC0q5aO1uy8lXFPuacL74Cgz2y8qnmYQejnGRi1WhwJfVOo2z3i15OJoM9u3fNuo9bLcAEKjRWlKA85QsRZTZjbEzF4B7o6aoZ1QFBxoZu8BwwjfLP8CHAw8Cgy2cObBB4Tuvo3xRF//6piPPOAxMxtqZo3c3S2cgTKJ0ES9IbYXUI92kYsSwlio/mbWz8z6AR8SWlvyCAfKLmY2zsw+BBYD67OlG2c38tEF2KfSfmdaON15GbAm0/NhQWcLY34uJpx08EB0IPwa6ENohYPQpTUK+Mrdfwmsi7o4LgAeyfTWmN3MxThCa1z5HEKnmtnbwCnAH6PCIqNVk48HzayDuxe7+zfAq4SB+KcAuPsKd78XeBv4b8JQkt9G22asPclFtF8TMzvJzGYB/wbclcWtdPXL3WP5AQ4gvIHPInRP/Rm4PrrvIOBvlbYdDdwXLRcCZwD/HlfsaZCPW4GxhGJ4BOGb1Vlxv4YGzMVThPE/raLX/n+EIrMoytO10X77EAajnxn3a4g5H1dH+w0kTAlwdtyvoZ7ykBf97gU8GS3nE05vf5RwZuckQtdF8+j+p4GfRssFwN5xv44Yc/GXSu+NM4Fz4n4dKcjHuMqfndH6nxK+fLUhnCUO4QtZq7hfR8y5aBatG5gtnxmp/ElpM7dFp1p6OE33aGC2u78Q3fcqcI+ZPUH4xv2lmfX2cPbea8C1UUvMIsKA0oyXRD5eB64FHJjk7hNjeQH1qA65+C/gr+4+JhobtSC67y0S3XlfufvK1Edf/5LIxzRC8z3uPo3QVJ/Rou64XwF5FiacbE3U9eDuJWZ2NeFkjHsIxeQFQGdC8bAdmBZtu50wTiZjJZmLEkJ3OO7+99RHX//qkI8fA8vM7ER3nxLt9kdCAfEK0N3M+rv7MjK8lyPJXLwKdItyMS2G8DNeyrr5zOwSQv/rmGjVB8CFZlYY3S4AFkT3bySc8v5jM/sJ8BDhj501g0XrIR+TIfyTpC7qhlGHXOQTxr+MjW4vjPa7EriMcPo7Hn2tynRJ5uNSonxkAzM7kdC61g6YT8jJduBkMzsKKgrOXwJ3exgr9jLw3ahrPJ+Qv4ynXFRVx3w4ocC4vdKuIwgtu3OBPlEhldHqIRdzyJJcxCYVzV+EfvvngZ8QPugPjtb/ntBl8RbwJKGP/yXCWQa9CWccPAYcE3cTnvKRFrmYCOwT3X8t4Vv2kXG/BuWjQfNxAjCq0u3xhIl7v0dorYPwpbAT8AzQNVrXCegZd/zKRdrk42mgMFp3FjAo7viVi+z6SeUfu1v0+y7gL9FyHqHF5fjodteoWGgcd2KUj7TMxQSgSXS7edxxKx8pyUVzoAmJcSAXAb+JlucA10TLRcBTccerXCgfykVu/qSsm8/dy0/L/j3Qw8z+zcMZJOvd/c3ovh8QpgLI+DNLaqN8JOxGLr4hjPvAM/xsm5ooHwnu/o27b/XE2WZDSIx7ugTobWb/R2i1y5ruzV1RLqrak3xk+tms1VEu4mdRtZraJzX7PvBtdz8xun0UYdLJAuBSD5d9yBnKR4JyUZXyEViYB8kJXZvXuPt8MzuAMAXAYcBCD3PoZD3loirlI0G5iE/Ki6nojLwyM3uGMDPxVsLg8s/c/fOUBpMGlI8E5aIq5SMh+hbdmHDpnOcIA+1XEw4YWTG3Wl0pF1UpHwnKRXxSPgNwdHBoTpit+yTgV+7+j1THkS6UjwTloirlI8Hd3cz6E8aC9AD+5O6PxhxWLJSLqpSPBOUiPnFdTuEqQr/tEA/XAMp1ykeCclGV8pGwhNDFeY9yoVzsQPlIUC5iENeYqUYe5kMRlI/KlIuqlA8RkfQXSzElIiIiki1ivdCxiIiISKZTMSUiIiKSBBVTIiIiIklQMSUiIiKSBBVTIpKWzKzUzOaY2UdmNtfMfmZmNX5mmVmhmX07VTGKiICKKRFJX1vc/XB3P5RwrbHhwG217FMIqJgSkZTS1AgikpbMbJO7t6x0uycwE+gAdAeeAFpEd1/t7tPMbAbQG1gIPAbcB9xFmEG+CfCAuz+UshchIjlBxZSIpKUdi6lo3VrgYGAjUObuxWZ2IPCUuxeZ2UnA9e5+erT9lUBHd7/DzJoAbwHnu/vClL4YEclqcV1ORkRkT1j0uwC438wOB0qBXtVsPxToa2bnRbfbAAcSWq5EROqFiikRyQhRN18p8BVh7NRKoB9h7GdxdbsB17j7pJQEKSI5SQPQRSTtmdnewB+A+z2MTWgDLI+uWzgKyIs23Qi0qrTrJOCHZlYQPU4vM2uBiEg9z8y+2QAAAHxJREFUUsuUiKSrZmY2h9ClV0IYcH5PdN944FkzOx94HdgcrX8fKDGzucAE4F7CGX7vmpkBq4CzU/UCRCQ3aAC6iIiISBLUzSciIiKSBBVTIiIiIklQMSUiIiKSBBVTIiIiIklQMSUiIiKSBBVTIiIiIklQMSUiIiKShP8HeTgKDy9ms/oAAAAASUVORK5CYII=\n",
"text/plain": [
- ""
+ ""
]
},
- "metadata": {},
+ "metadata": {
+ "needs_background": "light"
+ },
"output_type": "display_data"
}
],
@@ -261,9 +261,7 @@
{
"cell_type": "code",
"execution_count": 7,
- "metadata": {
- "collapsed": true
- },
+ "metadata": {},
"outputs": [],
"source": [
"from sklearn.preprocessing import MinMaxScaler\n",
@@ -275,10 +273,21 @@
{
"cell_type": "code",
"execution_count": 8,
- "metadata": {
- "collapsed": true
- },
- "outputs": [],
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\ipykernel_launcher.py:14: FutureWarning: Method .as_matrix will be removed in a future version. Use .values instead.\n",
+ " \n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\ipykernel_launcher.py:15: FutureWarning: Method .as_matrix will be removed in a future version. Use .values instead.\n",
+ " from ipykernel import kernelapp as app\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\ipykernel_launcher.py:17: FutureWarning: Method .as_matrix will be removed in a future version. Use .values instead.\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\ipykernel_launcher.py:18: FutureWarning: Method .as_matrix will be removed in a future version. Use .values instead.\n"
+ ]
+ }
+ ],
"source": [
"train_sc_df = pd.DataFrame(train_sc, columns=['Y'], index=train.index)\n",
"test_sc_df = pd.DataFrame(test_sc, columns=['Y'], index=test.index)\n",
@@ -329,9 +338,7 @@
{
"cell_type": "code",
"execution_count": 10,
- "metadata": {
- "collapsed": true
- },
+ "metadata": {},
"outputs": [],
"source": [
"from sklearn.svm import SVR\n",
@@ -347,8 +354,10 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "/Users/neelabhpant/anaconda/lib/python2.7/site-packages/sklearn/utils/validation.py:526: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
- " y = column_or_1d(y, warn=True)\n"
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\sklearn\\utils\\validation.py:761: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n",
+ " y = column_or_1d(y, warn=True)\n",
+ "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\sklearn\\svm\\base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.\n",
+ " \"avoid this warning.\", FutureWarning)\n"
]
}
],
@@ -365,7 +374,7 @@
{
"data": {
"text/plain": [
- "[]"
+ "[]"
]
},
"execution_count": 12,
@@ -374,12 +383,14 @@
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXd4VFXawH8nvQdC6C006UVEFAVBRUVRce29rI3VVXfd\n1bXXdXV1dV0/K/aKumtXbNiwABKQ3juEEiAhhdTJnO+Pc2fmTstMkkmZ5P09T56599xz7z33zuS9\n733PW5TWGkEQBKF1EdPcAxAEQRAijwh3QRCEVogId0EQhFaICHdBEIRWiAh3QRCEVogId0EQhFaI\nCHdBEIRWiAh3QRCEVogId0EQhFZIXHOdODs7W+fk5DTX6QVBEKKShQsX7tVadwzVr9mEe05ODrm5\nuc11ekEQhKhEKbUlnH5ilhEEQWiFiHAXBEFohYhwFwRBaIWIcBcEQWiFiHAXBEFohYhwFwRBaIWI\ncBcEQWiFiHAXhAaycEsBq3cVN/cwWi1VDif5xRWNfh6tNfM27qO6xtno52oKRLgLQgM545m5THn8\nx+YeRqvl8dlrGfuPbygqr27U8yzPK+bcGfN47Ou1jXqepkKEuyAILZYqh5Onv98AwJ6SykY9146i\ncgCesc4X7YhwFwShxXLQHZ+7lyuqaxr1XHtLPQ+Pxj5XU9BsuWUEQRDqQnkjC1z7m0FJhYPKaid/\neHMhlQ4nb115GIlxsY16/kgjmrsgCC2O4opqXpu72autrKrphHtxRTUj7/uKXzbsY+GWQgbe8QWz\nV+5u1PNHGhHugiC0OB6ctYq7Plrh1VbeyMJ9Z5HHI2dDfqnf9itei64stiLcBUFoUVRU1zDz121+\n7eXVjrD2f/aHDTzxzbo6n3fljmIO6pwGwFWvL6zz/i0NEe6CILQofly312v9+CGdASivCs///KHP\nV9fZnfFApYNdxRWM7x+8Bkbfjql1OmZzI8JdECJEaWV4mqVQOze+s9hr/d5pQ4HaJ1Sf+m49i7ft\np6Sifr7w2wuNG2SnjES/bQ+ePpyLDu9N4YGqeh27uQgp3JVSLyml8pVSy0P0O1Qp5VBKnRm54QlC\n9PDqL5ubewitgrPG9PRa75BqBG55VeCHZ6Wjhke+XMNpT/3s5aP+xDfr0FqjtQ55TteDw2WWAfjX\nWSPZ/NBUzhvbi/apCewvr6bGGfpYLYVwNPdXgCm1dVBKxQL/BL6KwJgEISqpcrSOsPXmRinz+d/p\n43j36nEkxBkx9a+v1vLW/K1+/d9bmOdeftom3B/7ei19bp3Fv75aE/Kcrsna5HiPd3hnmxbfITUB\nrWHO2j11u5hmJKRw11rPAQpCdLsOeA/Ij8SgBCEacThFuNcXrTVOSysuq6ohOy2BQ3OyGNsny6vf\nbR8s89u3OIQp5qnvNlDlcPLkt+uCety4JmuTE2L55ZZj+L/zDmZ8/2z39qzUBAAue2VB+BfVzDTY\n5q6U6g78DngmjL5XKaVylVK5e/ZEzxNQEMLBURM9r+wtjWMe/YFzZswFjPklOSH8gKFwoklfn7eF\nf321lsF3fUHOLZ/5PSRck7XJ8bF0a5fMKSO7oVyvEMDALunu5Z/Xe0/4tlQiMaH6OPA3rXVItUVr\nPUNrPUZrPaZjx+Cz0oIQjVSLcA9IpaN24bs+v4RNew+wYHMhAB8u3sG2gvKg/bfsO+C1XlLhb4u/\nz5qEBeibncq63SVe29+av5XqGidVDidfLN/JAcuenxwf+KFyUOd0Olja+wUvzMcRBZkjIyHcxwBv\nK6U2A2cCTyulTovAcQUhqtCIcLezPr+UBz9fxcA7vuCrFbsC9pm/cR+TH5vjXv9ta2HAflcd1de9\nPPGR792eSVprXvxpk1ffNy4/jNMO7u5e37j3AG8v8Peb/9Pbiznojs+Z/sYibv7fUgCSEoKLxH02\nb5mhd3/Z4gV8g4W71rqP1jpHa50D/A+4Rmv9YYNHJghRhjOKPCmagimPz+G5HzYCMHtV4ND9tT4a\n9aqdZr17u2Sv9ttOGswfJvVzrw+7+0tufGcxpzz5k98x26fGk5EUz60nDqp1fJ8t2+nXlpYYPN1W\n/04eT5pKh7PFBzqF4wo5E5gLDFRKbVdKXa6Umq6Umt74wxOE6KEmDJe7toTD9rB7N3d7wD6VPh5G\nruCjt6863K+vrzfS+7/lsTzPFEm58PBexMYYG7lr8vPqif24eqLR+G+eMpCN/zgp5JiDmWUAPrz2\nSN69epx7/dvVLdt/JGRWSK31eeEeTGt9aYNGIwhRjCjutVNRXUOSJTyLK6oZcY+/57Qr7a6v5g5Q\nFsTPHeAPk/pTWuHgw8U7aJ+S4G6/Zcogbj5hkFvwB2LZPccz3BqLfRLVl7TEOMb2ySL3jskc/cj3\n9LNp8i0RiVAVhAgRTrBMW+beT1a4XRF3FXmXzfv9kX281mMCCONgqQGuOqov3dsl888zR/DjzUe7\nHyBghHVtgn32jRNJT4oP+xoAstMSObJ/NgdaeESyCHdBiBDi5l47M3/dxow5xgbv677oMp/UxtQR\nXfn+r5O82np3SOHG4w4CIDEulp5ZKbUe46xDenDlhD7Mv+1YPr9hgtuOntOh9v18SU+KC+il05KQ\nYh2CECGcormHJNZSJ+31ULNSE+ickeRet9u1fcnJ9iTvGtmzHc9eONpLUw/FI2eNdC/bz/nVnyfW\n6ftLT4qvdx6bpkKEuyBEiFrMtW2S5PhYyqtruGZSP3daAFc1o+Jyj9Z78bjegAnx33egikNz2td6\n3CV3HU9CXEydAp1C4UpxEC7pSXEcqKqhxqlrNfs0J2KWEYQIURcNsi0wsmcmXTKS+MvxA91tLv90\nV8qAAZ3SuPoo4+L46fXj+fS68bVOagJkpsRHVLDXh/QkoxeXtmDTjAh3QYgQLVN/az6qazT9O6V5\nabZvWom/CstMQNCH1x7pFtRdM5MZ1j2z6QdaDzKsSdhQeW2aExHugtAA7B4y1eIL6UZrzcIthVRZ\nUZw/3nw04HF1fOb7DcTFKFKaWQOvLxnJRri/m+sf+dpSEOEuCA3ALs9bejh6U+LKE/PrJpNQ1u7F\nUlFdQ0mFSQ4WygTTUnE9tP7v2/XsL2uZRTxEuAtCA7B7WLgEmQDL84r82i4Z15vM5Hi33f3y8X38\n+kQLU4Z2cS/vL2uZphkR7oLQAOzCPTO5bsEwrZn7P1vp15aZkkBReTVj/j4bqD2PS0snIS6GZy88\nBDDae0tEhLsgNAC7a7RDbO5uzrFK5X107ZHutn4+Baa/WdWyc7OEwuXn/t6i7e65BDBpElqCD7wI\nd0FoAHbNXYp1eIiLVXRITWBkz3buNl9PmHtOHeq7W1Rx0vCu7mWXaWZfaSVD7vrSnasG4P++WccV\nrzZ9BScR7oLQAOzKerXkH3BTXuX08/vv0d6TDOz4IZ29qhtFI6mJcVx6RA4Akx/7ge/X5POPWavd\n2ysdNWitefTrtcxelU/hgaadeBXhLggNYG+J53VcNHcPJgOkt3hJjIvlf9PHkZWa4JUGIJo585Ae\n7uVLX17Ae4s8qY2nPP4jfW6d5V5/4aeNTTo2Ee6C0ADstThrxObupqK6JmAU6ZicLBbdeVyrmXx2\nRaoGYtNe73KAT323gdzNTedRJcJdEBqAPTNgtfi5uymvrqm18EVrIZw0CNNGdWO4Nd9w5rNzwyro\nHQlEuAtCA7BXB2or3jIrdhTxwW/G/FBUVs0FL8wjv8TkZ/9tayE5t3zGLxv2tYlcO+2SE0iIjWHy\n4E5e7Y+cOcK9/J9zD2bGxYe41wfd+QUzf93a6GOLXkdTQWgBVNm09baguWutmfqEqVvaNTOZc2fM\nA+DVXzZz0wmDeGOeR2i1BeGeEBfD2gdOZOu+MmbbXDv7d0pjwe2T3aa6rpnJ/Hf6OM56di4Au4sr\nAh4vkohwF4QGYNfc24LNvaLac70uwQ6eAK5KR9OYHFoavTqksOq+KewsKmfmr1sZ1j2T+Fhvw8ih\nOVnuZVed18ZEzDKC0ADswiyQt0xReTULt7SetATbC8sCtq/YUUxZlcPrAddUtuWWQnJCLH07pnH7\n1CF+gt2XfaWN7xYpmrsgNIBKm+YeyM/96tdzmbexgNX3T2lxZorLX1nAN6vziVEw/7bJdExPrLX/\n1n1lHPfvOQG3fbR4B1v2lXmZGyYN7BSwrwB9faJ1GwPR3AWhAdjNMlr7m2ZW7CgGPEUqWhLfrDY2\nYqeGQx+YHUb/3X5tcbZc7Yu37WenVfj60+vG8/sjcyIz0FbETScMZFCXdE4d2a3RzxVSuCulXlJK\n5SullgfZPk0ptVQptVgplauUGh/5YQpCy6TKZxL1ghfmea17yso1f66RhhITID3v8ntP4KLDe3u1\n3XPKEIZ1z4zadL6NybVH9+eLPx3VJPcmHM39FWBKLdu/AUZqrUcBvwdeiMC4BCEq8K2pPG+jt309\n0arNWdKCy7GFi10eXTmhj9vUdP9pw7z6nTu2VxOPTAhESOGutZ4DBJ0R0lqXak85mlSg9bsMCIIP\ndr9mO4lWCH5RAM29orqGa95cyLaCwJOUzU1ZlYPHvl7rNj3d9dEK97bbpw7xmkNYctfx/P7IPvxv\n+rgWN7fQVomIzV0p9Tul1GrgM4z2Lghtgs4ZZhLyqIM6BtzePsW4vL3w0ya/bXPW7mHWsl3c+4l/\n7vOWwHM/bOSJb9b5BdwEshdnpsRz1ylDGGNz9xOal4gId631B1rrQcBpwP3B+imlrrLs8rl79uyJ\nxKkFoVnpkpnMUQd19LJHO22Tqq4aoXPW7vFqB4i3TDa+dvumwFUScGDndKaO6BqwlmmBlcXw7o9X\nsNKaGAb4z7mjmmaQQoOIqLeMZcLpq5TKDrJ9htZ6jNZ6TMeOgTUdQYgmnE5NrILsNE9QyuvztgTs\nu9/HNJNg+ULPWdv0io7rgXL66O70y06lvLrGq9g3eF/H5VY+8tgYJROlUUKDhbtSqr+yvm2l1Ggg\nEdjX0OMKQjRQ49R+Au/uj1cE7Ltjf7nfvi4WbS1snAEGodKKNE2MiyEpIRatvX32famorqF7u2Sm\njWp8Fz4hMoTjCjkTmAsMVEptV0pdrpSarpSabnU5A1iulFoMPAWco31VAEFopTi1Dugi6IrOtBdP\nvuNDb29iuzA9/elf/Mw2jYnL7z45IdadvbGiuganU/PTur1+YyksqyZvfzmpCRL3GC2E/Ka01ueF\n2P5P4J8RG5EgRBEuzd2XwrIqslITWJZX5G5bvG0/ByodbCssY8rjP3L1UX299vl61W5OGNql0ccM\nHnt6VmoiYAqOlFY6+G/udh6YtYo7Tx4ScL9vV+cHn1QTWhQSoSoIDaBGBxbuFdVOtwvhNZP6uduH\n3v0lUx7/EYDn5nhX5rn69YWNOFIPz/6wgWlP/QxAh7QEOqQaj5/dxRWszy8F4P5PjQePb1Hrh84Y\n3iRjFBqOCHdBaADOIJp7SUU11VYisS6ZSQH7BOLW95eF7tRAZtgeKtmpiWRZk8FnPDOXd3K3efV9\n6IwRHNm/g9k+ugcTBogjRLQgwl0QGkCN1sQGsLmf+uTP7oyR8bExvHnFYUGP8dfjD3IvR7KIw/yN\n+6zCGXvJsyZz/5u7zW2SAchKS/AqXO1LRlI85x5qIk5PHNY0JiMhMohwF4QG4HRCTBCt/G/vGS3c\n4dS0SwleM/ToQY2TPXH2KpPo6/zn53PkQ98CcNP/lnr1SU2IpVN6kls79yU9KY5TRnbjyz8dxeQh\nnRtlnELjIMJdEBqAw+l0a+4zrzycs8f0cG9z+a+vyCvyKgitFBzcqx0APbOSGdotkxX3nsAhvdub\nY0YoqCk1sXZ/iWcuGO124XTZ3X3p1s5o9QO7pEdkTELTIX5NglBPtNYUllXTLtUI7nH9OlDj1Lyb\nu92r343HHUR6kke4b3pwKtOeNKXq+mSnAUYQHzekMwu3FFJV4yQuRLEHX35ct4cFmwq48fiB7jbf\nqNNr31oEwNEDO/LyZWO9ttmLWT985giGdssgv6SyTmMQWhaiuQtCPdldXEmVw+nOHwPQtV2SX79O\nGUkkxXv/qz3wO+N18uhZI91trgySM3/dFrTiUTAuevFXnvh2vVeU6ZJtRV59Plu6E4B9B/yrAN07\nbah7+ewxPRnaLZOjpdhGVCPCXRDqyR/eNK6L9gnKfh3TAvb1Ddkf1j2TzQ9N9ap+lGAJ9/s/XcnZ\nViHlurKn1KNtf7Zsp9/2CQOyeer80X7tSfGx3D9tKNcd079e5xVaHiLcBaEeFB6o4ret+wE4zyd/\neUaSx9r5zlWHh31MV2EPgB1WRaPX5m7mjg9rd4+0a+v3fmz802fM2RCw7+uXH0bPrJSA2y4al8Nf\nbGYdIboR4S4I9eBdmz94u2RvT5gj+pm8eT/cNInD+nq8ULpmJvkFBdnpk+2/7a6PVvDGvNrdI71y\nwigTNfuPWav9+q2874RajyO0LmRCVRDqgd3k4euV8u9zRvHngjJ6d/AW1r/ccoxf5SY7HVI9tvth\n3TPCHotduC/YVOCV8mB490zumDqYYd0zSZG8MG0K+bYFIUzOeOYXdhVVcNcpQ1i63SNAXbZyF8kJ\nsQFdB5VS1JYtt3eHFG487iA+WpxHvI+3jNY6aKpdV7AUQH5JJde+uci9ft+0oRzcq32t1yW0TsQs\nIwhhsnBLIXn7y71ywNRmZqkrSimuP3YAB3VOp7TC4ZWZcZ2V8yUQrvS9I3sa3/k8W2phEextFxHu\nglAPBnY2mvmXfzoq4sdOS4yjtNLB3gMez5fa6qy6zDK/PzLHq33OTUdHfGxC9CDCXRDqQbd2SYzo\nkVnnYKNwSE2MY2dRBec8N8/d9vN6T/2bL5bvYvg9X1JwoIr84gru+sjkiU+Mi+WScb1tx5FC1W0Z\nsbkLQj1wBMkGGQle+WUzAJv2HnC3vfTzJu46xeRYf/aHDZRUOBh9/9de+yXGxXDvtGEM6prB47PX\neqU8ENoeorkLQj2ocQbOBhkJrp7YN2D7B7+ZtAaJcYH/bV0Tq+eN7cX82yY3yluFED3Ity8IYVDj\nU3auqLy60TT3Ed3buZdz75hM/04m6vXP7ywBAvvDJ8fHctwQSckreBDhLghhsHpXsdf6ih3FfgI/\nUkwaaApi3DdtKNlpibw3/QgATh/dHYCSSge9bFGmb11xGKvun9JoDxshOhGbuyCEwdrdJX5tG/YE\nd09sCKmJcWx+aKp7PTMlnuy0RJKszI2lFQ7apcSztcBsH9WrXaDDCG0c0dwFIQwe+Mw/nN/RSJp7\nIPaWVvLWfJOG4EClg7TEOObcdDSr7psikadCQES4C0IY7C31z23eWGaZQLg8X2av3E3ulkL2lFTS\nq0MKyQni7igERoS7INSBaaO6uZebUrife2hPEuNiuOK1XKD2iFVBgDCEu1LqJaVUvlJqeZDtFyil\nliqllimlflFKjQzUTxCiGZd74n/OPZj/Th8HUGsSsEiTGBfjlSDsrSuDF9wWBAhPc38FmFLL9k3A\nRK31cOB+YEYExiUILQqtPaXoencwniopTRgBmmgrg3f9sQPcaYUFIRghZ2K01nOUUjm1bP/FtjoP\n6BGsryBEKzPmbHQvZ6cmctmROX5FOhoTe+DScYM7N9l5hegl0tPslwOfR/iYgtCiiIlR3H3K0NAd\nI4hdcx/eI7NJzy1EJxET7kqpozHCfXwtfa4CrgLo1avptB5BaCjpSXGUVDia7fwFpf5FrQWhNiIi\n3JVSI4AXgBO11vuC9dNaz8CyyY8ZM6YJp6MEoWHkdEj1Kmbd1BRXVDfbuYXopMGukEqpXsD7wEVa\n67UNH5IgtCxen7uZZXlFlFfVhOzbWBzWJ6vZzi1EJyE1d6XUTGASkK2U2g7cDcQDaK2fBe4COgBP\nW2XAHFrrMY01YEFoamb8aCZTSyubzyxz/NAunHtoT47sL14yQniE4y1zXojtVwBXRGxEgtDCqHYY\nC2JzCneAh84Y0aznF6ILiVAVhBDsKq4AvItnCEJLR4S7IIQgRfK3CFGICHdBCMFkK2iokQovCUKj\nIMJdEEIQF2ukekq8aPBC9CDCXRDC5P1rjmzuIQhC2IhwF4QQOGo0fbJTGdglvbmHIghhI8JdaLH8\nZ/Y6Dv/HN809DGqcWuqTClGH1OcSWiz/nm0CngsPVNE+NaHZxlFcUS0eM0LUIZq70GJpn2JKy81Z\nt6dZx7GzqIJumcnNOgZBqCsi3IUWy1grn0re/vJmG0Olo4b1+aVNWphDECKBCHehxeIqUepswlql\nvryzYBsA7y/Ka7YxCEJ9EOEutFi0VaS0xhmiYyOyv8yk2rUXxhaEaECEu9BiqXG6hHvzSfficiPc\nHz5TknYJ0YUId6HF8fGSHSzdvp8yK396jda8Pnczl7z0a5OPZVdxBX2zU0mME5u7EF2IK6TQoiiv\nquH6mb8B0LdjKgAOp+bOj1YAxv4e04Q+5wcqHaQmyr+JEH2I5i60KC5+ab57Ob+4EoB3rUlNgEVb\nCwFYuKWAE//zY6NXR9pWWE5inPybCNGH/GqFFsWCzYXuZVdxjMIyT/3QM5+dy/NzNnLGM3NZtbOY\n1buKAx5Ha83P6/e6J2Xrw4FKB+vzS8ndUhi6syC0MES4C1HHA7NWuZedQYT3xS/9ygUvzOfTpTvr\nfZ7leUX13lcQmhsR7kJUs70wcIDTj+v2ArC1oKzex3ZVYOqZJdGpQvQhwl2Iam54e3Gt27tmJtX7\n2MUVxiz07tXj6n0MQWguRLgLrQ57RKsr4dfKHcXc+8mKOtngSyqMrb9dcvMlLROE+iLCXWhRdM5I\ndC/375QWtN97fxhHQhAvlke/XuNernQ4eX/Rdk564kde/nkze0urwh5LSYWDuBhFUrz8mwjRh/xq\nhRZF+5QE+ln+7Qmx3j/PFy8ZQ4fUBL776yQO6Z3FFeP7EB/r7/P+1Hcb3Mt7S6u48d0l7vXiCo/n\nTY1Tc9N/lzB75W4A9pRUerlW7i+rIjM5HiXFU4UoJKRwV0q9pJTKV0otD7J9kFJqrlKqUin118gP\nUWhLVDqcDO6awfSJ/Xj6gtHu9u//OoljB3dm4Z3H0SfbEv5xMVTX6FoTi93/6Uqv9Qtf8PjRb9xT\nyn8XbufOj8xP+9AHZnP2c3MByC+pYOav25o1j7wgNIRwNPdXgCm1bC8Argf+FYkBCW2biuoakuNj\nueXEQeRYQhwgOz3Rr2+8pdlX1yH3zM6iCvfyAUtL31lU4X5ALLPcHxdv3Q9ABxHuQpQSUrhrredg\nBHiw7fla6wVAdbA+ghAu5dU1JMX753FJDtDmMttU13g09wdtPvDBcCUkK7W8YQDmbdrnXv5ta6Hb\nU0YShgnRitjchRaD1pryqpqAE5iBapi6JlSrHB7N/bk5GwG45cRBQc/jEuoXvugx0Zz/vGf5nBnz\nWGhFpbZLEc1diE6aVLgrpa5SSuUqpXL37Gne0mlCy2P1rhIqHU66tQsvaMhlllm5wz8FQW35YEoq\nq3nl501Bt1c5nMz8dSsxCtIlaZgQpTSpcNdaz9Baj9Faj+nYsWNTnlqIAvJLTKKwYd0z3W1dMoIH\nIbk8ZewauIvutTwgKh1O7vlkZdDtLpyaJs1AKQiRRMwyQouhotpMcNrt61/deBTzbzs2YH9fU83c\nDR67+XFDOrPxHydx8oiuPHn+wax74ES3982xj/4Q8HhXT+zboPELQksi5DunUmomMAnIVkptB+4G\n4gG01s8qpboAuUAG4FRK/QkYorUOnK5PEILw9PfGP91uUslIiicjKT5gf7utHeDtBVvdy0oplIIn\nz/e4UwaalAX48+SD6N8pjakjuvLcDxvd7ScN71L3ixCEFkJI4a61Pi/E9l1Aj4iNSGizLNlm3A/D\nDRoaPyAbgDG927O/rIqPFu+otX8gE0uH1AT+MKmfe3J2yV3HM/rvX1Pj1LSXyVQhihGzjBBRHDVO\nHvlyNQUHwg/z96W2tAN2erRPoU92KrlbCql0hPZ1H9I1w2v9lhMHsfDO47zSGGSmxHPmaKOr/O7g\n7nUYtSC0LES4CxFl0db9PPXdBm7675LQnW3sL6vfw2DT3gMALNjsCcWYeeXhAft2TE/knlOGuNcH\ndkkP2O/OU4bw5PkHc0jv9vUakyC0BES4CxHFZfnYXVLhLokXDrd/GDC7Rdi4fNevntiXcf06BO03\nsmc793JaEDfHtMQ4Th7RTXLKCFGNCHchojis6M/lecWc/vQvbNl3IKz9wu3ny0GdjQmnusaYZQ7r\nk1Vrf3ux69QE8WEXWi8i3IWI4uvBsi9M23uZleclp0NKnc53x1RjZlm9qwSApLjAHjEu+nf02PO7\nNKCQhyC0dES4CxHFd2LTnr+lNvZbRbDtAUzh4JoMfXO+cYNMSqhduMfEKMb3N142WZIUTGjFyHup\nEFEqHTVe61+t3MVRB4WORq60Apg6Bsj+WBu+AjqU5g7w8mWHus04gtBaEeEuRJTKam+hqQhvUrLK\nErY3nTCwTufr7JOewGWDr4342Bh3XhpBaK2IcBcigtaa7YXlfmaZovLQmaC/WL7LnbY3pY6TnPYM\nkn07phInQlsQALG5CxHijXlbmPDwd+Ta/M17d0ihMAz/9cdnr633ee2l+O6cOqSWnoLQthDhLkSE\nJdtNBaPfrBQCndIT6ZWV4i56URujrWChL/40oc7ntfuip4SYTBWEtoQIdyEiuAKCXBGjc289lsS4\nGKrDSAtQUFpFelIcg7pkhOwbCJd8T5Xc64LgptUI9z0llWzYU9rcw2izZCZ7MjfGxShiYxTxsTE4\nwqhv+sWKXZRX1YTsFwxtVdlLFs1dENy0GlVn3IPf4HBqNv7jJCmw0AykJnoEa4ylSsfHxnjVNw1G\nSkIsQ7vVT2v3PY4gCIZWo7m7wt5n/LgxRE+hMbC7QLoqJH2+fCeb9h7w8333JT42xi9jY32QoCRB\n8NBqhLuLT5fWntNbaByqbEFBLhONS2vPL64Mut+BSgdF5dU4Qyv4QXn50kM585AeJIYRwCQIbYVW\nJ9yX50kBqObAnlMmxZrYPHZQJwB2F1cE3e/4f88BYOavW4P2CcXRgzrxr7NG1nt/QWiNtBrh3skW\ntq51A9SL1UD/AAAgAElEQVRAoV7Yg5dctu9bTxoMeDxo7ByodPDoV2vI218OwPAedcspIwhC7bSa\nCdUkW33MZXlFjOjRrpbeQqSxC3dX4FKP9skA5Jf4m2Wmv7GQH9ftda/PuGhMI49QENoWrUZzd9hs\nvqc++TMv/bSpGUfT9jhQ6QlWGmk9WBPjYlDKkxTMzk/rPYI9PlbVOWGYIAi102qEe5VPlr8XxGum\nSSkqr2ZQl3RunjKQR8829m+lFIlxMVQECGTKshWffvjMEU02TkFoK7Qa4V5eVUNXW/EFsbo3LXtL\nK+mamcQ1k/p7ea0kxcdSEUBzt8ciHNxTapUKQqRpFcJda01ZdQ2TBnryhu8sCu6hIUSenUUVdG2X\n7NeeGBcTULjb2+zzJYIgRIaQwl0p9ZJSKl8pFbCCsTI8oZRar5RaqpQaHflh1k6lw4nWkGELgRea\njiqHk4IDVXRO9y9bZzR3f7NMd9uDIC5WIooFIdKEo7m/AkypZfuJwADr7yrgmYYPq2648pJkJHkL\n9+oaJzuLypt6OG2OUmsyNTPZ3/kqKc7fLLNk236qa5wM6JTGHyb1o4NElgpCxAkp3LXWc4CCWrpM\nA17ThnlAO6VU10gNMBzKLOFh19wHdUlnwO2fM+7Bb/l4iUStNiYlFaYgR3qS/5uTRrM8r8i9vmZX\nCdOe+pkNew7QJTOJv00Z5JW2VxCEyBAJm3t3YJttfbvV1mSUVxnNMSPJozmu3lXiXp6/cV9TDqfN\nUWLlbE9P8tfc1+4uZUdRBTVWfoFymxZv93MXBCGyNOmEqlLqKqVUrlIqd8+ePRE77utztwCmRNvm\nh6b6bW9I3hIhNI99bSoppQXIpz6qp/F5d2nv9sLUt544qAlGJwhtk0gI9zygp229h9Xmh9Z6htZ6\njNZ6TMeOHQN1qRevuoV7YK8LSUfQOFRU1zBr2U6WWlWY+nfyL059yRG9AZizdo97HxfHDu7cBKMU\nhLZJJIT7x8DFltfM4UCR1npnBI5bZ1zFGmZd712uzZW/RIgsL/60iWveXITD6aRjeiKdMvy9ZSZb\nAtz13diLcvTukNI0AxWENkg4rpAzgbnAQKXUdqXU5Uqp6Uqp6VaXWcBGYD3wPHBNo402BC7NfUi3\nDK/c3j+u28s9H69ormG1Or5fk091jZMt+0xCsP1l1V6Fqu24Apo+WWqe9y77/E0nDCQ+yD6CIDSc\nkInDtNbnhdiugWsjNqIGkBLvuZwrJ/Tln1+sdq+/8stm7jl1aHMMq1WRu7mAS19ewNEDO9KjvUfz\nTogLLKhdhTuWbNvPhIe/ZerwbgCcN7ZX4w9WENowUa862e3pSQmey5k+sS+r7/d2z6+RmdUG4wpI\n+m7NHl6ft8XdHh8kEMnu5ritoJxnf9gABPasEQQhckS9cLfX6ExN8AgMpZRfWHtZlYNQ5O0vD1kW\nri0TTChvKwg+rzF1uH/Yg5hkBKFxidr/sJ/W7WXSI9+5A2iuO6Y/qQFc8W46YaB72ekfBe9FjVNz\n5EPf8se3fovoWFsTziCeR+UB8se4GD8gu7GGIwhCEKJSuBeVV3Phi/PZvK/MHQgTLB/4FRP60Cc7\nFYAaH8H02dKdLN2+372+w/Kq+Xrl7sYYdqugPqatpPio/JkJQlQTlYbP85+f517+0zuLAZN9MBCJ\ncbFcdmQOd320wkvrLCqv5tq3FgGw+aGpLN62n9Oe+rkRR906cAQR7g+fETwne1yM+W6mDu/KQZ3T\nObSPpPgVhMYmKoX7ih3+RbBri1OKsSb1nDbB9NhXa7z6XPvmIq/1z5ft5MQAtuK2jusevnPV4RzW\ntwM5t3wGwBmH9Ai6j2uytbrGyQ2TBzT+IBsDpxNenAy7lsGIs0HFwvYFgILi7fDHXHjnQijdDeld\noaIY0KCdULwDuo6E6jJw1oCuMcfTTijZCZ2GgNMBNVWgFCS3N9uyDzL7VJZAZk8YdDL0PAzyV8KS\nmRAbDwlpUFkMhVugcDMkZUJKFtRUm/M6q825YmIhJs7sExNn1qsOQGIGZPWBLXNNG0BsAsQlQVwC\nFO+EpAwzbhUDeblw6JXQaZDp1220Oef2X6FkF8SnQPYASOsM6V0gMb0Zv7QWSPl+yF8FPQ6F2MYV\nv1En3INFmwayt7uItQpDuMwy936ywh3VClBwoIoOaQlewU5/eHNRwFQGbR2X5u5K0zuyRyZLthe5\n73EgXC6Tw7pHaRFspxNeOh7yFpr1397w7/Mv20MrJRva50BMDOxdZ4RvwUbo0N8IxNh4IygBKvZD\n2T7I6Aqx7YxQL9sHO36Djd9DWheIT4aVH8HcJ4MMUJnjdRkOjgrzAKo6YM6XkGqEudNh+6sxwn/X\ncqiphI3fGWHe92jzcHFUmgdNZSkcyDfjTUw3Dy6ABc+Hd986DIDpP0G8Lbht6buw6DXoORYm3mIe\nINHM5p/h3YutB3APKNjg2dZxEOxZDQNOMPeweAfsXmHu+aFXwtR/NerQok647y+r9msb3DWDk0cE\n17JdcseluL/882av7e8v2i5pZ8PEZXOPtUwtb115eK2TqWCE+mfXj2dQl4xGH1+jsOAFS0sHznkT\n0PDVnXDiw9B1BDzqmbTn1jxItKVh0Br2rDGabl2ocRhN2uVKuvF7eG2aWR7/Zzj4IsjoZjTB9C6m\nva7ZNcsKYP8W82DI6AGpHULvs2cN/PwEFOdBv2PMm4HW0HmYGYeugZ/+Das+gX3r4IEu8Jc1sHct\nzDwXqkrNcTb/CAtfgSkPwYDjIbkdVJXBvvXmntaGo8o8BFVM8z0cyvfDcxNg/1ZPm1LmgbpvvVnf\nZwn6Lb+Yh263g6HvRPOAHdf4oUFRJ9w37i11L4erWQcyy9j5+2erOG6ICZMfm5PFr5tNhmOttaSj\n9cGtuVtPzNTEuFrfmlwM7VYPrX3tV/D5zXD2q8as0Vys+MB89jsGBp9slgefErhvok9+HaXqLtjB\n/5W97yT480pISDFmGxfx/tWvwiYly/zVhY4D4bSnau9zzhtG63+wO6Dh0YO8t5/xInx5O5Tugvev\nNG2JGeYhUWVlc71+sTEXudDavDnMPNe81diJTYCLPjQPuwUvwNG3m/tUVmD2m/ukMXF1G2XeHH76\nN/SfDOu/Nm8Xg06C7blQXQ5XfGPeuALhqDIP2bK95gG3f6t5qE2+BwYc5+lXUWwePK7fgutNKd4/\nPUdjEnXCvbg8tK+6L26zjFMH9fZweci8fsVYBt7xBQD/mLWKm6cMEp9sGy7X00AZICNCjQNWfQSp\nHWHlh1C4CebPgIk3wZrP4bDpHg21sqTxbbrrv4Gtvxg7+kUf1N43uY6Csq5kNmkm7YaRmAaTboXv\nH/S0Df0dHHc/tOsJw86AD/8Aa2ZBRZExXdl5YhT8dZ0xD2X2gK/uCG6WqqmCV07yrAc1X9lY/7X5\n3LcOfv6Pp33Hb5DWEdZ8AaPO8/y+qivgAZ9Ed73Gwe+/8D92ks8bakysZz6jCYk64X4gjEAkX9ya\nu9bufCjBSIyL5cnzD+aPb/3G8z9uon+nNM45VELlXRSXG+HeaCUN5zwCPzzk3bb4DfMH8MUtRoiW\nW/VjfjcDRp7jf5zdK+GZccbm22V4/cZSdQDeON0sX/Z56P4DTwrdpy0x4a8w8lyjQXccZLRpF0rB\n7541y1vmwq/PQVY/OPZOeHa8mTdwzWMMPhVWf+rZ9+o50L6PmbwFWPwmfHJ98HF0GACjL4av74R2\nvc3E78AT4Zg7oLzQzIsoZR42P//bKBFOB3x+U+Dj9TsWjroJeoyp/71pAqJOuJ88ohtjemfVScjH\nxHiE+8Y93sJ90Z3HMfp+8xR3paw9rI/H9ljpCBH51MZwldRrNM19wzeh+5TbCoN9cBUMOdXbPLH5\nZ48mN/dpM4G1/D3jWXL1HOjQz9N3e67x9sgeAKX5xgvGZXte9Yn57DvJ20QQjJMfC92nLREbZyaW\n2+fU3q/3OPPn4uKP4WHb/V71sfk87j448gb//Q+5xJhdUrONzfvNs8xb3XkzzXfr0pqPDPIA6DnW\nmG9yX/J858G4e3/d5zaaiagT7gBdMutmu4pVLrMM7C6u8NrWPsWjgV59VF/AOyDKlcVQMJRW1pAQ\nGxM0UViDibdpdwOONxNxhZvNelKmeYXvPMxs27nEPAxKdkKW+e4o2OT9ir7kLc9yVSn832i4bafR\nIrfOg5dOMNsGnezRDi+dZezaH1xt7LnnvV37mGMTjGkgLnAgnVBHUrLgniIoyoOFL5u3OTDug8Gw\nPxwu/F/dz6kUnDsT/tXfrP9tszHFzH3S/L4GTTV2+igR7BClwr2uuLxlPlmyg2qnE6XgqAEdufTI\nHK8J0362YhMfXXsk0576mYIDVU093BaLo8bpTvzVKJQVwKYfYMQ5cNozZlLqiYPNtps2GM3Mzrqv\njXB//2q44mujfT0xKvR5vvib8Vz49M+eNvtrv/3hcOLDoSctb1wNDqkZEHEyuxvTyaTbjCtpdv/G\nPV9aR/NdJmVaE9fACQ807jkbkTYh3DMt+/CT3613t736+7F+/QbYhPvInu3o1zGVnUWR/6fduKeU\nYx79gc9vmMDgrtHjHrizqCJ0J4C1X0L3MeG51tl5xDKX9D7C8yp93tuw7it/wQ7GOwJMAI3TCffZ\nvEj+vBK2zoX3Lje2395HwJaf4cdHjZ/1otf8j2d3Y3Mx+pLQ467rdQp1Iyam8QW7i4zWE7jYJoT7\nCKuOZyjSk7wnCbNSExpFc//K8sz58Lc8L+FeXlWDUvhls2wpVITwZweMC9xbZ0NGdzNpdexdRhMK\nxdb5xncZjCeFi06DgrsSdhriWV4y07OcPdBofcPPNH8u+kyEFR96Ak16jDUTbaPON28JSpnxL34T\nZt8Lpz8X3C1OEFo4beKXG2ryb8KAbC4e19uvPSk+lkqHk5KKar5YvjNiqYBdcwDbCsu82ofe/QWT\nH/shIudoDFyTy/Z5Cj9cUYzFecbneNbN4R18zSzPcrjujUqZSTaAj6wCYGOvhmvnB+4fGwd/XOBZ\nP+EfMPoi72ChxDQ47Gq4fUdwX3ZBiALahObuy7MXjvZaf/3ywwL2S4yLoeCAk+tm/sb3a/bQJzuV\n7/46qcHnd/ndz1q2i+/X5DNpYCe2FZTh1LC9sBxHjZO42Bh+WreXGq2ZeFDkiok3BJfm/p9zD/bf\n6KyB+c/5a9mlu0IfeP82+Plxszzt6boN6vBr4Ou7POuHXFL7pFdMLNywxEQN9qxlgk4Qopw2obn7\nMqRreNGSCXExVDqcLN1eBMCmvR43yhU7inj7163Bdq0Vu+y59OUFVFTXMOHh79xt7/+WR0mFSWt8\nyUu/1uscjYFLcw+YgXP9N/DlrfD67zxtWf2Mv3ko7EEnB19Qt0HF2t4iDrkMOodRSrF9jjHFCEIr\npvUI928fgHsyYefSkF27tw8vZDshNoYqh9PL7r6twJhSpj7xE7e8v4z1+SXubS/8uJGjbEI6GFsL\nvM0xe0oqvdZ37q9g+D1fudd/snLWNzcus1RioDkB7WOyuuoH6H+sSTzlDGHOyrceAHfuq9/AOlpv\nCxJEJAhuWo9wn/Ow+XxugskB4cOzFx4CwF+OO6jWDIZ2UhLjKKmopns7z8NgwsPfcd4MTz75yY/N\nwVFjNNq/f7aKrQVlQTNXuvAV5r9s8Bbe/5691mvdlbO+uXHVTw1YfKO80Hu9y3ATeQgmgCgQVWWw\n7H+waY5Zr28K1PGWS2Nz5p8RhBZG6xHu3Wx24A+u9mRks5gyrAubH5rKdceGn0+8e7tkCsuqvVIB\nA8zd6K1h/v2zVV7roaJafbf/7b1ltfbfW1pZ6/amwq25xwXQ3MsKvNdjYuFcK2XA9gX+/VfPgn90\nNa6KYPKV15eR58JdhZDeOXRfQWgjtB7hHmeLWl3xPjzZ8MmycM0hr/yy2Wv9wVmrWGbZ6QMRTPjP\nvnEio2xumxlWMequdYzIbSzKq2rR3As3eZbH/dF8ts+BzsPNhKkvvjnRr1vYsMGJy6IgeBHWf4RS\naopSao1Sar1S6pYA29srpT5QSi1VSv2qlBoW+aGGoHS3qQrjwtcGXA/sE59HD/T3WPn2LxMBOHlE\nVz5ZssPd/urcLZzy5E9Bj1sVxKWyf6c0umQYQX5Evw4suft4wAQP1ad2aaRxZYT0jQcAYNt86HOU\nCRu3R/WldzHh277Y3R1Pf0FC9wUhwoQU7kqpWOAp4ERgCHCeUmqIT7fbgMVa6xHAxcB/aGpK95gS\nZHZm32smWVfPCrxPCE4d2c29fNmR/omj+nZMo1N6IvnFlVw38ze/7cGodDjJSIrjG+vhAB73yB7W\nZG+7lHiUUpw+2qR5/XVTgf+BmpBnvt/Ag5+vJi5GkZrgY5bR2mTW6xKgyEJcIuxc7KmDWOOAx0fA\nUitfS6ehcNDxjTt4QWiDhKO5jwXWa603aq2rgLeBaT59hgDfAmitVwM5SqmmM4DmvmSS/Kd18nhO\nAPxkZen7/G/1Ouw5h3rswGlJgSf70pPi2FJQexphX6ocTg7NyaJfR0+6g9MPNkLclahs1jLjH377\nSYMBWL3Lv25sU/LPL1YDMKJHpncBk+IdJpOeo8LkPPelwjJPLXjBfJbuNtV/XFzzS3gRrIIg1Ilw\nhHt3wG403W612VkCnA6glBoL9AaCV0yONK4EUGmdTHTiNJ9KMUVbTRrYOqKUok92KgAjumdy/zSP\nD/W7V5ssdBnJ8ewu9p/wjI1RQb1mKh1OEn3s1g+ebnKOO619jrICl9qnJBCjCJgGQWvNwi2FVPnY\n8A9UOsi55TP+t3B7WNcZCnvaga6ZyXBgn3Fv3DoPHhsMH1s29v7H+u98mhWU5IpAtQc1hSp+IQhC\nvYlUhOpDwH+UUouBZcBvgJ9hWSl1FXAVQK9ejVAAw2XHPfhCkyrWXmHllZNMGk97ibIw+ObGiShl\nBP1F43K4aFyO13Zf+/P3f53E8z9u5M35W3nll80BzTlVDicJPtWd4qz1W08aTEpCLLdaGntMjKJ9\nSgL7Agj3uRv3cf7z8znrkB48cpbHDfBHayL4H7NWccbo7g0uFfj9mj3u5ZS4GnjESq/rSsFaUQQo\n77cmF+2s73nDt8ZENsgqU5czwZStEwShUQhHc88D7H5qPaw2N1rrYq31ZVrrURibe0dgo++BtNYz\ntNZjtNZjOnZsYEh9dbnxka6xFcxO7eRZPvp2uOJb70IBxZ5Jz6Asnuml5cfEqFqFo91lfv0DJ5KT\nner2eLn3k5VuH3h3n/xStheWud0JffPeZKUmcO+0YV7Jw3q0T2bNrhJ8Of95k0PFlYjMxfQ3jOdJ\nwYEqbni74T7yruMBjOpsK0js5eKog4f9p9ksdK7UuqfPaPC4BEEITjjCfQEwQCnVRymVAJwLfGzv\noJRqZ20DuAKYo7VuHCNxTbWZvHugi/GRnnmeae9xqHfC/rhE6HGIKZzrwuGTsvbDa02xXDCBT0ve\ngQ+ne+fzDoFdOLu079NHeyxS/W//nOIKzwNo8mM/4NS4i0rPuflofr6ldg12TE4Wy/OK/B4ULu2/\nXUo8r8/djNOp2V/mreF/vGQHy/OCu2WGg0tm33nyEM4b3aXuBzjnDf+2QPZ5QRAiRkjhrrV2AH8E\nvgRWAe9qrVcopaYrpaZb3QYDy5VSazBeNQFqYUWIlR/Bk7baha5Ct8GCYLL6wIXvm+Uaq6pSab7R\n+he/AbPvMRVXFjxvSra5+PL2sIaTnWZc+M48xCPQfSNg37Ns33bh3CXT7JeVmuAVARuIvh1TqXQ4\n2VvqEdxVDidV1vG27Cvjzo9WcMM7ixl139d++5/8fz9RXRM8sOqL5buYtzFw6P/yvCK3o8vl4/sQ\n4wySAnmin4esB/t3M/leU/c0iiraCEI0EpbNXWs9C5jl0/asbXkucFBkhxaEhLTA7bUlnHIll3Ja\nGvS/fKJUXz/N5Pq2M/dJU6k9RHCMq3rTEf28Czasvn8Kczfu47KXF7gnQ6tsArZzRviBSVkp5qWo\nsKzKXWJwxhz/ikh2X/sLDuvFm/M9ic3ezd1Gcnys11sFmFw5LrPL5oem+h1zw55SAG450bKn11jC\n/fTnYcTZsPJj45U04S/BLyCtsylqfdx9JsWuIAiNTvSl/K2wmRjOecN4beSMD1ypx0WMdZl2+7yd\nrXPNH8CQaebtAOCja01ATkpW0ENfMLYXXTKSmDy4k1d7UnwsRw80bSt3GAtVtcPjPVMX4d4+1RLu\ntknVvP21V0W6f9ow4mIUr841boe3f7AcgBOHdSXZ5qduz0Z5oNJB3v5y9pdVM7aPueZdVvWlCw+3\n8t1XWrZ/V63TIaeav9qIiYG/baq9jyAIESX6Yrb7HOVZHnQyDD2tdsEOEOPS3B0m2Kk2zn4Nfm9l\nZFzyFsy6qfZDxyiOG9K51knXb1bnA1BZ43Eg6hFmZkrwPAjW7vZMqva33hgO6xP4wRMTo7jrFP/0\nt79t8yT48i0+ct7z8zj+33M4+7m5bjfOXcUVpCXGeeYWiq259IxuCILQcok+4Z7RFe4qMBXsw7Xb\nurINbl8Aebne2+4p8gTRDLFis3rZIl231N0/PhCllQ7KKu3CPSXsfXM6pJAQG+OVwKyovBqlCFiD\n1ZW2IDbGE+Hq4ub/eVIir9jhPee91JYPp7jczE/sKqpwm4IAmPeM+UyTJF2C0JKJPuEOJuNgQvjC\n0S28f/gnzDzXLJ/1Klz5rVl2mXoOv8azz51W0rDUhrls/ufcUQAMu/tLJv3rewD+NL6z8fle+t+w\njqGUomN6oteEalFZFemJcVwxoQ8XHNbLLdDBUxAc4NGzRnLdMf157w/Gk2h7Ybnbe+f0p38BvCeD\nXYy87yvW55eys6jCne8GrWHzj2a5gfdFEITGJTqFe13J6uvfNvQ06H6Id5t9PTbeVPYpzjN5xz+9\nEfasqfOp+2b7TwBP6W5FtL5/BThs0a1f3g4vTfGsa+3OyZK3v5wPfsvj3QXb+GbVbnYXV5KVmkCP\n9ik88LvhZCbH07djqt+5lFL85fiBHNI7i9G9jP/9DTN/49o3F7n7DO6awRPnHcyATmm8eYXnrWXy\nYz+wu9imuVfZ0izE2fzdBUFocUTfhGokGOKTGuemDcYeH+uT7TA12xSh+O4ByH3R/N1jafllBbDp\nBxhqKyvn8hm0mYuSfZNsAVkptmfq3zuZY37yJ1j4smlb/h4MOwMeGwKVxXCbJ2bs5vc8ZpWBnb0L\nSc+6foI7fUEg/u/80Rz50Ld8t8Z73uHSI3KIjVGcOrKbX+54L83dNZk64a9BzyEIQsugbWjuvpzw\noPd6arZJTetLSjZopymm7OLdS0y90DdOh/9eCi/aMhrmvgj3tvMqXBEoF3tWwRLvhpLdHsEO8L/f\nG7NNyQ6oKoVZN9E+xT/N7prd3lGrSfGxpCQEf153C5IX3u6X3yHVXyN3a+4u4d5pcNBzCILQMmg7\nwv26RTD2KjjrFcj0zXsWhBTLd32Hx4TByg+NYN9hpfjdNt8IY4B5luu/rXBFqk96gfPG9iKuxCeh\n16MhQgR+ncFrvz/Mr/mYQZ0CdA5OII+eT68b79fnuYsO4S/HecaU4bLhV1oTsIn+k7iCILQs2o5w\n79APTnrE24wSiqrS8Potf88U5t63zqw/fwy8eop78+wbJ3LbSYPY9OBJJvtjVZAUwVMf886J3s+T\nZXF4lyQuHmd8zQd1MeaYET3qnyr3L8cdxK+3Hcuw7v7HOGFoF69yhO63D1edVEnRKwgtnrYj3OtD\nJ1tNkrFX+W932d87DTWFue1smuO2wffvlMZVR/XzaM4u4e4bsn/o5TDqfM/6Re97TEiL3+TeU4cy\n6/oJXDnBTBC7Uh/UhaX3HM9rvx/LdccOoFOIQKpFdx7H0xeM5tCcLPj2AXjzTLNBapUKQotHhHtt\n2P3dB5zgpUm786UMPhX2rA68f3Fe4PaqA9B5GBx9q6fNVXfU18Vw3DUm22XeQpRSDOmWwemju/P8\nxWM4f2wv2PBd4GyXH18Hqz71a85Iinfnig9FVmoCJw23EnzNedizoV3vsPYXBKH5aJveMnXhL2tM\nINOAydD7CNi7xiQg62KViU3v4l2vdeqjkL/KVB56dgLcvNE72KrGAeX7IcHHbXGSJegPOgHa94Ez\nX/Rsy+rj5YaplImKZduvJi9OZk/483JP/6/vgkWvmb/z3zXHbAhrv/Qsq1hJ+iUIUYBo7qFI72Lc\nEsEETnU7GHoeCvFW+oCOAz19b9sBh14Bx9xh1ssLjPdM/ipPnydGwZafPIVFLnwPRpwDiZY/fGI6\n3LDY2+c+Zzxsz4UDe73H9s195rNoG8x5xHjplBV4Fyl562zIfZkG8Y4t2delnzXsWIIgNAki3BtK\nhi2606WNJ7eHOJs9e/5znuUiq2JhVj/z2X9y6MIVfSYCGnbbtPPyQk+0KMC3f4eH+5g/Xz79k4mG\n3eefSRKnE54/Fl4/PfC5C7dAjeX7fuc+75z5giC0WES4N5Q+E0wys+k+OWju2A235kFcMix61X+/\nDv3CP4erVF2BLbNi3sLAfV1c/LF3ScH3r4D/G+0v4N843eTb2fAN7F1vio3Pn+EJyHK9dUx72pOj\nRxCEFo8I94aSkAqXfOKxwdtJTANHuQmEqjpgSgO66OyfsTEoGd3Nm4A96VlVmfkMVoe0z1GmZqwv\nX93hWa6pho2elL88eYgpNv75TZ43jL2WrX9Q+NWpBEFofkS4NzZHXG8+Hx1sSgO6yBkfuH8g4hKg\n6yjYOMfTVrLTfLpSAQy0Cd+/bfFMel4zz7u27JpZkG9593z4h+DnfHw4rPkc9qw1+9exsLggCM2L\n0rXkImlMxowZo3Nzc0N3jHYqiuEhnxKAF30QXOMOxj0BAodi4uGOfCPIlTK+6POegVu3eXu0uL7j\n7x80mTF9OfIGGHQKfHQNTPybqU3rIiXbpBu41N+tUhCEpkcptVBrPSZUP9HcG5vEdP+2pHZ1P06g\nzOL2GxAAAAVfSURBVJbOalPlyCXIj7kdbtvu76roEv5H32bK3fly7D3GA+iPC2D4md7byvZCdtNU\nUBQEIXKIcG9slDLuky46D6+bvd2FqzpUQykv8F4/8WH/OrGXfAIjbZGyZYGLZwuC0HIR94em4LLP\njXdLryNCFtwOSlpHk/zsg+mmGPgnN0DfSXU/zrkz4e3z4IL3oMchgW3pfY4yf11HwBe3wMSb6zdm\nQRCaDbG5RyNOp7Gfj74Y2vUM3V8QhFZDuDZ30dyjkZgYY18XBEEIQlg2AqXUFKXUGqXUeqXULQG2\nZyqlPlFKLVFKrVBKXRb5oQqCIAjhElK4K6VigaeAE4EhwHlKqSE+3a4FVmqtRwKTgEeVUlJkUxAE\noZkIR3MfC6zXWm/UWlcBbwM+RUjRQLoyCcvTgALAEdGRCoIgCGETjnDvDmyzrW+32uw8CQwGdgDL\ngBu01k7fAymlrlJK5Sqlcvfs2eO7WRAEQYgQkfJzPwFYDHQDRgFPKqX8Cm1qrWdorcdorcd07Bhe\nwQhBEASh7oQj3PMAu79dD6vNzmXA+9qwHtgEDIrMEAVBEIS6Eo5wXwAMUEr1sSZJzwU+9umzFTgW\nQCnVGRgIbIzkQAVBEITwCennrrV2KKX+CHwJxAIvaa1XKKWmW9ufBe4HXlFKLQMU8Det9d6gBxUE\nQRAalWaLUFVK7QG21HP3bEAeHh7kfngj98MbuR/eRPv96K21Djlp2WzCvSEopXLDCb9tK8j98Ebu\nhzdyP7xpK/dDskIKgiC0QkS4C4IgtEKiVbjPaO4BtDDkfngj98MbuR/etIn7EZU2d0EQBKF2olVz\nFwRBEGoh6oR7qPTDrRGl1Gal1DKl1GKlVK7VlqWU+loptc76bG/rf6t1f9YopU5ovpFHBqXUS0qp\nfKXUcltbna9fKXWIdR/XK6WesBLdRR1B7sc9Sqk86zeyWCl1km1ba78fPZVS3ymlVlopx2+w2tvs\nbwQArXXU/GGCqDYAfYEEYAkwpLnH1QTXvRnI9ml7GLjFWr4F+Ke1PMS6L4lAH+t+xTb3NTTw+o8C\nRgPLG3L9wK/A4ZhAu8+BE5v72iJ4P+4B/hqgb1u4H12B0dZyOrDWuu42+xvRWked5h5O+uG2wjTg\nVWv5VeA0W/vbWutKrfUmYD3mvkUtWus5mDTSdup0/UqprkCG1nqeNv/Fr9n2iSqC3I9gtIX7sVNr\nvchaLgFWYTLXttnfCESfWSac9MOtEQ3MVkotVEpdZbV11lrvtJZ3AZ2t5bZyj+p6/d2tZd/21sR1\nSqmlltnGZYJoU/dDKZUDHAzMp43/RqJNuLdVxmutR2GqYV2rlDrKvtHSMtqs21Nbv36LZzDmylHA\nTuDR5h1O06OUSgPeA/6ktS62b2uLv5FoE+7hpB9udWit86zPfOADjJllt/UaifWZb3VvK/eortef\nZy37trcKtNa7tdY12hTJeR6PKa5N3A+lVDxGsL+ptX7fam7Tv5FoE+7hpB9uVSilUpVS6a5l4Hhg\nOea6L7G6XQJ8ZC1/DJyrlEpUSvUBBmAmiVobdbp+6/W8WCl1uOUBcbFtn6jHJcQsfof5jUAbuB/W\n+F8EVmmtH7Ntatu/keae0a3rH3ASZjZ8A3B7c4+nCa63L2ZmfwmwwnXNQAfgG2AdMBvIsu1zu3V/\n1hDFs/2265mJMTVUY+ygl9fn+oExGKG3AVMaUjX3tUXwfryOKXG5FCO8urah+zEeY3JZiqkIt9iS\nE232N6K1lghVQRCE1ki0mWUEQRCEMBDhLgiC0AoR4S4IgtAKEeEuCILQChHhLgiC0AoR4S4IgtAK\nEeEuCILQChHhLgiC0Ar5fwQRB3mM8HJwAAAAAElFTkSuQmCC\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXd4VFXawH8nvQdC6C30DoKIoiKoqCgqrh372ldX3XXVtdd1dW3r+lmxV9Rdu2LFggWQgID03kIJkJBC6mTO98eZO3OnZSbJpEzy/p5nnrn33HPvPfdm8t73vuctSmuNIAiC0LqIae4BCIIgCJFHhLsgCEIrRIS7IAhCK0SEuyAIQitEhLsgCEIrRIS7IAhCK0SEuyAIQitEhLsgCEIrRIS7IAhCKySuuU6cnZ2tc3Jymuv0giAIUcnChQv3aK07hurXbMI9JyeH3Nzc5jq9IAhCVKKU2hxOPzHLCIIgtEJEuAuCILRCRLgLgiC0QkS4C4IgtEJEuAuCILRCRLgLgiC0QkS4C4IgtEJEuAtCA1m4uYBVO4ubexitliqHk/ziikY/j9aaeRv2Ul3jbPRzNQUi3AWhgZz2zFymPP5jcw+j1fL4N2sY98/ZFJVXN+p5luUVc/aMeTz29ZpGPU9TIcJdEIQWS5XDydPfrwdgd0llo55re1E5AM+4zhftiHAXBKHFMvD2z93LFdU1jXquPaWeh0djn6spaLbcMoIgCHWhvJEFrv3NoKTCQWW1kz+9uZBKh5O3LjuYxLjYRj1/pBHNXRCEFkdxRTWvzd3k1VZW1XTCvbiimlH3fsUv6/eycHMhg27/gm9W7GrU80caEe6CILQ4Hpi1kjs/Wu7VVt7Iwn1HkccjZ31+qd/2S1+Lriy2ItwFQWhRVFTXMPPXrX7t5dWOsPZ/9of1PDF7bZ3Pu2J7MQM7pwFw+esL67x/S0OEuyAILYof1+7xWj92aGcAyqvC8z9/8PNVdXZn3F/pYGdxBYf3D14Do2/H1Dods7kR4S4IEaK0MjzNUqid699Z7LV+z7RhQO0Tqk99t47FW/dRUlE/X/hthcYNslNGot+2B04dwfmH9KZwf1W9jt1chBTuSqmXlFL5SqllIfodpJSqUUqdHrnhCUL08Oovm5p7CK2CM8b29FrvkGoEbnlV4IdnpaOGh79czSlP/ezlo/7E7LVordFahzyn9eCwzDIAj5wxik0PTmX6uF60T01gX3k1Nc7Qx2ophKO5vwJMqa2DUioW+BfwZQTGJAhRSZWjdYStNzdKme//Xjmed68YT0KcEVOPfLWGt+Zv8ev/3sI89/LTNuH+2Ndr6HPLLB75anXIc1qTtcnxHu/wzjYtvkNqAlrDnDW763YxzUhI4a61ngMUhOh2DfAekB+JQQlCNOJwinCvL1prnC6tuKyqhuy0BA7KyWJcnyyvfrd+8LvfvsUhTDFPfbeeKoeTJ79dG9TjxpqsTU6I5Zebj+L/po/m8P7Z7u1ZqQkA/PGVBeFfVDPTYJu7Uqo78Afg2TD6Xq6UylVK5e7eHT1PQEEIB0dN9LyytzSOevQHzpoxFzDml+SE8AOGwokmfX3eZh75ag1D7vyCnJs/83tIWJO1yfGxdGuXzEmjuqGsVwhgUJd09/LP67wnfFsqkZhQfRz4u9Y65B3WWs/QWo/VWo/t2DH4rLQgRCPVItwDUumoXTSsyy9h4579LNhUCMCHi7eztaA8aP/Ne/d7rZdU+Nvi73VNwgL0zU5l7a4Sr+1vzd9CdY2TKoeTL5btYL/Lnp8cH/ihMrBzOh1c2vu5L8zHEQWZIyMh3McCbyulNgGnA08rpU6JwHEFIarQiHC3sy6/lAc+X8mg27/gq+U7A/aZv2Evkx+b417/bUthwH6XH9HXvTzx4e/dnklaa178aaNX3zcuOZhTRnd3r2/Ys5+3F/j7zf/l7cUMvP1zrnxjETf9bykASQnBReJem7fMsLu+bPECvsHCXWvdR2udo7XOAf4HXKW1/rDBIxOEKMMZRZ4UTcGUx+fw3A8bAPhmZeDQ/TU+GvXKHWa9e7tkr/ZbTxjCnyb1c68Pv+tLrn9nMSc9+ZPfMdunxpORFM8txw+udXyf/b7Dry0tMXi6rf6dPJ40lQ5niw90CscVciYwFxiklNqmlLpEKXWlUurKxh+eIEQPNWG43LUlHLaH3bu52wL2qfTxMLKCj96+/BC/vr7eSO//lseyPFMk5bxDehEbY2zk1uTnFRP7ccVEo/HfNGUQG/55QsgxBzPLAHx49WG8e8V49/q3q1q2/0jIrJBa6+nhHkxrfVGDRiMIUYwo7rVTUV1Dkkt4FldUM/Lur/z6WGl3fTV3gLIgfu4Af5rUn9IKBx8u3k77lAR3+81TBnPTcYPdgj8Qv999LCNcY7FPovqSlhjHuD5Z5N4+mSMf/p5+Nk2+JSIRqoIQIcIJlmnL3PPJcrcr4s4i77J5Fx/Wx2s9JoAwDpYa4PIj+tK9XTL/On0kP950pPsBAkZY1ybYv7l+IulJ8WFfA0B2WiKH9c9mfwuPSBbhLggRQtzca2fmr1uZMcfY4H3dFy3zSW1MHdmV72+Y5NXWu0MK1x8zEIDEuFh6ZqXUeowzDuzBZRP6MP/Wo/n8ugluO3pOh9r38yU9KS6gl05LQop1CEKEcIrmHpJYlzppr4ealZpA54wk97rdru1LTrYnedeonu149rwxXpp6KB4+Y5R72X7Or/46sU5/v/Sk+HrnsWkqRLgLQoSoxVzbJkmOj6W8uoarJvVzpwWwqhkVl3u03gvG9wZMiP/e/VUclNO+1uMuufNYEuJi6hToFAorxUG4pCfFsb+qhhqnrtXs05yIWUYQIkRdNMi2wKiemXTJSOJvxw5yt1n+6VbKgAGd0rjiCOPi+Om1h/PpNYfXOqkJkJkSH1HBXh/Sk4xeXNqCTTMi3AUhQrRM/a35qK7R9O+U5qXZvulK/FVYZgKCPrz6MLeg7pqZzPDumU0/0HqQ4ZqEDZXXpjkR4S4IDcDuIVMtvpButNYs3FxIlSuK88ebjgQ8ro7PfL+euBhFSjNr4PUlI9kI93dz/SNfWwoi3AWhAdjleUsPR29KrDwxv240CWXtXiwV1TWUVJjkYKFMMC0V66H1f9+uY19ZyyziIcJdEBqA3cPCEmQCLMsr8mu7cHxvMpPj3Xb3Sw7v49cnWpgyrIt7eV9ZyzTNiHAXhAZgF+6ZyXULhmnN3PfZCr+2zJQEisqrGfuPb4Da87i0dBLiYnj2vAMBo723RES4C0IDsLtGO8Tm7uYsV6m8j64+zN3Wz6fA9OyVLTs3SygsP/f3Fm1zzyWASZPQEnzgRbgLQgOwa+5SrMNDXKyiQ2oCo3q2c7f5esLcffIw392iihNGdHUvW6aZvaWVDL3zS3euGoD/m72WS19t+gpOItwFoQHYlfVqyT/gprzK6ef336O9JxnYsUM7e1U3ikZSE+O46NAcACY/9gPfr87nn7NWubdXOmrQWvPo12v4ZmU+hfubduJVhLsgNIA9JZ7XcdHcPZgMkN7iJTEulv9dOZ6s1ASvNADRzOkH9nAvX/TyAt5b5EltPOXxH+lzyyz3+gs/bWjSsYlwF4QGYK/FWSM2dzcV1TUBo0jH5mSx6I5jWs3ksxWpGoiNe7zLAT713XpyNzWdR5UId0FoAPbMgNXi5+6mvLqm1sIXrYVw0iBMO6AbI1zzDac/Ozesgt6RQIS7IDQAe3WgtuIts3x7ER/8ZswPRWXVnPvCPPJLTH7237YUknPzZ/yyfm+byLXTLjmBhNgYJg/p5NX+8Okj3cv/OXs0My440L0++I4vmPnrlkYfW/Q6mgpCC6DKpq23Bc1da83UJ0zd0q6ZyZw9Yx4Ar/6yiRuPG8wb8zxCqy0I94S4GNbcfzxb9pbxjc21s3+nNBbcNtltquuamcx/rxzPGc/OBWBXcUXA40USEe6C0ADsmntbsLlXVHuu1xLs4AngqnQ0jcmhpdGrQwor753CjqJyZv66heHdM4mP9TaMHJST5V626rw2JmKWEYQGYBdmgbxlisqrWbi59aQl2FZYFrB9+fZiyqocXg+4prIttxSSE2Lp2zGN26YO9RPsvuwtbXy3SNHcBaEBVNo090B+7le8nsu8DQWsum9KizNTXPLKAmavyidGwfxbJ9MxPbHW/lv2lnHMv+cE3PbR4u1s3lvmZW6YNKhTwL4C9PWJ1m0MRHMXhAZgN8to7W+aWb69GPAUqWhJzF5lbMRODQfd/00Y/Xf5tcXZcrUv3rqPHa7C159eczgXH5YTmYG2Im48bhCDu6Rz8qhujX6ukMJdKfWSUipfKbUsyPZpSqmlSqnFSqlcpdThkR+mILRMqnwmUc99YZ7XuqesXPPnGmkoMQHS8y675zjOP6S3V9vdJw1lePfMqE3n25hcfWR/vvjLEU1yb8LR3F8BptSyfTYwSmt9AHAx8EIExiUIUYFvTeV5G7zt64mu2pwlLbgcW7jY5dFlE/q4TU33nTLcq9/Z43o18ciEQIQU7lrrOUDQGSGtdan2lKNJBVq/y4Ag+GD3a7aT6ArBLwqguVdU13DVmwvZWhB4krK5Katy8NjXa9ympzs/Wu7edtvUoV5zCEvuPJaLD+vD/64c3+LmFtoqEbG5K6X+oJRaBXyG0d4FoU3QOcNMQh4xsGPA7e1TjMvbCz9t9Ns2Z81uZv2+k3s+8c993hJ47ocNPDF7rV/ATSB7cWZKPHeeNJSxNnc/oXmJiHDXWn+gtR4MnALcF6yfUupyl10+d/fu3ZE4tSA0K10ykzliYEcve7TTNqlq1Qids2a3VztAvMtk42u3bwqskoCDOqczdWTXgLVMC1xZDO/6eDkrXBPDAP85+4CmGaTQICLqLeMy4fRTSmUH2T5Daz1Waz22Y8fAmo4gRBNOpyZWQXaaJyjl9XmbA/bd52OaSXD5Qs9Z0/SKjvVAOXVMd/plp1JeXeNV7Bu8r+MSVz7y2BglE6VRQoOFu1Kqv3L9tZVSY4AEYG9DjysI0UCNU/sJvLs+Xh6w7/Z95X77WizaUtg4AwxCpSvSNDEuhqSEWLT29tn3paK6hu7tkpl2QOO78AmRIRxXyJnAXGCQUmqbUuoSpdSVSqkrXV1OA5YppRYDTwFnaV8VQBBaKU6tA7oIWtGZ9uLJt3/o7U1sF6anPv2Ln9mmMbH87pMTYt3ZGyuqa3A6NT+t3eM3lsKyavL2lZOaIHGP0ULIv5TWenqI7f8C/hWxEQlCFGFp7r4UllWRlZrA73lF7rbFW/exv9LB1sIypjz+I1cc0ddrn69X7uK4YV0afczgsadnpSYCpuBIaaWD/+Zu4/5ZK7njxKEB9/t2VX7wSTWhRSERqoLQAGp0YOFeUe10uxBeNamfu33YXV8y5fEfAXhujndlniteX9iII/Xw7A/rmfbUzwB0SEugQ6rx+NlVXMG6/FIA7vvUePD4FrV+8LQRTTJGoeGIcBeEBuAMormXVFRT7Uok1iUzKWCfQNzy/u+hOzWQGbaHSnZqIlmuyeDTnpnLO7lbvfo+eNpIDuvfwWwf04MJA8QRIloQ4S4IDaBGa2ID2NxPfvJnd8bI+NgY3rz04KDHuOHYge7lSBZxmL9hr6twxh7yXJO5/83d6jbJAGSlJXgVrvYlIymesw8yEafHD28ak5EQGUS4C0IDcDohJohW/vf3jBbucGrapQSvGXrk4MbJnvjNSpPo65zn53PYg98CcOP/lnr1SU2IpVN6kls79yU9KY6TRnXjy78cweShnRtlnELjIMJdEBqAw+l0a+4zLzuEM8f2cG+z/NeX5xV5FYRWCkb3agdAz6xkhnXLZPk9x3Fg7/bmmBEKakpNrN1f4plzx7hdOC27uy/d2hmtflCX9IiMSWg6xK9JEOqJ1prCsmrapRrBPb5fB2qcmndzt3n1u/6YgaQneYT7xgemMu1JU6quT3YaYATxMUM7s3BzIVU1TuJCFHvw5ce1u1mwsYDrjx3kbvONOr36rUUAHDmoIy//cZzXNnsx64dOH8mwbhnkl1TWaQxCy0I0d0GoJ7uKK6lyON35YwC6tkvy69cpI4mkeO9/tfv/YLxOHj1jlLvNyiA589etQSseBeP8F3/liW/XeUWZLtla5NXns6U7ANi7378K0D3ThrmXzxzbk2HdMjlSim1ENSLcBaGe/OlN47pon6Ds1zEtYF/fkP3h3TPZ9OBUr+pHCS7hft+nKzjTVUi5ruwu9Wjbn/2+w2/7hAHZPHXOGL/2pPhY7ps2jGuO6l+v8wotDxHuglAPCvdX8duWfQBM98lfnpHksXa+c/khYR/TKuwBsN1V0ei1uZu4/cPa3SPt2vo9Hxv/9Blz1gfs+/olB9MzKyXgtvPH5/A3m1lHiG5EuAtCPXjX5g/eLtnbE+bQfiZv3g83TuLgvh4vlK6ZSX5BQXb6ZPtvu/Oj5bwxr3b3SK+cMMpEzf5z1iq/fivuPa7W4witC5lQFYR6YDd5+Hql/PusA/hrQRm9O3gL619uPsqvcpOdDqke2/3w7hlhj8Uu3BdsLPBKeTCieya3Tx3C8O6ZpEhemDaF/LUFIUxOe+YXdhZVcOdJQ1m6zSNALVu5RXJCbEDXQaUUtWXL7d0hheuPGchHi/OI9/GW0VoHTbVrBUsB5JdUcvWbi9zr904bxuhe7Wu9LqF1ImYZQQiThZsLydtX7pUDpjYzS11RSnHt0QMY2Dmd0gqHV2bGta6cL4Gw0veO6ml85/NsqYVFsLddRLgLQj0Y1Nlo5l/+5YiIHzstMY7SSgd79ns8X2qrs2qZZS4+LMerfc6NR0Z8bEL0IMJdEOpBt3ZJjOyRWedgo3BITYxjR1EFZz03z9328zpP/Zsvlu1kxN1fUrC/ivziCu78yOSJT4yL5cLxvW3HkULVbRmxuQtCPXAEyQYZCV75ZRMAG/fsd7e99PNG7jzJ5Fh/9of1lFQ4GHPf1177JcbFcM+04QzumsHj36zxSnkgtD1EcxeEelDjDJwNMhJcMbFvwPYPfjNpDRLjAv/bWhOr08f1Yv6tkxvlrUKIHuSvLwhhUONTdq6ovLrRNPeR3du5l3Nvn0z/Tibq9a/vLAEC+8Mnx8dyzFBJySt4EOEuCGGwamex1/ry7cV+Aj9STBpkCmLcO20Y2WmJvHfloQCcOqY7ACWVDnrZokzfuvRgVt43pdEeNkJ0IjZ3QQiDNbtK/NrW7w7untgQUhPj2PTgVPd6Zko82WmJJLkyN5ZWOGiXEs+WArP9gF7tAh1GaOOI5i4IYXD/Z/7h/I5G0twDsae0krfmmzQE+ysdpCXGMefGI1l57xSJPBUCIsJdEMJgT6l/bvPGMssEwvJ8+WbFLnI3F7K7pJJeHVJIThB3RyEwItwFoQ5MO6Cbe7kphfvZB/UkMS6GS1/LBWqPWBUECEO4K6VeUkrlK6WWBdl+rlJqqevzi1JqVKB+ghDNWO6J/zl7NP+9cjxArUnAIk1iXIxXgrC3LgtecFsQIDzN/RVgSi3bNwITtdYjgfuAGREYlyC0KLT2lKLr3cF4qqQ0YQRooq0M3rVHD3CnFRaEYIScidFaz1FK5dSy/Rfb6jygR7C+ghCtzJizwb2cnZrIHw/L8SvS0ZjYA5eOGdK5yc4rRC+Rnma/BPg8wscUhBZFTIzirpOGhe4YQeya+4gemU16biE6iZhwV0odiRHuh9fS53LgcoBevZpO6xGEhpKeFEdJhaPZzl9Q6l/UWhBqIyLCXSk1EngBOF5rvTdYP631DFw2+bFjxzbhdJQgNIycDqlexaybmuKK6mY7txCdNNgVUinVC3gfOF9rvabhQxKElsXrczfxe14R5VU1Ifs2Fgf3yWq2cwvRSUjNXSk1E5gEZCultgF3AfEAWutngTuBDsDTrjJgDq312MYasCA0NTN+NJOppZXNZ5Y5dlgXzj6oJ4f1Fy8ZITzC8ZaZHmL7pcClERuRILQwqh3Ggticwh3gwdNGNuv5hehCIlQFIQQ7iysA7+IZgtDSEeEuCCFIkfwtQhQiwl0QQjDZFTTUSIWXBKFREOEuCCGIizVSPSVeNHghehDhLghh8v5VhzX3EAQhbES4C0IIHDWaPtmpDOqS3txDEYSwEeEutFj+881aDvnn7OYeBjVOLfVJhahD6nMJLZZ/f2MCngv3V9E+NaHZxlFcUS0eM0LUIZq70GJpn2JKy81Zu7tZx7GjqIJumcnNOgZBqCsi3IUWyzhXPpW8feXNNoZKRw3r8kubtDCHIEQCEe5Ci8UqUepswlqlvryzYCsA7y/Ka7YxCEJ9EOEutFi0q0hpjTNEx0ZkX5lJtWsvjC0I0YAId6HFUuO0hHvzSfficiPcHzpdknYJ0YUId6HF8fGS7Szdto8yV/70Gq15fe4mLnzp1yYfy87iCvpmp5IYJzZ3IboQV0ihRVFeVcO1M38DoG/HVAAcTs0dHy0HjP09pgl9zvdXOkhNlH8TIfoQzV1oUVzw0nz3cn5xJQDvuiY1ARZtKQRg4eYCjv/Pj41eHWlrYTmJcfJvIkQf8qsVWhQLNhW6l63iGIVlnvqhpz87l+fnbOC0Z+ayckcxq3YWBzyO1pqf1+1xT8rWh/2VDtbll5K7uTB0Z0FoYYhwF6KO+2etdC87gwjvC176lXNfmM+nS3fU+zzL8orqva8gNDci3IWoZlth4ACnH9fuAWBLQVm9j21VYOqZJdGpQvQhwl2Iaq57e3Gt27tmJtX72MUVxiz07hXj630MQWguRLgLrQ57RKuV8GvF9mLu+WR5nWzwJRXG1t8uufmSlglCfRHhLrQoOmckupf7d0oL2u+9P40nIYgXy6Nfr3YvVzqcvL9oGyc88SMv/7yJPaVVYY+lpMJBXIwiKV7+TYToQ361QouifUoC/Vz+7Qmx3j/PFy8cS4fUBL67YRIH9s7i0sP7EB/r7/P+1Hfr3ct7Squ4/t0l7vXiCo/nTY1Tc+N/l/DNil0A7C6p9HKt3FdWRWZyPEqKpwpRSEjhrpR6SSmVr5RaFmT7YKXUXKVUpVLqhsgPUWhLVDqcDOmawZUT+/H0uWPc7d/fMImjh3Rm4R3H0CfbJfzjYqiu0bUmFrvv0xVe6+e94PGj37C7lP8u3MYdH5mf9kH3f8OZz80FIL+kgpm/bm3WPPKC0BDC0dxfAabUsr0AuBZ4JBIDEto2FdU1JMfHcvPxg8lxCXGA7PREv77xLs2+ug65Z3YUVbiX97u09B1FFe4HxO8u98fFW/YB0EGEuxClhBTuWus5GAEebHu+1noBUB2sjyCES3l1DUnx/nlckgO0WWab6hqP5v6AzQc+GFZCslKXNwzAvI173cu/bSl0e8pIwjAhWhGbu9Bi0FpTXlUTcAIzUA1Ta0K1yuHR3J+bswGAm48fHPQ8llA/70WPieac5z3LZ82Yx0JXVGq7FNHcheikSYW7UupypVSuUip39+7mLZ0mtDxW7Syh0uGkW7vwgoYss8yK7f4pCGrLB1NSWc0rP28Mur3K4WTmr1uIUZAuScOEKKVJhbvWeobWeqzWemzHjh2b8tRCFJBfYhKFDe+e6W7rkhE8CMnylLFr4Bbda3lAVDqc3P3JiqDbLZyaJs1AKQiRRMwyQouhotpMcNrt619dfwTzbz06YH9fU83c9R67+TFDO7Phnydw4siuPHnOaNbef7zb++boR38IeLwrJvZt0PgFoSUR8p1TKTUTmARkK6W2AXcB8QBa62eVUl2AXCADcCql/gIM1VoHTtcnCEF4+nvjn243qWQkxZORFB+wv93WDvD2gi3uZaUUSsGT53jcKQNNygL8dfJA+ndKY+rIrjz3wwZ3+wkjutT9IgShhRBSuGutp4fYvhPoEbERCW2WJVuN+2G4QUOHD8gGYGzv9uwrq+Kjxdtr7R/IxNIhNYE/TernnpxdcuexjPnH19Q4Ne1lMlWIYsQsI0QUR42Th79cRcH+8MP8fakt7YCdHu1T6JOdSu7mQiodoX3dh3bN8Fq/+fjBLLzjGK80Bpkp8Zw+xugqfxjdvQ6jFoSWhQh3IaIs2rKPp75bz43/XRK6s419ZfV7GGzcsx+ABZs8oRgzLzskYN+O6YncfdJQ9/qgLukB+91x0lCePGc0B/ZuX68xCUJLQIS7EFEsy8eukgp3SbxwuO3DgNktwsbyXb9iYl/G9+sQtN+onu3cy2lB3BzTEuM4cWQ3ySkjRDUi3IWI4nBFfy7LK+bUp39h8979Ye0Xbj9fBnY2JpzqGmOWObhPVq397cWuUxPEh11ovYhwFyKKrwfL3jBt72WuPC85HVLqdL7bpxozy6qdJQAkxQX2iLHo39Fjz+/SgEIegtDSEeEuRBTfiU17/pba2Ocqgm0PYAoHazL0zfnGDTIpoXbhHhOjOLy/8bLJkqRgQitG3kuFiFLpqPFa/2rFTo4YGDoaudIVwNQxQPbH2vAV0KE0d4CX/3iQ24wjCK0VEe5CRKms9haaivAmJatcwvbG4wbV6XydfdITWDb42oiPjXHnpRGE1ooIdyEiaK3ZVljuZ5YpKg+dCfqLZTvdaXtT6jjJac8g2bdjKnEitAUBEJu7ECHemLeZCQ99R67N37x3hxQKw/Bff/ybNfU+r70U3x1Th9bSUxDaFiLchYiwZJupYPSbK4VAp/REemWluIte1MYYV7DQF3+ZUOfz2n3RU0JMpgpCW0KEuxARrIAgK2J07i1HkxgXQ3UYaQEKSqtIT4pjcJeMkH0DYcn3VMm9LghuWo1w311Syfrdpc09jDZLZrInc2NcjCI2RhEfG4MjjPqmXyzfSXlVTch+wdCuKnvJorkLgptWo+qMf2A2Dqdmwz9PkAILzUBqokewxrhU6fjYGK/6psFISYhlWLf6ae2+xxEEwdBqNHcr7H3GjxtC9BQaA7sLpFUh6fNlO9i4Z7+f77sv8bExfhkb64MEJQmCh1Yj3C0+XVp7Tm+hcaiyBQVZJhpLa88vrgy63/5KB0Xl1ThDK/hBefmigzj9wB4khhHAJAhthVYn3JflSQGo5sCeUybFNbF59OBOAOwqrgi637H/ngPAzF+3BO0TiiMHd+KRM0bVe39BaI20GuHeyRa2rnUD1EChXthviDDIAAAgAElEQVSDlyzb9y0nDAE8HjR29lc6ePSr1eTtKwdgRI+65ZQRBKF2Ws2EapKtPubveUWM7NGult5CpLELdytwqUf7ZADyS/zNMle+sZAf1+5xr884f2wjj1AQ2hatRnN32Gy+Jz/5My/9tLEZR9P22F/pCVYa5XqwJsbFoJQnKZidn9Z5BHt8rKpzwjBBEGqn1Qj3Kp8sfy+I10yTUlRezeAu6dw0ZRCPnmns30opEuNiqAgQyJRlKz790Okjm2ycgtBWaDXCvbyqhq624gtidW9a9pRW0jUziasm9ffyWkmKj6UigOZuj0UY3VNqlQpCpGkVwl1rTVl1DZMGefKG7ygK7qEhRJ4dRRV0bZfs154YFxNQuNvb7PMlgiBEhpDCXSn1klIqXykVsIKxMjyhlFqnlFqqlBoT+WHWTqXDidaQYQuBF5qOKoeTgv1VdE73L1tnNHd/s0x324MgLlYiigUh0oSjub8CTKll+/HAANfncuCZhg+rblh5STKSvIV7dY2THUXlTT2cNkepazI1M9nf+Sopzt8ss2TrPqprnAzolMafJvWjg0SWCkLECSnctdZzgIJaukwDXtOGeUA7pVTXSA0wHMpcwsOuuQ/uks6A2z5n/APf8vESiVptTEoqTEGO9CT/NyeNZllekXt99c4Spj31M+t376dLZhJ/nzLYK22vIAiRIRI29+7AVtv6Nldbk1FeZTTHjCSP5rhqZ4l7ef6GvU05nDZHiStne3qSv+a+Zlcp24sqqHHlFyi3afF2P3dBECJLJIR7ILUroLOKUupypVSuUip39+7dETi14fW5mwFTom3Tg1P9tjckb4kQmse+NpWU0gLkUz+gp/F5t7R3e2HqW44f3ASjE4S2SSSE+zagp229BxDQDqK1nqG1Hqu1HtuxY8dAXerFq27hHtjrQtIRNA4V1TXM+n0HS11VmPp38i9OfeGhvQGYs2a3ex+Lo4d0boJRCkLbJBLC/WPgApfXzCFAkdZ6RwSOW2esYg2zrvUu12blLxEiy4s/beSqNxfhcDrpmJ5Ipwx/b5nJLgFu/W3sRTl6d0hpmoEKQhskHFfImcBcYJBSaptS6hKl1JVKqStdXWYBG4B1wPPAVY022hBYmvvQbhleub1/XLuHuz9e3lzDanV8vzqf6honm/eahGD7yqq9ClXbsQKaPllqnveWff7G4wYRH2QfQRAaTsjEYVrr6SG2a+DqiI2oAaTEey7nsgl9+dcXq9zrr/yyibtPHtYcw2pV5G4q4KKXF3DkoI70aO/RvBPiAgtqq3DHkq37mPDQt0wd0Q2A6eN6Nf5gBaENE/Wqk92enpTguZwrJ/Zl1X3e7vk1MrPaYKyApO9W7+b1eZvd7fFBApHsbo5bC8p59of1QGDPGkEQIkfUC3d7jc7UBI/AUEr5hbWXVTkIRd6+8pBl4doywYTy1oLg8xpTR/iHPYhJRhAal6j9D/tp7R4mPfydO4DmmqP6kxrAFe/G4wa5l53+UfBe1Dg1hz34LX9+67eIjrU14QzieVQeIH+MxeEDshtrOIIgBCEqhXtReTXnvTifTXvL3IEwwfKBXzqhD32yUwGo8RFMny3dwdJt+9zr211eNV+v2NUYw24V1Me0lRQflT8zQYhqotLwec7z89zLf3lnMWCyDwYiMS6WPx6Ww50fLffSOovKq7n6rUUAbHpwKou37uOUp35uxFG3DhxBhPtDpwXPyR4XY/42U0d0ZWDndA7qIyl+BaGxiUrhvny7fxHs2uKUYlyTek6bYHrsq9Vefa5+c5HX+ue/7+D4ALbito51D9+5/BAO7tuBnJs/A+C0A3sE3ceabK2ucXLd5AGNP8jGwOmEFyfDzt9h5JmgYmHbAkBB8Tb4cy68cx6U7oL0rlBRDGjQTijeDl1HQXUZOGtA15jjaSeU7IBOQ8HpgJoqUAqS25tt2QPNPpUlkNkTBp8IPQ+G/BWwZCbExkNCGlQWQ+FmKNwESZmQkgU11ea8zmpzrphYiIkz+8TEmfWq/ZCYAVl9YPNc0wYQmwBxSRCXAMU7ICnDjFvFQF4uHHQZdBps+nUbY8657Vco2QnxKZA9ANI6Q3oXSExvxj9aC6R8H+SvhB4HQWzjit+oE+7Bok0D2dstYl2FISyzzD2fLHdHtQIU7K+iQ1qCV7DTn95cFDCVQVvH0tytNL2jemSyZFuR+x4HwnKZHN49SotgO53w0rGQt9Cs//aGf59HbA+tlGxonwMxMbBnrRG+BRugQ38jEGPjjaAEqNgHZXshoyvEtjNCvWwvbP8NNnwPaV0gPhlWfARznwwyQGWO12UEOCrMA6hqvzlfQqoR5k6H7VNjhP/OZVBTCRu+M8K875Hm4eKoNA+aylLYn2/Gm5huHlwAC54P7751GABX/gTxtuC2pe/Coteg5ziYeLN5gEQzm36Gdy9wPYB7QMF6z7aOg2H3KhhwnLmHxdth13Jzzw+6DKY+0qhDizrhvq+s2q9tSNcMThwZXMu25I6luL/88yav7e8v2iZpZ8PEsrnHukwtb112SK2TqWCE+mfXHs7gLhmNPr5GYcELLi0dOOtNQMNXd8DxD0HXkfCoZ9KeW/Ig0ZaGQWvYvdpounWhxmE0acuVdMP38No0s3z4X2H0+ZDRzWiC6V1Me12za5YVwL7N5sGQ0QNSO4TeZ/dq+PkJKM6DfkeZNwOtofNwMw5dAz/9G1Z+AnvXwv1d4G+rYc8amHk2VJWa42z6ERa+AlMehAHHQnI7qCqDvevMPa0NR5V5CKqY5ns4lO+D5ybAvi2eNqXMA3XvOrO+1yXoN/9iHrrdRkPfieYBO77xQ4OiTrhv2FPqXg5Xsw5klrHzj89WcsxQEyY/LieLXzeZDMdaa0lH64Nbc3c9MVMT42p9a7IY1q0eWvuar+Dzm+DMV41Zo7lY/oH57ncUDDnRLA85KXDfRJ/8OkrVXbCD/yt730nw1xWQkGLMNhbx/tWvwiYly3zqQsdBcMpTtfc56w2j9T/QHdDw6EDv7ae9CF/eBqU74f3LTFtihnlIVLmyuV672JiLLLQ2bw4zzzZvNXZiE+D8D83DbsELcORt5j6VFZj95j5pTFzdDjBvDj/9G/pPhnVfm7eLwSfAtlyoLodLZ5s3rkA4qsxDtmyPecDt22IeapPvhgHHePpVFJsHj/VbsN6U4v3TczQmUSfci8tD+6r74jbLOHVQbw/LQ+b1S8cx6PYvAPjnrJXcNGWw+GTbsFxPA2WAjAg1Dlj5EaR2hBUfQuFGmD8DJt4Iqz+Hg6/0aKiVJY1v0103G7b8Yuzo539Qe9/kOgrKupLZpJm0G0ZiGky6Bb5/wNM27A9wzH3QricMPw0+/BOsngUVRcZ0ZeeJA+CGtcY8lNkDvro9uFmqpgpeOcGzHtR8ZWPd1+Z771r4+T+e9u2/QVpHWP0FHDDd8/uqroD7fRLd9RoPF3/hf+wknzfUmFjPfEYTEnXCfX8YgUi+uDV3rd35UIKRGBfLk+eM5s9v/cbzP26kf6c0zjpIQuUtisuNcG+0koZzHoYfHvRuW/yG+QB8cbMRouWu+jF/mAGjzvI/zq4V8Mx4Y/PtMqJ+Y6naD2+capb/+Hno/oNOCN2nLTHhBhh1ttGgOw422rSFUvCHZ83y5rnw63OQ1Q+OvgOePdzMG1jzGENOhlWfeva9Yg6072MmbwEWvwmfXBt8HB0GwJgL4Os7oF1vM/E76Hg46nYoLzTzIkqZh83P/zZKhNMBn98Y+Hj9joYjboQeY+t/b5qAqBPuJ47sxtjeWXUS8jExHuG+Ybe3cF90xzGMuc88xa2UtQf38dgeKx0hIp/aGFZJvUbT3NfPDt2n3FYY7IPLYejJ3uaJTT97NLm5T5sJrGXvGc+SK+ZAh36evttyjbdH9gAozTdeMJbteeUn5rvvJG8TQTBOfCx0n7ZEbJyZWG6fU3u/3uPNx+KCj+Eh2/1e+bH5PuZeOOw6//0PvNCYXVKzjc37zTPMW930meZva2nNhwV5APQcZ8w3uS95/ubBuGtf3ec2momoE+4AXTLrZruKVZZZBnYVV3hta5/i0UCvOKIv4B0QZWUxFAyllTUkxMYETRTWYOJt2t2AY81EXOEms56UaV7hOw8323YsMQ+Dkh2QZf52FGz0fkVf8pZnuaoU/m8M3LrDaJFb5sFLx5ltg0/0aIcXzTJ27Q+uMPbc6W/XPubYBGMaiAscSCfUkZQsuLsIivJg4cvmbQ6M+2Aw7A+H8/5X93MqBWfPhEf6m/W/bzKmmLlPmt/X4KnGTh8lgh2iVLjXFctb5pMl26l2OlEKjhjQkYsOy/GaMO1nKzbx0dWHMe2pnynYX9XUw22xOGqc7sRfjUJZAWz8AUaeBac8Yyalnhhttt243mhmdtZ+bYT7+1fApV8b7euJA0Kf54u/G8+FT//qabO/9tsfDsc/FHrS8vpV4JCaAREns7sxnUy61biSZvdv3POldTR/y6RM18Q1cNz9jXvORqRNCPdMl334ye/WudtevXicX78BNuE+qmc7+nVMZUdR5P9pN+wu5ahHf+Dz6yYwpGv0uAfuKKoI3QlgzZfQfWx4rnV2HnaZS3of6nmVnv42rP3KX7CD8Y4AE0DjdMK9Ni+Sv66ALXPhvUuM7bf3obD5Z/jxUeNnveg1/+PZ3dgsxlwYetx1vU6hbsTENL5gt8hoPYGLbUK4j3TV8QxFepL3JGFWakKjaO5fuTxzPvwtz0u4l1fVoBR+2SxbChUh/NkB4wL31pmQ0d1MWh19p9GEQrFlvvFdBuNJYdFpcHBXwk5DPctLZnqWswcZrW/E6eZj0WciLP/QE2jSY5yZaDvgHPOWoJQZ/+I34Zt74NTngrvFCUILp038ckNN/k0YkM0F43v7tSfFx1LpcFJSUc0Xy3ZELBWwNQewtbDMq33YXV8w+bEfInKOxsCaXLbPU/hhRTEW5xmf41k3hXfw1bM8y+G6NyplJtkAPnIVABt3BVw9P3D/2Dj48wLP+nH/hDHnewcLJabBwVfAbduD+7ILQhTQJjR3X549b4zX+uuXHBywX2JcDAX7nVwz8ze+X72bPtmpfHfDpAaf3/K7n/X7Tr5fnc+kQZ3YWlCGU8O2wnIcNU7iYmP4ae0earRm4sDIFRNvCJbm/p+zR/tvdNbA/Of8tezSnaEPvG8r/Py4WZ72dN0GdchV8PWdnvUDL6x90ismFq5bYqIGe9YyQScIUU6b0Nx9Gdo1vGjJhLgYKh1Olm4rAmDjHo8b5fLtRbz965Zgu9aKXfZc9PICKqprmPDQd+6293/Lo6TCpDW+8KVf63WOxsDS3ANm4Fw3G768BV7/g6ctq5/xNw+FPehk9Ll1G1Ss7S3iwD9C5zBKKbbPMaYYQWjFtB7h/u39cHcm7Fgasmv39uGFbCfExlDlcHrZ3bcWGFPK1Cd+4ub3f2ddfol72ws/buAIm5AOxpYCb3PM7pJKr/Ud+yoYcfdX7vWfXDnrmxvLLJUYaE5A+5isLv8B+h9tEk85Q5iz8l0PgDv21m9gHV1vCxJEJAhuWo9wn/OQ+X5ugskB4cOz5x0IwN+OGVhrBkM7KYlxlFRU072d52Ew4aHvmD7Dk09+8mNzcNQYjfYfn61kS0FZ0MyVFr7C/Jf13sL739+s8Vq3ctY3N1b91IDFN8oLvde7jDCRh2ACiAJRVQa//w82zjHr9U2BerjLpbE5888IQguj9Qj3bjY78AdXeDKyuZgyvAubHpzKNUeHn0+8e7tkCsuqvVIBA8zd4K1h/uOzlV7roaJafbf//b3fa+2/p7Sy1u1NhVtzjwuguZcVeK/HxMLZrpQB2xb49181C/7Z1bgqgslXXl9GnQ13FkJ659B9BaGN0HqEe5wtanX5+/BkwyfLwjWHvPLLJq/1B2at5HeXnT4QwYT/N9dP5ACb22aGqxh11zpG5DYW5VW1aO6FGz3L4/9svtvnQOcRZsLUF9+c6NcsbNjgxGVRELwI6z9CKTVFKbVaKbVOKXVzgO29lVKzlVJLlVLfK6WCl+VpLEp3maowFr424Hpgn/g8cpC/x8q3f5sIwIkju/LJku3u9lfnbuakJ38KetyqIC6V/Tul0SXDCPJD+3VgyV3HAiZ4qD61SyONlRHSNx4AgK3zoc8RJmzcHtWX3sWEb/tid3c89QUJ3ReECBNSuCulYoGngOOBocB0pdRQn26PAK9prUcC9wIP0NSU7jYlyOx8c4+ZZF01K/A+ITh5VDf38h8P808c1bdjGp3SE8kvruSamb/5bQ9GpcNJRlIcs10PB/C4R/ZwTfa2S4lHKcWpY0ya1183FvgfqAl55vv1PPD5KuJiFKkJPmYZrU1mvS4BiizEJcKOxZ46iDUOeHwkLHXla+k0DAYe27iDF4Q2SDia+zhgndZ6g9a6CngbmObTZyhgpfP7LsD2xiX3JZPkP62Tx3MC4CdXlr7P/16vw551kMcOnJYUeLIvPSmOzQW1pxH2pcrh5KCcLPp19KQ7OHW0EeJWorJZvxv/8NtOGALAqp3+dWObkn99sQqAkT0yvQuYFG83mfQcFSbnuS8VLvPUghfMd+kuU/3H4qpfwotgFQShToQj3LsDdqPpNlebnSWAFTP+ByBdKdV0CTesBFBpnUx04jSfSjFFW0wa2DqilKJPdioAI7tnct80jw/1u1eYLHQZyfHsKvaf8IyNUUG9ZiodThJ97NYPnGpyjjtd+xzhClxqn5JAjCJgGgStNQs3F1LlY8PfX+kg5+bP+N/CbWFdZyjsaQe6ZibD/r3GvXHLPHhsCHzssrH3P9p/51NcQUlWBKo9qClU8QtBEOpNOL5ngfwGfaXWDcCTSqmLgDlAHuCXK1cpdTlwOUCvXo1QAMOy444+z6SKtVdYeeUEk8bTXqIsDGZfPxGljKA/f3wO54/P8drua3/+/oZJPP/jBt6cv4VXftkU0JxT5XCS4FPdKc61fssJQ0hJiOUWl8YeE6Non5LA3gDCfe6GvZzz/HzOOLAHD5/hcQP80TUR/M9ZKzltTPcGlwr8fvVu93JKXA087Eqva6VgrSgClPdbk0U71995/bfGRDbYVaYuZ4IpWycIQqMQjua+DbD7qfUAtts7aK23a61P1VqPBm5ztfm5i2itZ2itx2qtx3bs2MCQ+upy4yNdYyuYndrJs3zkbXDpt96FAoq9hh2YxTO9tPyYGFWrcLS7zK+7/3hyslPdHi/3fLLC7QPv7pNfyrbCMrc7oW/em6zUBO6ZNtwreViP9sms3lmCL+c8b3KoWInILK58w3ieFOyv4rq3G+4jbx0P4IDOtoLEXi6OOnjYf5rNRdFKrXvqjAaPSxCE4IQj3BcAA5RSfZRSCcDZwMf2DkqpbKWUdaxbgJciO0wbNdVm8u7+LsZHeuZ0097jIO+E/XGJ0ONAUzjXwuGTsvbDq02xXDCBT0vegQ+v9M7nHQK7cLa071PHeJyF+t/2OcUVngfQ5Md+wKlxF5Wec9OR/Hxz7Rrs2JwsluUV+T0oLO2/XUo8r8/dhNOp2VfmreF/vGQ7y/KCu2WGgyWz7zhxKNPHdKn7Ac56w78tkH1eEISIEVK4a60dwJ+BL4GVwLta6+VKqXuVUie7uk0CViul1gCdgcbLcL/iI3jSVrvQKnQbLAgmqw+c975ZrnFZikrzjda/+A345m5TcWXB86Zkm8WXt4U1nOw048J3+oEege4bAfuey/ZtF85dMs1+WakJXhGwgejbMZVKh5M9pR7BXeVwUuU63ua9Zdzx0XKue2cxB9z7td/+J/7fT1TXBA+s+mLZTuZtCBz6vyyvyO3ocsnhfYhxBkmBPNHPQ9aD/W8z+R5T9zSKKtoIQjQSVry31noWMMun7U7b8v+AetS2qgcJaYHba0s4ZSWXcro06Ed8olRfP8Xk+rYz90lTqT1EcIxVvenQft7zx6vum8LcDXv548sL3JOhVTYB2zkj/MCkrBRjCiksq3KXGJwxx78ikt3X/tyDe/HmfE9is3dzt5IcH+v1VgEmV45ldtn04FS/Y67fXQrAzce77Ok1LuF+6vMw8kxY8bHxSprwt+AXkNbZFLU+5l6TYlcQhEYn+lL+VthMDGe9Ybw2cg4PXKnHIsZ1mXb7vJ0tc80HYOg083YA8NHVJiAnJSvooc8d14suGUlMHtLJqz0pPpYjB5m2FduNG2O1wzMPXRfh3j7VJdxtk6p5+2qvinTftOHExShenWvcDm/7YBkAxw/vSrLNT92ejXJ/pYO8feXsK6tmXB9zzTtd1ZfOO8SV777SZfu3ap0OPdl8aiMmBv6+sfY+giBElOiL2e5zhGd58Ikw7JTaBTtAjKW5O0ywU22c+Rpc7MrIuOQtmHVj7YeOURwztHOtk66zV+UDUFnjcSnsEWZmSvA8CNbs8kyq9ne9MRzcJ/CDJyZGcedJ/ulvf9vqSfDlW3xk+vPzOPbfczjzubluN86dxRWkJcZ55haK88x3RjcEQWi5RJ9wz+gKdxaYCvbh2m2tbIPbFkBerve2u4s8QTRDXbFXvWyRrpvr7h8fiNJKB2WVduGeEva+OR1SSIiN8UpgVlRejVIErMFqpS2IjfFEuFrc9D9PSuTl270Do5ba8uEUl5v5iZ1FFW5TEADznjHfaZKkSxBaMtEn3MFkHEwIXzi6hfcP/4KZZ5vlM16Fy741y5ap55CrPPvc4Uoaltowl83/nH0AAMPv+pJJj3wPwF8O72x8vpf+N6xjKKXomJ7oNaFaVFZFemIcl07ow7kH93ILdPAUBAd49IxRXHNUf977k/Ek2lZY7vbeOfXpXwDvyWCLUfd+xbr8UnYUVbjz3aA1bPrRLDfwvgiC0LhEp3CvK1l9/duGnQLdD/Rus6/HxpvKPsV5Ju/4p9fD7tV1PnXfbP8J4CndXRGt718KDlt065e3wUtTPOtau3Oy5O0r54Pf8nh3wVZmr9zFruJKslIT6NE+hfv/MILM5Hj6dkz1O5dSir8dO4gDe2cxppfxv79u5m9c/eYid58hXTN4YvpoBnRK481LPW8tkx/7gV3FNs29ypZmIc7m7y4IQosj+iZUI8FQn9Q3N6439vhYn2yHqdmmCMV390Pui+Zzt0vLLyuAjT/AMFtZOctn0GYuSvZNsgVkpdieqf/oZI75yV9g4cumbdl7MPw0eGwoVBbDrXnu7je95zGrDOrsXUh61rUT3OkLAvF/54zhsAe/5bvV3vMOFx2aQ2yM4uRR3fxyx3tp7tZk6oQbgp5DEISWQdvQ3H05zidpZWq2SU3rS0o2aKcppmzx7oWmXugbp8J/L4IXbRkNc1+Ee9p5Fa4IlIs9q2CJd0PJLo9gB/jfxcZsU7Idqkph1o20T/FPs7t6l3fUalJ8LCkJwZ/X3YLkhbf75XdI9dfI3Zq7Jdw7DQl6DkEQWgZtR7hfswjGXQ5nvAKZvnnPgpDi8l3f7jFhsOJDI9i3u1L8bp1vhDHAvGfNt61wRapPeoHp43oRV+KT0OvRgbWP49cZvHbxwX7NRw3uFKBzcAJ59Hx6zeF+fZ47/0D+doxnTBmWDb/SNQGb6D+JKwhCy6LtCPcO/eCEh73NKKGoKg2v37L3TGHuvWvN+vNHwasnuTd/c/1Ebj1hMBsfOMFkf6wKkiJ46mPeOdH7ebIsjuiSxAXjja/54C7GHDOyR/1T5f7tmIH8euvRDO/uf4zjhnXxKkfofvuw6qRKil5BaPG0HeFeHzrZapKMu9x/u2V/7zTMFOa2s3GO2wbfv1Malx/Rz6M5W8LdN2T/oEvggHM86+e/7zEhLX6Te04exqxrJ3DZBDNBbKU+qAtL7z6W1y4exzVHD6BTiECqRXccw9PnjuGgnCz49n5483SzQWqVCkKLR4R7bdj93Qcc56VJu/OlDDkZdq8KvH9xXuD2qv3QeTgceYunzao76utiOP4qk+0ybyFKKYZ2y+DUMd15/oKxnDOuF6z/LnC2y4+vgZWf+jVnJMW7c8WHIis1gRNGuBJ8zXnIs6Fd77D2FwSh+Wib3jJ14W+rTSDTgMnQ+1DYs9okIOsy3GxP7+Jdr3Xqo5C/0lQeenYC3LTBO9iqxgHl+yDBx21xkkvQDzwO2veB01/0bMvq4+WGqZSJimXrryYvTmZP+OsyT/+v74RFr5nPOe+aYzaENV96llWsJP0ShChANPdQpHcxbolgAqe6jYaeB0G8K31Ax0Gevrduh4MuhaNuN+vlBcZ7Jn+lp88TB8DmnzyFRc57D0aeBYkuf/jEdLhusbfPfc7hsC0X9u/xHtvse8130VaY87Dx0ikr8C5S8taZkPsyDeIdW7Kviz5r2LEEQWgSRLg3lAxbdKeljSe3hzibPXv+c57lIlfFwqx+5rv/5NCFK/pMBDTssmnn5YWeaFGAb/8BD/UxH18+/YuJht3rn0kSpxOePxpePzXwuQs3Q43L9/2Ovd458wVBaLGIcG8ofSaYZGZX+uSguX0X3JIHccmw6FX//Tr0C/8cVqm6AltmxbyFgftaXPCxd0nB9y+F/xvjL+DfONXk21k/G/asM8XG58/wBGRZbx3Tnvbk6BEEocUjwr2hJKTChZ94bPB2EtPAUW4Coar2m9KAFp39MzYGJaO7eROwJz2rKjPfweqQ9jnC1Iz15avbPcs11bDBk/KXJw80xcY/v9HzhrHHZesfHH51KkEQmh8R7o3Nodea70eHmNKAFjmHB+4fiLgE6HoAbJjjaSvZYb6tVACDbML375s9k55XzfOuLbt6FuS7vHs+/FPwcz4+AlZ/DrvXmP3rWFhcEITmRelacpE0JmPHjtW5ubmhO0Y7FcXwoE8JwPM/CK5xB+PuAIFDMfFwe74R5EoZX/R5z8AtW709Wqy/8fcPmMyYvhx2HQw+CT66Cib+3dSmtUjJNukGLvJ3qxQEoelRSi3UWo8N1U8098YmMd2/Lald3Y8TKLOlswvvMf4AAAWYSURBVNpUObIE+VG3wa3b/F0VLeF/5K2m3J0vR99tPID+vABGnO69rWwPZIdIjyAIQotDhHtjo5Rxn7ToPKJu9nYLqzpUQykv8F4//iH/OrEXfgKjbJGyZYGLZwuC0HIR94em4I+fG++WXoeGLLgdlLSOJvnZB1eaYuCfXAd9J9X9OGfPhLenw7nvQY8DA9vS+xxhPl1Hwhc3w8Sb6jdmQRCaDbG5RyNOp7Gfj7kA2vUM3V8QhFZDuDZ30dyjkZgYY18XBEEIQlg2AqXUFKXUaqXUOqXUzQG291JKfaeU+k0ptVQpJU7RgiAIzUhI4a6UigWeAo4HhgLTlVJDfbrdDryrtR4NnA08HemBCoIgCOETjuY+Dlintd6gta4C3gZ8ipCiAas8TyYQIAetIAiC0FSEI9y7A1tt69tcbXbuBs5TSm0DZgHXBDqQUupypVSuUip39+7dgboIgiAIESAc4R4oebevi8104BWtdQ/gBOB1pZTfsbXWM7TWY7XWYzt2DK9ghCAIglB3whHu2wC7v10P/M0ulwDvAmit5wJJQHYkBigIgiDUnXCE+wJggFKqj1IqATNh+rFPny3A0QBKqSEY4S52F0EQhGYipHDXWjuAPwNfAisxXjHLlVL3KqVOdnX7G3CZUmoJMBO4SDdXdJQgCILQfBGqSqndwOZ67p4N7AnZq+0g98MbuR/eyP3wJtrvR2+tdchJy2YT7g1BKZUbTvhtW0HuhzdyP7yR++FNW7kfkhVSEAShFSLCXRAEoRUSrcJ9RnMPoIUh98MbuR/eyP3wpk3cj6i0uQuCIAi1E62auyAIglALUSfcQ6Ufbq0opTYppX5XSi1WSuW62rKUUl8rpda6vtu72pVS6gnXPVqqlBrTvKNvOEqpl5RS+UqpZba2Ol+/UupCV/+1SqkLm+NaGkqQe3G3UirP9ftYbE+7rZS6xXUvViuljrO1t4r/JaVUT1fK8ZVKqeVKqetc7W3y9+FGax01HyAWWA/0BRKAJcDQ5h5XE137JiDbp+0h4GbX8s3Av1zLJwCfY/ICHQLMb+7xR+D6jwDGAMvqe/1AFrDB9d3etdy+ua8tQvfibuCGAH2Huv5PEoE+rv+f2Nb0vwR0Bca4ltOBNa7rbpO/D+sTbZp7OOmH2xLTgFddy68Cp9jaX9OGeUA7pVTX5hhgpNBazwF8qnvX+fqPA77WWhdorQuBr4EpjT/6yBLkXgRjGvC21rpSa70RWIf5P2o1/0ta6x1a60Wu5RJMJH132ujvwyLahHs46YdbKxr4Sim1UCl1uauts9Z6B5gfONDJ1d5W7lNdr7+135c/u8wML1kmCNrYvVBK5QCjgfm08d9HtAn3cNIPt1YO01qPwVTEulopdUQtfdvyfYLg19+a78szQD/gAGAH8Kirvc3cC6VUGvAe8BetdXFtXQO0tbp7Em3CPZz0w60SrfV213c+8AHmtXqXZW5xfee7ureV+1TX62+190VrvUtrXaO1dgLPY34f0EbuhVIqHiPY39Rav+9qbtO/j2gT7uGkH251KKVSlVLp1jJwLLAMc+3WjP6FwEeu5Y+BC1xeAYcARdbraSujrtf/JXCsUqq9y2xxrKst6vGZU/kD5vcB5l6crZRKVEr1AQYAv9KK/peUUgp4EViptX7Mtqlt/z6ae0a3rh/MTPcazEz/bc09nia65r4Yb4YlwHLruoEOwGxgres7y9WuMEXN1wO/A2Ob+xoicA9mYswN1RgN65L6XD9wMWZScR3wx+a+rgjei9dd17oUI7y62vrf5roXq4Hjbe2t4n8JOBxjPlkKLHZ9Tmirvw/rIxGqgiAIrZBoM8sIgiAIYSDCXRAEoRUiwl0QBKEVIsJdEAShFSLCXRAEoRUiwl0QBKEVIsJdEAShFSLCXRAEoRXy/0Pz/0XwqZkAAAAAAElFTkSuQmCC\n",
"text/plain": [
- ""
+ ""
]
},
- "metadata": {},
+ "metadata": {
+ "needs_background": "light"
+ },
"output_type": "display_data"
}
],
@@ -420,22 +431,15 @@
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": 17,
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Using TensorFlow backend.\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
- "from keras.models import Sequential\n",
- "from keras.layers import Dense\n",
- "from keras.optimizers import Adam\n",
- "import keras.backend as K"
+ "import tensorflow as tf\n",
+ "from tensorflow.keras.models import Sequential\n",
+ "from tensorflow.keras.layers import Dense\n",
+ "from tensorflow.keras.optimizers import Adam\n",
+ "import tensorflow.keras.backend as K"
]
},
{
@@ -447,7 +451,7 @@
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": 18,
"metadata": {
"scrolled": true
},
@@ -456,55 +460,64 @@
"name": "stdout",
"output_type": "stream",
"text": [
+ "WARNING:tensorflow:From C:\\ProgramData\\Anaconda3\\lib\\site-packages\\tensorflow\\python\\ops\\resource_variable_ops.py:435: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n",
+ "Instructions for updating:\n",
+ "Colocations handled automatically by placer.\n",
+ "WARNING:tensorflow:From C:\\ProgramData\\Anaconda3\\lib\\site-packages\\tensorflow\\python\\keras\\utils\\losses_utils.py:170: to_float (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.\n",
+ "Instructions for updating:\n",
+ "Use tf.cast instead.\n",
+ "WARNING:tensorflow:From C:\\ProgramData\\Anaconda3\\lib\\site-packages\\tensorflow\\python\\ops\\math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.\n",
+ "Instructions for updating:\n",
+ "Use tf.cast instead.\n",
"Epoch 1/20\n",
- "7451/7451 [==============================] - 0s - loss: 0.0025 \n",
+ "7451/7451 [==============================] - 1s 72us/sample - loss: 0.0034\n",
"Epoch 2/20\n",
- "7451/7451 [==============================] - 0s - loss: 0.0024 \n",
+ "7451/7451 [==============================] - 0s 38us/sample - loss: 0.0025\n",
"Epoch 3/20\n",
- "7451/7451 [==============================] - 0s - loss: 0.0024 \n",
+ "7451/7451 [==============================] - 0s 39us/sample - loss: 0.0024\n",
"Epoch 4/20\n",
- "7451/7451 [==============================] - 0s - loss: 0.0024 \n",
+ "7451/7451 [==============================] - 0s 37us/sample - loss: 0.0024\n",
"Epoch 5/20\n",
- "7451/7451 [==============================] - 0s - loss: 0.0024 \n",
+ "7451/7451 [==============================] - 0s 38us/sample - loss: 0.0024\n",
"Epoch 6/20\n",
- "7451/7451 [==============================] - 0s - loss: 0.0024 \n",
+ "7451/7451 [==============================] - 0s 37us/sample - loss: 0.0024\n",
"Epoch 7/20\n",
- "7451/7451 [==============================] - 0s - loss: 0.0024 \n",
+ "7451/7451 [==============================] - 0s 36us/sample - loss: 0.0024\n",
"Epoch 8/20\n",
- "7451/7451 [==============================] - 0s - loss: 0.0024 \n",
+ "7451/7451 [==============================] - 0s 36us/sample - loss: 0.0024\n",
"Epoch 9/20\n",
- "7451/7451 [==============================] - 0s - loss: 0.0024 \n",
+ "7451/7451 [==============================] - 0s 37us/sample - loss: 0.0024\n",
"Epoch 10/20\n",
- "7451/7451 [==============================] - 0s - loss: 0.0024 \n",
+ "7451/7451 [==============================] - 0s 37us/sample - loss: 0.0024\n",
"Epoch 11/20\n",
- "7451/7451 [==============================] - 0s - loss: 0.0024 \n",
+ "7451/7451 [==============================] - 0s 36us/sample - loss: 0.0024\n",
"Epoch 12/20\n",
- "7451/7451 [==============================] - 0s - loss: 0.0024 \n",
+ "7451/7451 [==============================] - 0s 37us/sample - loss: 0.0024\n",
"Epoch 13/20\n",
- "7451/7451 [==============================] - 0s - loss: 0.0024 \n",
+ "7451/7451 [==============================] - 0s 38us/sample - loss: 0.0024\n",
"Epoch 14/20\n",
- "7451/7451 [==============================] - 0s - loss: 0.0024 \n",
+ "7451/7451 [==============================] - 0s 36us/sample - loss: 0.0024\n",
"Epoch 15/20\n",
- "7451/7451 [==============================] - 0s - loss: 0.0024 \n",
+ "7451/7451 [==============================] - 0s 37us/sample - loss: 0.0024\n",
"Epoch 16/20\n",
- "7451/7451 [==============================] - 0s - loss: 0.0024 \n",
+ "7451/7451 [==============================] - 0s 37us/sample - loss: 0.0024\n",
"Epoch 17/20\n",
- "7451/7451 [==============================] - 0s - loss: 0.0024 \n",
+ "7451/7451 [==============================] - 0s 38us/sample - loss: 0.0024\n",
"Epoch 18/20\n",
- "7451/7451 [==============================] - 0s - loss: 0.0024 \n",
+ "7451/7451 [==============================] - 0s 37us/sample - loss: 0.0024\n",
"Epoch 19/20\n",
- "7451/7451 [==============================] - 0s - loss: 0.0024 \n",
+ "7451/7451 [==============================] - 0s 38us/sample - loss: 0.0024\n",
"Epoch 20/20\n",
- "7451/7451 [==============================] - 0s - loss: 0.0024 \n"
+ "7451/7451 [==============================] - 0s 38us/sample - loss: 0.0024\n"
]
},
{
"data": {
"text/plain": [
- ""
+ ""
]
},
- "execution_count": 15,
+ "execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
@@ -519,24 +532,26 @@
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": 19,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "R-Squared: -13.593283\n"
+ "R-Squared: -1.148897\n"
]
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VFX6wPHvIRUSEggJvYSOSCcU6SgsTUVW1x+sZa2I\nvawFF3VRLOiqq4iIrGIX7C6rKEWQrhJ6h1BDKCEJpPc5vz/u1MwkmZBJJjN5P8+Txzv3njv3zDi8\nc+bcc96jtNYIIYTwL3W8XQEhhBCeJ8FdCCH8kAR3IYTwQxLchRDCD0lwF0IIPyTBXQgh/JAEdyGE\n8EMS3IUQwg9JcBdCCD8U6K0LR0dH69jYWG9dXgghfNKWLVtStNYx5ZXzWnCPjY0lPj7eW5cXQgif\npJQ67k456ZYRQgg/JMFdCCH8kAR3IYTwQxLchRDCD0lwF0IIPyTBXQgh/JAEdyGE8EMS3IWopC3H\n09h3OsPb1fBb6bmFbE+8UOXX0Vqz+kAyuQXFVX6t6iDBXYhKuvadTYx7c523q+GXtNaMen0N17y9\ngeTMvCq9Vvzx89z6wWYueebnKr1OdZHgLoSosdo+uZRzmfkAJGfkV+m1Dp7NtG7nFRqt90NnM9mY\nkFKl160qXks/IIQQpUnOzOPjjY6z7C/kFFbpNQ+dzbJun83IY/i/fnU4PmdKb67u2bxK6+BJ5bbc\nlVILlVLJSqnd5ZTrp5QqUkpd57nqCSFqm2KTpv8LvzB3dYLD/gu5BW6d/78dp/hu28kKX3e9XQv9\nxvd/dzr+wKJtFX5Ob3KnW+ZDYGxZBZRSAcDLwHIP1EkIn6S19nYV/MK8EkF9Yi+jtVxWy33zsTRS\nsvIpNmnuX7SNh7/YUaFrpmTlk5CcxeR+rQBITMt1KhNZN6hCz+lt5QZ3rfVaIK2cYvcD3wDJnqiU\nEL7oq/iKtxaFs51J6Q6PX/pzd8Do/07OcL6pmpyZx1/mbyLu+ZXMXWX7Yrjtw82s2HvW5TklJZ03\ngnlcbJR1X7uYMKaP68Kvj47g3pHtSc8tJCu/6KJekzdU+oaqUqoFMAl4p/LVEcJ3JZ7P8XYVfNbR\nlGxrEG4WGQrA53cOYPHUgdQLNm4NfrTpOP1f/MXp3J92nbFu/3vlQev2qv3J3PlxPNe8vYGcgiKG\nvbKaLzcncuBMJkXFJofnuJBr/CqIbVSPmPohALx7Y1+mDW9PbHQYbRqFATDm32t95heaJ26ovgE8\nobU2KaXKLKiUmgpMBWjdurUHLi1EzWEZYSEcncvMtwZMV/afyWDsG8ZQ0mOzJ/DZ7ycIqKMY1D7a\nZfmkC7m0aFDX+jglq+xRNKfS83j8652cSMvh8W92WvcffWk8xSbN2kPnSMk0+vMj6waxecYop+fo\nb27RJ13Ipe2TSzn4/DiCA2v2YENPBPc4YLE5sEcD45VSRVrr70sW1FovABYAxMXF+cbXnxBuKiyW\nj7S9r+ITeea/e8gtLObNyb2Y2KuFU5lNh1OZ8p/frI9/O5JKscn5fbw+riVfmru9Bs9exT0j2jO6\naxOKTJq3Vjn20Y/oHMOsid0Y+spq674fdp52es62Ty512hdZz3W/emx0mMPjTk/9xP/uG0L3lpEu\ny9cElf7q0Vq31VrHaq1jga+Be1wFdiH8naugVJs99vVOcs2/Zh5cvN3p+K8Hkok/5ng7b/ICI9DP\nvKqrw/6Xr+3BXwfYfu3P+/Uwk+Zt5C/zNwHQqUm49dhzV3ejVVQ9Pr6tP71aNbDutz+/NFH1gks9\n9taU3g6Pr5q7vtzn86ZyW+5KqUXACCBaKXUS+CcQBKC1nl+ltRPChxT7SF+stzz+9Q6euepSwkMC\nSUzL4ZYPNpda9m+DYh0eK6UcumJK+vSOAWxISOH1FQdp3sDosx/WKYb+baPYeTKd/m2NbpXPfz/h\ndO6yh4Yx5o21AAQGlN7evapnc67q2ZydJy9w9dwNDl8oNVG5wV1rPcXdJ9Na31Kp2gjhw4qlW6ZM\nX8afpF1MONOGt3dKJbDu8ZEO3Siu7t/dPqQtJpPmtRUHHfb/8Y8raFw/lEm9WzKpd0uHY6FBAdbA\nDnDDgNZE1A1i1CVNOHk+x9pVNKxTDIfsZqiWpUfLBkzu14pf9tfswYEyQ1UID9FIcLcXEliH/CIT\nEaGBZOQ5DiE8k267CXrjwNa0iqpHu+gwjqRks3Pmn1w+X2hQAPdf0ZEmkaE0rBdMRm4hk3q3oE6d\nsgdy2HthUnfrdt82Da3bH9/W3+3nAGgSEUpKVj5FxaYyW/veJMFdCA+pGxTg7SrUKD1aRnI8NYdN\nT15B+38YNy/fXpXAtOHt2X/GyKJ5x5C2PDn+EgC+uOsyLuQUEBFa9mSh6+NaVW3F3dAkIhStITkz\nn+ZldBd5U838yhHCR5jsbqLm+EmqWE9IupDL5mPnycgrJKCO4tt7BgGQmV9EUbGJt1YlUEfBjAmX\nEGBuecfUD6Fjk/rerLbbLLNVB81eVWOHwEpwF6ISiuyC+8bDqV6sSc3yr5/3A5BXaEwW6tO6IZN6\nG/3blhEx1/Ru4bJv3RcM6Wgbg//N1po5M1mCuxCVYLIbIeNruUeqUrI5Te8DV3S07uvd2hiWGH/8\nPAABPhrYwfh/Pf/GvgDM+G4357NtSc0e+2oH39oF/MPnsth24ny111GCuxCVYN9yLygxpb02a9mw\nLk0iQnhkdCfrvgndmzmUeWJcl+qulkeN7BJj3e49awWL/zjBPZ9t4astJ3nkyx0kZ+aRkJzJFa+t\nYdK8jQ5fANVBgrsQlfBVfKJ1O7+oZva9ekN6bqHTL5lG4SE8aG7Jb3t6NNHhpack8AUhgQEsfWCo\n9fH0b3ex1C7PTf8XfmHU62utj3vPWlGtLXgJ7kJUwrdbk6zb+YW1o+WempXPgTPGmPCiYhNfbk6k\noMh47dn5Rfz1P7+xbM9Zl91UD4/uxLHZE2gYVvpMUF/SOKL8L6hgu6GSk+Zt5B/f7WLL8fIS7Vae\nDIUUohKy7VLA5hf5f3DXWtP3+ZUAXNmjmTVnS05BEbcMbsvrKw5abyzXhnsQ0eEhzLyqK00j6zLt\n0y3W/Z/dMYC/LfyDS5pF8L/7h5BXWMyVb60nITmLz38/QaOwYPq2iSrjmStPgrsQlZBdYB/cnbtl\nkjPy2HriPGO7NXM65m2pWfnkF5koNmlaRdVz65yfdtu6HeyTcS3dfYbx3Ztx6oJtkYuiWpJr55bB\nbQFY/vAwggLqsHLvWQa2a0TCi+OtZUKDAljx8DBrsrK6wVU/J0KCuxCVkJ1vC+h5hSa01g7D+27/\nKJ5dSensfnYM4SE165+bpQUO8NiYztw7skOZ5TcmpHDPZ1tdHvvjaJpTrnVfWm/UEzqZx+jfOayd\ny+P2n4s+rRu6LONJ0ucuRCWUXJknzi5gApxON3KonHVjNSBv+teyA+WWOeAi98q8G/rQobFjAq2x\nlzYl4YVx/LlPS6fytd2vj47gh/uHMLBdoyq/lgR3ITxgYDuj/zS1xHC3+qFGa/14arbTOVn5RVw/\nf5PbCauqW1p2AY98sZ3MPGOVomf/t9d6bM6U3hx+cTzjuzdj5SPDuXNoW+uxeTf0qbH5VrwtNjqM\nbi2qJwe8/B8QohIsaV/nTLbl+rZfwq2xeQWi2z6Md1qe7fcjqfxxLI0Xlu6rhpo6MrnRH/7S0n18\nuy2Jns8u52iK7cvptb/05Oqeza1pAwBmTOjKsdkTODZ7QoUSeYmqI8FdiEoICQxgZOcYhzHb176z\n0bptvxTbqXTHrplQc6KxXw+cI62aJ7jkmPOh/H10J+vY85KLjXy1xZhladJw88Lfrfuv7SvdLb5A\ngrsQlVBYbCIooI5Da3XHyXRyCorQWpN03jZ6ZPDsVWitKSgy8d66I5zPsQX0PrNWkG5epLk6WGZL\nNo4IsQ5ZzMwr5GxGHo99tcMp33pimvE6xlzapNrqKCqnZt2+F8LHWIJ7SSmZBUSFB3MkxbGv3X7d\nznolhsP1fHY5254eXeUTfP67Pcm67F3rqDBSs408MH8cTePn3Wf4dluStdUeUEc5tOhL3jwVNZe0\n3IWohCKTJjDAuY/5r+/9Zp3gNOuabrSKcs75bUkRbD/Zp/esFR6r29mMPO74KJ4DZzJJSM4CYPWB\nZIf1TNtGh9Eu2gjYUz/Zwrfbkhye48Nb+9GtRQQAzSNDeWyMb+eDqU0kuAtRCYVFtpa7/TTzk+dz\nGWAe930uM5/3/9av1OcouQpQyRuvF+uDDcdYue8sY95Yy6jX1wBwa4l1S5tEhHBJs9JzqHduWp8v\npl7GQ6M68svfR3ikXqJ6SHAX4iKZTJpT6XnWlveax0fw1IRLnMoN7RjtsFrPE2O7MNScD3xA2yh6\ntmrAgefHMqV/a8D4YiisYIbJLzcncsN7vznss7+ZC9Bpxk/W7TuHtuXXR0eglEIpxZT+ttWNerZq\nwJPjujC8UwyN64cSFhLIQ6M6VcusSuE5EtyFuEh/eXcTgHXmabPIukw2B2h7/WKjHGan3j2iPc9f\n0424Ng2tOcFDAgPoam5BD31lNU98sxMwcte4kyr28W92siEhlTPmETmZeYXM+eWQQxlLSuJ/XtWV\nGRO6EhsdZj323MRu1u3v7h7EXcPb81EF1xUVNYsEdyEuwm9HUtliXnRiQg9b3pjwkEBa2LXS59/Y\nx+X5bRqF8fXdgxxuntpvW7JNXjd/E5PmbSizLvbj6mf9uBeTSdN95nKXZfc9N5ZbBsU67Q8KqMP+\nWWPZ/sxoGafuJ2S0jBBuWrX/LLkFJrq3iLQuFQcQ2yjModxHt/Xn+21JPDSqo8NMzS+mDixz5mbP\nlg2s280iQwHYdzqj3HrZ57f5cedputvNgFQKIkKD+PzOAVzavOyZkaFBAdax98L3SXAXwk23fRjv\ncn/Jvu0OjcN5dExnp3IDyskn0iqqHh/c2o/31x3lXGa+wyzSI+eyaBfjehhiZr7j+PjZP+23bu/4\n55+ICPX/1LvCmXTLCHERerQ0WsF7nxvj0ecd2bkxTSNDOXA2k/sXb7Pun7/msHV70+FURr76K5uP\npfHH0TRmLjFyvsz9a2+H51r19+ES2GsxCe5CXITIukH0bt2AesGe//G71bwU2492+dK/jD/J3lNG\nF81/1h3haEo2f5m/ievf3cTKfWcBYyimpU89JLAObUp0F4naRYK7EG4ouRDHukMpLmemeoIl1wsY\nGRZ7tjL64u9bZORSt2SaLCkuNoq6wQHMvPpSDjw/ziGxl6h9pM9dCDd8FX/SaV9iWk6VXOvKHs1Z\nvvcstwyKpV9sFJd3aUyXp3+mo3nqf2ZeEZc0i7DebF35yHBJCyCclBvclVILgSuBZK11NxfHbwCe\nABSQCdyttd7h6YoK4U1Pfb/baV9mXpGLkpUXUEfx9l9tQyhDgwKIrBvEsj1n+WXfWVbtT6Z1VD0W\n3hJHZN0gCezCJXd+V34IjC3j+FFguNa6OzALWOCBeglRozQxr3J/md2IlyJT9S2IPbJzDGAs2wdG\nn//lXZpU+SLLwneVG9y11muBtDKOb9Ranzc//A2QZM/C71jGji+aOpAN0y8HoFVD9xaV9oSOTRzz\nv3x6x4Bqu7bwTZ7uc78d+KncUkL4mJX7kq3bLRrU5flrujG6a/XlNrdPD7x5xiiHTJJCuOKx4K6U\nGokR3IeUUWYqMBWgdWvnHBxC1ESulqS7cWCbaq1Dcma+dTumfkgZJYUweGQsl1KqB/AeMFFrnVpa\nOa31Aq11nNY6LiYmxhOXFqLKvbzMmPHZL7ah1+owqH3Zs1uFKKnSLXelVGvgW+AmrfXByldJiJrl\ny82JABw8m+W1OgztGMOHt/ZzymMjRGncGQq5CBgBRCulTgL/BIIAtNbzgWeARsA8pRRAkdY6rqoq\nLER1O59j5G6pzjVOXRnRubFXry98S7nBXWs9pZzjdwB3eKxGQtQwV/Zoxg92qQCE8AWSfkCIcljS\nDFgW1hDCF0hwFzXWvF8T6PSU90fWFhSZaB8TxthuTb1dFSHcJsFd1Fiv/HyAgiITaw+e82o9Es/n\n0CQi1Kt1EKKiJLiLGssy5X5XUrrX6nDwbCY7T6aTU1BcfmEhahAJ7qLGsqSsLSp2nkRUXf634xQA\nraOqL9WAEJ4gwV3UOAvWHmb1/mTr2qCFxSa+jE/krk9cL3NXlSxpfV+/vme1X1uIypB87qJGWbj+\nKC8u3e+w7501hyk2pwDYdDiVy9o34nhqNu+vP8ozV3Ytc9Hpylp7KIXOTepX6TWEqAoS3EWN8twP\ne532Fdvldpnyn98cjk3q3YLerZ3TAmxISOGG937njxlX0Lj+xd0MTUzLIS27gLTsgos6XwhvkuaI\n8Gmf/X7C5f4b3vsdgK+3OK+g5C7LWqbhIdIGEr5Hgrvwaa6Cd06BbYWkNlFhaK3ZnZTOU9/vcpnh\nsTTJGUYmxlV/H175igpRzSS4ixqlZcO61u32MaUnyXpxUneCAlwvAN31mWXW7fM5BbR9cilXvrWe\nT387wZGUbOsxk0nz5spDbDlutNCPnMtyyB9zOj2P0KA6kmJX+CQJ7qJGCaijGN+9KYM7NOKV63pY\n998zoj0Hnx/HB7f04+hL4/nrgNbcO7ID4NgnX1LJtU9Hvb7Gup1wLot/rzzIjO92AXD5a2sY/+Y6\n41hyFgs3HKV1VD3MCfGE8CnSmShqlIzcQhqFhTDvBsc8Lg+P7kRQQB1GdrFlRrSsTpRbWGztF3/p\np33lXqOo2ERgQB0W/2Gk8t1/JpPY6T8CkHQhl2V7zpBhbsHfMKB6F+UQwlOk5S5qjNPpuZzPKSQq\nLNjpWJCLoYh1g42AvvmYbYnfd9ccAYyWfmlSsgr4efdpFm446vL4XZ9s4bGvdwLwf/1auf8ChKhB\nJLiLGmPvqQwA4uxWPCprndJ6QUbL/dYPNgOQmmVbis4+yVfTiFA6N6mPpXflyW93Mu3TrW7VKTQo\noPxCQtRA0i0jaozbPzJmoEaH225g/ufm0td9CQ60tU1MJk3f51daH/do2YBjsyew8+QFGtcPpWlk\nKKv3J3Prh5tZfcAxEVn9kEBuHtSGCd2bM37OOuv+hvVkEWrhu6TlLjwqr7CY+z7fyvHU7PILl8Ld\npeTsW/WnM/JclunRsgFNI41JTC3sRuIANIkI4akJl7Bz5p94bEwXujaPYPezY+jZMhKAGRO6Xkz1\nhagRJLgLj9qdlM4PO08z7dOtLN9zxu3zPt50zLpdN9i9rhD7LpMNCSnW7a+nXeayfKcm9Xnwio7W\nx69f34s7hrZzGA0THhLIx7cN4M3Jvbi2Tws3ay9EzSPBXXhUQbEJgH2nM5j6yRYOnc1067xF5pEr\nFRVi7po5fM5YvPqDW/sRFxtVavnr+ra0btt3/9iLrBfExF4tZAik8GkS3IVHWTI5Wvx2NK2Uko7O\npOcCMLxTTIWu99Ft/QHbKJnIumX3k7eyS93boXF4ha4lhC+RG6rCo7LyCx0eH07OKvec3IJizucY\n5901vF2Frtc22rF/3p286/tnjSW3oNiaL14IfyQtd+ERu5PS6TtrBUfPOd5ITbqQW+65L/9sS/E7\nqH10ha5r37VyRZfGpXa12AsNCqChi7H0QvgTCe7CIz7edIzU7ALmrEqw7hvSIZrkUkax2Dtt7pKZ\nNfHSCl/XvvV91/DSJy4JUdv4TXBfd+gcn/1+3NvVqLWa2i0gHVBHcfSl8YSHBJJbWP7ao+sPpRAd\nHsxNl8VWqg6uZrYKUVv5TZ/7Te//AUDj+qFlzmoUVSPEblhiUIBCKcX2xAucycijsNjkMn2ARXZB\nMT1bNah0HSR7oxA2ftNyt7jz4+pfZ1NAdr4th7ql3/uMuUsmoYybqq8vPwAYk58u1qe3D+C2wW3L\nHSkjRG3id8EdHBdrENXDPrhbMjR+fucAALaduOBUftPhVGKn/2jto28ScXFL4QEM6RjNM1fJbFIh\n7PlNcG8eaQsOXZ9Zxkcbj3mvMrXQBbtFLiwLbgxs2wilbC14eyV/Yb0xuVfVVlCIWqbc4K6UWqiU\nSlZK7S7luFJKzVFKJSildiql+ni+muXLLnD8WT9/zWFvVKPWSkzLoW+bhjw38VJrLvY6dRThwYFk\n5hU6lbdPHbDwljhCAiX7ohCe5E7L/UNgbBnHxwEdzX9TgXcqX62KKTZpMvIKuWmgbWGF0+nlD8ET\nnmEyafafyaR7i0huvizWIVtj/dBAMnKdu8nsZ/Z3ax5ZHdUUolYpN7hrrdcCZc0hnwh8rA2/AQ2U\nUs08VUF3pOcWojXW7H8WS3acYuwbax3WxRSedz6ngJyCYmIbOc8ODQsJtI5jB+PG6d+/3MG5TCP3\neptG9WRCkRBVwBN97i0A+6xPJ837qk1iWg7gONYa4IFF29h/JpM5vxyqzurUOruS0gHXN0UPJWex\n8XAqRXYJxb7ZehIwxsOveWxkmcMkhRAXp1r/VSmlpiql4pVS8efOnSv/BDdNfHsDAFHhwWx5apTT\ncfuRHMJz0nML+eS347z8szGcsZWLvC6Xm9c8/XZbEoDDpKbnr+lWDbUUonbyRHBPAuwXmmxp3udE\na71Aax2ntY6LialY9j93NKwXTKPwED64tZ/D/sWbE1lWgdziomy7TqZjMmk+2HCUp7/fbU3r262F\nc9/5v67rARizUAHSc2xdZJN6S750IaqKJ4L7EuBm86iZgUC61vq0B563wizLoo3s3Ji7hjlmF7zr\nky3eqJLf2Z2UzlVz19PuH0ut3StFJu2yvx1sKQGW7DhF7PQf+SLe6MH7/t7Bsj6pEFXInaGQi4BN\nQGel1Eml1O1KqWlKqWnmIkuBI0AC8B/gniqrrR2tNeezCyg09+UCNKhnuzH32JjObH9mtMM57kxu\n+nn3ac66keyqtrKfSZqYZrtRmppV4LJ8yQUvfjWvX2pZyk4IUTXKzS2jtZ5SznEN3OuxGrkhI6+Q\nHjOXA/CxebGGCd2bOUw/DwyoQ4N6wbx+fU8e+XIHAAVFJuziP8v2nKFFg7rW7oSkC7lM+3QrzSND\n2fjkFdX0anxLaasTZZZxX+OV63rw+Nc73XoeIYRn+OQwBUtgB7h5oZEwbEhH13nA/9ynJX8f3QmA\nwmJt3b/1xHnu+mQLV761HoCPNh5j8OxVAJxKz3N7ebjaxv6Xkr0nx3Up9Zy65u6Xrs0iqBsUwPQy\nygohPMPnskKaTNrl/gZlJI1qZE5kVWw+d8S/VnMsNcd6/GhKNp//fsLhnNH/Xsux2RMqW12/U1Bk\nBPevp11GXGwU17y9ge2JF5g6rPQVlCyrI43u2oSHzV+0Qoiq5XPBff8Z5xb19XEtGdutaannBAYY\nXQCWVqd9YAcY+eqvXNaukdN5WmvpPijBEtwts1A/uKUfWflFZb5PPVs14Nt7BtHDxWgaIUTV8Lng\nnnjeFpjdbVkHmYN7sUmTmpXvssymI6kAbHt6NL1nrQCg7ZNL+enBoVzSLKIyVfYrqdnG+9fQfPOi\nYViwWzNM+7RuWKX1EkI48rk+9/YxYfRvG8VTEy5x+5yAOsbLLDKZ+OOoYyaFP/exjbUODqxDw7Bg\n1j0+0rrPMj5bGJIzjODeOEIWxhCiJvO5lnuHxvX58q7LKnROkHmdzUe/2skpuwWbm0WG8vr1vfh2\nqzHn6r2b4wBjpmX3FpHsSkrnSEq28xNWktaa1QeSGdGpMXXq+E63T35RMa+tOAggWRyFqOF8ruV+\nMdo3Dgdge+IFks0Jq46+NJ5NJYY7DmgXZd3+3/1DuLR5BEl2XwaesmTHKW77MN5pzdfD57Kq5Hqe\ncvJ8za2bEMJRrQjuHc3B3aJ1VD2HG4BDOkQzqH0jp9Zoo/AQ0nML+Xn3aWKn/8h/t7vMqlBhlq6N\np/+7h93mpFsnUnO44rU1DJ69CmPqAOw9lWE9XhNk5Rlj2dtGh3m5JkKI8tSK4F5yJMfCWxxzz3x6\nxwA+v3Og03nhIQFk5xdx/6JtADy4eLs1u+GiP04QO/1Hh1mviWk5rNx7ttz6FJpsY8WvfGs9OQVF\nDPvXauu+JTtO8cXmE4yfs44r31rvkI/FmzLNwX32n7t7uSZCiPL4XJ/7xerWIoLdSRkAdCjRki9N\nRGgQqVn5DpOfOsz4ibDgAOvKT12fWcaWp0bRKDzECMS5hRx9aXyZQwMPlBjOWXKM/YOLtzs8nvbp\nFhZNdf7yqW5Z+caXTP1QWYhaiJqu1gT3H+4fSlp2AfWC3b8RaNKa8y5azSWX9Ju84DdWPDLcuijI\na8sPcsUljeldyvA/S/eGxfM/7iuzHpZhmt6WYa53/dBa87ERwmfVim4Zi6iw4AplIrRfwamHi0RX\nlmn0DcOCiZ3+o3X/3NUJTJq3sdTnLS0Py7HZE5jQ3VjEKiI0kCX3DbYes1/NyBvWHTrHK+a87dHh\nMgxSiJquVgX3inpxkq1vedZE54Ulpg1vT/uYMI6nVmy4ZHZ+Eb1aNWD3s2Os+67p1RzA+suisFjT\no2UDPr19AAA/73adj760XC9fbznJhRzXmRorSmvNTe//QUpWPu1iwqhbgV8/QgjvkOBehkbhIfxj\nfBeaR4bSo2Uki6cOZHz3pozr1pSVjwwHjKXlzmbYZr22sctrXtrN1ez8IlpH1SM8xNa98epfegLw\np0uNNAqzrzW+WAZ3aER4SCDHXIy3X38ohY4zfuKNlQcd9r/00z4e/WoHg2ev4owHFgpfusv2xdJV\nZusK4ROk87QcU4e1Z+qw9gAMbNeIgSVy0ATarf8Z/9QoosND2JCQwg3v/c4dH8cTERrIuicut6Yj\nnjBnHcdScxjUwchieVXP5sQfS7M+z+iuTTj4/Dhr7halFL1aNWD53rP886pLHSY93fj+7wC8v/4o\nzSPrcl3flmTmF/HumiOAcW9g4Eu/8M3dg+jb5uKm/2utuffzrdbHU/q3vqjnEUJUL2m5V1Jbc0u9\nV6sG1r7owR1s6Ycz8or4yrz6UGGxiT2njBE77cxjxd+a0ttpMpUlsFuM696U0+l5nLLrdz9yLsu6\nnZlXxOPf7KTjUz/R89nllHTtOxvZkXiB7YkXnI5l5BXSZ9YKnvvfXpevzz5dw8Hnxzm8NiFEzSXB\nvZLuGdkRI1hpAAAUg0lEQVSBIR2iee9vcQ77D784ntWPjgDgzV8OAZCTbxtl06Wp+90bsY2ML4JD\nZ20B/cONx5zKFdulQ176wFCHYxPf3sA1b29w6ofvMXM5adkFLNxwlMPnsrj2nY28ufKQ9fiOk8YX\nwpL7Bjt96Qghai7511pJTSJC+fSOAU4jSALqKOtMzsy8IvaeymDv6Qzr8R6t3E9/2625UXbL8fPW\nfTHm613Zo5lT+TuGtKVr8wiOvjTe6diEOeut20t3OS51e8Vra9hy/Dz/XnmQPaeMmbH7TmfSLDKU\nHi0buF1fIYT3SZ97FbtnRHvm/XqY8XPWWffdMKA1ERWYCBRpXvh77uoEureMJCO3kH1nMogOD+aR\n0Z0oKDLx4KiO1sD91JVdAaO/ftvTo3l1+QEa1gtm7uoEki7k8vbqBFKzjNY6GF1K2flFHEq2/TKY\nMGc9IzvHcOpCnqQ8FsIHSXCvYtf2bcm8Xw877Lt7RPuLfr67Ptli3Q4KULSLCWeBOZvlV9MuIy3b\nsdulYVgwL5iHdA5oF8VN7//Bv5YdcCjz/t/iKNaak+dzadWwHv1eWAnAavNi1qO7Nrno+gohvEOC\nexVr5yLJVosGdSv8PI+P7WydRGTRvMTz9IuNoixDO8Y47bt9SFvrMoSN64cCEB0eTEqW7Uuitd3w\nTiGEb5DgXsWUUvzy9+F8vPEYT1/ZFaXURS3dd/fw9gTWUby4dD/X9mnJN1tPXtSwxGt6Nef77ad4\n+squjO/elGaRzl808U+NxmTS/OXdTWw5fp6hpSw+LoSouZQlvWx1i4uL0/Hx8V65tq/LKyxm/prD\n3DWsvcwWFaKWUUpt0VrHlVdOWu4+KDQogIdGdfJ2NYQQNZgMhRRCCD8kwV0IIfyQBHchhPBDEtyF\nEMIPuRXclVJjlVIHlFIJSqnpLo5HKqX+p5TaoZTao5S61fNVFUII4a5yg7tSKgB4GxgHdAWmKKW6\nlih2L7BXa90TGAG8ppQK9nBdhRBCuMmdlnt/IEFrfURrXQAsBiaWKKOB+sqYnRMOpAGu15ITQghR\n5dwJ7i2ARLvHJ8377M0FLgFOAbuAB7XWrtd/E0IIUeU8dUN1DLAdaA70AuYqpZxSCSqlpiql4pVS\n8efOnfPQpYUQQpTkTnBPAlrZPW5p3mfvVuBbbUgAjgJdSj6R1nqB1jpOax0XE+OcxEoIIYRnuBPc\nNwMdlVJtzTdJJwNLSpQ5AVwBoJRqAnQGjniyokIIIdxXbm4ZrXWRUuo+YBkQACzUWu9RSk0zH58P\nzAI+VErtAhTwhNY6pQrrLYQQogxuJQ7TWi8FlpbYN99u+xTwJ89WTQghxMWSGapCCOGHJLgLIYQf\nkuAuhBB+SIK7EEL4IQnuQgjhhyS4CyGEH5LgLoQQfkiCuxBC+CEJ7kII4YckuAshhB+S4C6EEH5I\ngrsQQvghCe5CCOGHJLgLIYQfkuAuhBB+SIK7EEL4IQnuQgjhhyS4CyGEH5LgLoQQfkiCuxBC+CEJ\n7kII4YckuAshhB+S4C6EEH5IgrsQQvghCe5CCOGHJLgLIYQfkuAuhBB+SIK7EEL4IbeCu1JqrFLq\ngFIqQSk1vZQyI5RS25VSe5RSazxbTSGEEBURWF4BpVQA8DYwGjgJbFZKLdFa77Ur0wCYB4zVWp9Q\nSjWuqgoLIYQonzst9/5Agtb6iNa6AFgMTCxR5q/At1rrEwBa62TPVlMIIURFuBPcWwCJdo9PmvfZ\n6wQ0VEr9qpTaopS62dUTKaWmKqXilVLx586du7gaCyGEKJenbqgGAn2BCcAY4GmlVKeShbTWC7TW\ncVrruJiYGA9dWgghREnl9rkDSUAru8ctzfvsnQRStdbZQLZSai3QEzjokVoKIYSoEHda7puBjkqp\ntkqpYGAysKREmf8CQ5RSgUqpesAAYJ9nqyqEEMJd5bbctdZFSqn7gGVAALBQa71HKTXNfHy+1nqf\nUupnYCdgAt7TWu+uyooLIYQondJae+XCcXFxOj4+3ivXFkIIX6WU2qK1jiuvnMxQFUIIPyTBXQgh\n/JAEdyGE8EMS3IUQwg9JcBdCCD8kwV0IIfyQBHchhPBDEtyFEMIPSXAXQgg/5E7isJolLx3STzrv\nrxME0R3BVAy6GNKOgNZgKoQ6vvcyfY7l/VfKcb/JBCkHjf8nDvuLILoTBNWtvjoKUYv4XtQ7vAq+\nusX1scufglXPV2t1hJ2Jb0PvGx33rXgaNs0t/ZzOE+C6hRAUWrV1E6KW8b3cMulJkOTivCUPQN4F\nx33XvANn90DjrhASfnEVFe759WXIz4D6TaHfHdBzsvHL6a0+UFwEY8xfulobLfnVLzie/8B2iGpb\n/fUWwse4m1vG91rukS2Mv5K+u9u23W4kjHgSWg+ovnrVdhmn4ecnID0RTm6G7n+BjW8Z3WPDHoeu\nJVZmbDMYPhxvezynF8xMv7hrH10Hy5+Cm76DelEX/xqE8CP+c0N10nzzfxfAzd9LYK9uDWMdHz8X\nBSv/aWwPeci5fOxgI5jPOGPbNzMSigoqfu2ProTT22HeZcYvA3d46RerENXFf4J716uNYNHz/7xd\nk9qp3XDoeytMnOe4v9M4CA4r/byguvDQLtvj5yu4/OLRtbbtrDOw7B9QXFh6ea3h1c7wbAO4cKL0\ncgXZFauHEDWM7/W5i5otLwNmm1dlbH0ZXP2WMYqmPEfXGS1wgPu3QqP2xnZhLmSehqh2zufkZ8FL\n5i663jfCtk9tx55JM0ZWHfgJWvaDsGjjnsCbPZ2fp98d0KANNOsBp3fAimeM/R3/BDd85d7rFqKa\n+G+fu6jZQiPgrrUQ1b5iN7HbDoW42yH+faOv/opnIDgcfngYdiyC6YnGc9s7tc22ffVcY9jljs+N\nx8+V0/ceFAaF5tb55vdclzm0HHZ9Dd2vc/91CFFDSMtd1CzvDIazdis0BodDQVbZ59y+Alr1N7ZP\n74R3h5Zdfnqi0R3085Ow+T/OxzuNhdghxk1agHs3Q0wn91+DEFVIWu7CN4XUd3xcXmAHaN7Htt2s\nBzyyD16/xHg86AFo2AZ2fgXhMXDlm7ZfABNehQF3Qd2G5m6bTGPCm2ViVeOu8Omf4e1+Fz+SRwgv\nkZa7qFlO74B3hznvt3SjDLwXGrQybpqe2gYTXnM9/LG4EDa9bQTvi50FqzW80d0Y3nn5UzDssYt7\nHiE8yN2WuwR3UfNYPpM/T4ff58PIGTD8cWOYZGBw9dYl9wK83MbYfmCb6xu7QlQjWSBb+C6ljL+h\njxrzFoY+auyv7sAOULcBDH7Q2J7Tu/qvb+/Mbsg8U345IZDgLmqy8Bhj3kIdL39MG9qlRbD8qjh/\nzBhqWV1SD8P8wfBaZyjMq77rCp8lwV2I8vS9xbY9p7dxT+DNnvD+mOqrQ/xC2/YLTWDtq5CVDMn7\nq68OwqfIaBkhyqOUkbny69vg/FHb/nP7quZ6Wefg1Q7Gdo/J0KSrLbNm8z5waiusmmX8WbSIg+s/\ngrAYuJBopGPodq1zCmZRa8gNVSHcNTPS9f6nUyAgyPZYazizyxhKGWDXfsrPNGbchjcu/Rq7voZf\nnnWdGmHiPOh9A+z/ERb/1b06X/+JMby0yaVQrxHUCXDvPFFjyTh3ITxt/Kuwbwl0udIYf//Lc8b+\nPxbAZfcaC8UUZBldNrnnjWP1ouH+eGMs/afXQeJvRnrjoHqw7jUjJ1LsEGMk0Jmd8M3ttuv98wI8\n18hY6MQ+JUPn8fDwHohoYbTMi/Lh+VK+ML68yfFxq4HQcTRcOskI9nUbGPuLCmDRZKPFf+O3xtyA\ntKPQoo/zcwqf4FbLXSk1FngTCADe01rPLqVcP2ATMFlr/XVZzyktd+HzNr1tJCqLHQq3/ADLn4aN\nc5zLdZ0IoZGw9WPXzzP070agt6jXCCa9awThvAw4dwBa9Su7Liv+CRvegLs3Gq30Cyfgu2lwfIOt\nTGAoFJW4GfvwHghvAgtGwtldOLnpeziyGjbONb5kHtoFDVqXXRdRpTw2zl0pFQAcBEYDJ4HNwBSt\n9V4X5VYAecBCCe6iVlg0xUh58Mgex26bmEvg/z6BuWX8Gwxt4LzATJshcOuPnqmbqdjoq+84BnJS\njTTLqYeNBVQs2g6D2GGw+nkjx779l0FpHk0wRjIJr/Bkt0x/IEFrfcT8xIuBicDeEuXuB74Bymli\nCOFHCnMh4yT8917bvgF3w9iXjC6T7tfDri+N/dfMh15TjO2CHNAmW1bLq+ZAn5s9ewO0ToBtjL5F\no/a2VAozI42UyZa0yVMWGb8wzh83Wueb5try64x+zpYt03KzN7SBkVGzYRtYcr/tGpfdB+1GGDd/\nwxp57vX4g/PHYMuHxsQ8+/s0VcCd4N4CSLR7fBJwWAlDKdUCmASMRIK7qE0sq4JZ0g13GAXj7Hot\nO4wygvtda6GZXbrh4HrGf+/fCpEtITCkeuprr9u1sPsbYzt2qBHYwQjWAIPuN/r3o9oZXzqdxzv+\nEsm7AOtedX7eTXONv5b94I6VVfsaaoKDy4zusxMbIWmrkfriiqdh5xeQkgBXvWn80tn/ozHrGiDz\nLEx6p0qr5U63zHXAWK31HebHNwEDtNb32ZX5CnhNa/2bUupD4AdX3TJKqanAVIDWrVv3PX78uMde\niBBesetrx5ugTyU7BmqtITulZnZjmExGPzq434osyodP/gzH1xutdku65P/7zPgiy02zJW0DePyo\nLfePyQQfXw3H1hmP/aH/3nKvo6Lsb5BXkCf73C8DZmqtx5gfPwmgtX7JrsxRwPJ7MhrIAaZqrb8v\n7Xmlz134Ba2NVZ3ASG4245R361NT/L4AfjInWpuZDimH4JNJRhI2izqB8MRxx7z/WvvG2PyCHHij\nm3Evw+Lqt4zX9L15PefRs4wvu+2LAA1jXjS6q8KiK3VpT/a5bwY6KqXaAknAZMBhkK3W2jo/267l\nXmpgF8Jv2AeiQlmaz6rPzXbBvcT8gLs3wjd3QvIe2z2Hh/fAmpeNEUW9boRr3nZ+Tq3hwFJY8oAR\nVCNbQvvLjT7+mE7G8QsnbN1KrpzcYizH2KIvHFsPbQZBRHMjb8+prUa93ZGwwqhDSCTcvcHIVGrR\nq8QchFEz3XtODys3uGuti5RS9wHLMIZCLtRa71FKTTMfn1/FdRTCN4Q39XYNao6gUGMkjv0atwBT\nvjCGat75C7xg9379+1Lb9vZPjf78yZ/Z9p3ZbeTWsZeeCFs/Mv5CI40hpGlHoOs1MO5lowVdmAsn\nNhkzd7PPlV/vjmOgfhPXx3Yshu/uctz3+BHHiWo1iMxQFaKyLC3TxpfCPRu9W5ea5NwB48bq/h+N\nJRQvn+F4POOUMZnr1Y5QXGDsu3mJ0S8PRrBu2R8mzYf5QyHdPGu3WU9jbH5IhNGls+XDytUzJMJY\nXxeMUUuFObD+DWNkU+vLjMliBVmwsEQuocmLoMv4yl37Ikg+dyGqiyW43/xfo09VVFxeBpiKjJuv\nR36Fjye6LjfmRWM2cMlz5w+BrLPGQumWm7wt+xkt8Vb9jP8vh1cbXyYNYyE4zLGvvzAPXmlXftfa\nte9D53HG+V4i6QeEqG7tRni7Br7LfvHzdiOMIPrjI45plSctMFJAuzr3oZ22x0Mehpw0Y8lFe+1H\nln79oFD487vwxY3G4wmvw+FVsP8HW5lhj/nUYunScheisg6vMoY79rje2zXxP4W5sP0z40boVW9U\n/XyAda9BnSAY/EDVXqcSpFtGCCH8kCyzJ4QQtZgEdyGE8EMS3IUQwg9JcBdCCD8kwV0IIfyQBHch\nhPBDEtyFEMIPSXAXQgg/5LVJTEqpc8DFrtYRDaR4sDq+Tt4PR/J+OJL3w5Gvvx9ttNblrv7iteBe\nGUqpeHdmaNUW8n44kvfDkbwfjmrL+yHdMkII4YckuAshhB/y1eC+wNsVqGHk/XAk74cjeT8c1Yr3\nwyf73IUQQpTNV1vuQgghyuBzwV0pNVYpdUAplaCUmu7t+lQHpdQxpdQupdR2pVS8eV+UUmqFUuqQ\n+b8N7co/aX5/DiilxpT+zL5BKbVQKZWslNptt6/Cr18p1df8PiYopeYopVR1vxZPKOX9mKmUSjJ/\nRrYrpcbbHfP396OVUmq1UmqvUmqPUupB8/5a+xkBQGvtM39AAHAYaAcEAzuArt6uVzW87mNAdIl9\nrwDTzdvTgZfN213N70sI0Nb8fgV4+zVU8vUPA/oAuyvz+oE/gIGAAn4Cxnn7tXnw/ZgJPOqibG14\nP5oBfczb9YGD5tddaz8jWmufa7n3BxK01ke01gXAYqCUlXT93kTgI/P2R8A1dvsXa63ztdZHgQSM\n981naa3XAmkldlfo9SulmgERWuvftPGv+GO7c3xKKe9HaWrD+3Faa73VvJ0J7ANaUIs/I+B73TIt\ngES7xyfN+/ydBlYqpbYopaaa9zXRWp82b58Bmpi3a8t7VNHX38K8XXK/P7lfKbXT3G1j6YKoVe+H\nUioW6A38Ti3/jPhacK+thmitewHjgHuVUsPsD5pbGbV22FNtf/1m72B0V/YCTgOvebc61U8pFQ58\nAzyktc6wP1YbPyO+FtyTgFZ2j1ua9/k1rXWS+b/JwHcY3SxnzT8jMf832Vy8trxHFX39Sebtkvv9\ngtb6rNa6WGttAv6DrSuuVrwfSqkgjMD+mdb6W/PuWv0Z8bXgvhnoqJRqq5QKBiYDS7xcpyqllApT\nStW3bAN/AnZjvO6/mYv9DfiveXsJMFkpFaKUagt0xLhJ5G8q9PrNP88zlFIDzSMgbrY7x+dZgpjZ\nJIzPCNSC98Nc//eBfVrr1+0O1e7PiLfv6Fb0DxiPcTf8MDDD2/WphtfbDuPO/g5gj+U1A42AX4BD\nwEogyu6cGeb35wA+fLff7vUswuhqKMToB739Yl4/EIcR9A4DczFP4vO1v1Lej0+AXcBOjODVrBa9\nH0Mwulx2AtvNf+Nr82dEay0zVIUQwh/5WreMEEIIN0hwF0IIPyTBXQgh/JAEdyGE8EMS3IUQwg9J\ncBdCCD8kwV0IIfyQBHchhPBD/w+wp4rVV5I3lwAAAABJRU5ErkJggg==\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXd4lFX2xz83vQdCQi+hV+kiIipYEEVFUVdddS0o9l1ddUVl7XV/6rq7Vuy6LvauKIJSpAdFQHrvJLT0OnN/f9ypmZnMJJlJMpPzeZ558pY773vnzcx573vuOd+jtNYIgiAIkUVUY3dAEARBCD5i3AVBECIQMe6CIAgRiBh3QRCECESMuyAIQgQixl0QBCECEeMuCIIQgYhxFwRBiEDEuAuCIEQgMY114szMTJ2dnd1YpxcEQQhLVqxYcVBrneWvXaMZ9+zsbHJychrr9IIgCGGJUmpHIO3ELSMIghCBiHEXBEGIQMS4C4IgRCBi3AVBECIQMe6CIAgRiBh3QRCECESMuyAIQgQixl0Q6smKHYdZv7+gsbsRsVRUWcktKAv5ebTWLNl6iEqLNeTnagjEuAtCPbngpcWMf25BY3cjYnlu9kZGPD6H/NLKkJ5nzZ4CLpm+hGdmbQzpeRoKMe6CIDRZKqqsvDh3CwB5heUhPdfe/FIAXp63JaTnaSjEuAuC0GTpNW2mY7ms0hLScx0sct48Qn2uhqDRtGUEQRBqQ0lFaA2u65NBYVkVpRUWprybQ0WVlQ+uP56E2OiQnj/YyMhdEIQmR35pJW/8vM1tW2mIR9O5LsY9v7SSIY/8wPLtR/htdz59/v4ds37fH9LzBxsx7oIgNDke/XotD3+91m1baYhH7vuOljqWt+QVeeyf8u6KkJ4/2IhxFwShSVFWaeGjFbs9tpdWVgX0/ud/3MQ/f6h9xMvafQX0aZsKwPVhZsi9IcZdEIQmxdwNeW7rEwa2A6C0IrD486dnbeRfczbV6pxF5VUcKCjnhB6ZPtt0y0qu1TEbGzHughAkCspCG4fdXLjro9/c1u8/ux9Qs8/9udkbWbHjSJ1j4fccMS6ZNmnxHvuevmgQV4zswuHiijodu7Hwa9yVUm8opXKVUmv8tDtWKWVRSl0YvO4JQvjw7uKACuQIfrj42E5u6y2T4gAorfDulimrtPDc7E1c8NIiXpy72bH9yZnrsVg1Wmu/5yyxHbtn61THtmcuGsT2Jydw4bCOZCTHcbSkkqowyl4NZOT+FjC+pgZKqWjgKeD7IPRJEMKSiqrw+eE3Zeym+PObT+Czm0YRF2PM1NOzNvL2ou0e7V3986/M2+pYfnneFrrf+y2PfbPO7zntTwWu4Y5t0xMcy61SzA1mzvrcgD9HY+PXuGut5wOH/TS7FfgECJ9PLghBpsoqxr2uVFqsjlFxSYWFzJR4BndqwZDOLd3aPfDl7x7v9TWit/Paz9soq7TwxLfryC/x7raxJy0lxkWz/L7TeO1PwxnVvZVjv/3pIZwmWuvtc1dKdQDOB14OoO0UpVSOUionLy/PX3NBCCsqLf4f/wXvjH7qR859fiFgjHViXOCmKZDkpv8u2cEr87cy6OFZZE/9hj/P+NVtv32yNjE2mqzUeE7r1wallGN/33ZOd81PYTJ6D8aE6nPA3Vprv1dYaz1daz1caz08KysrCKcWhKZDlRh3r/ibaF69O58DBeWs3WeUNT9fuZddh0t9tt+c6x6DXljmOXJ//PxjHMvdspL5bXe+2/4vf9tLRZWV8ioLH+XscvQx0UcWao/WqbRONZOtV7+1PCyUI4Nh3IcD7yultgMXAi8qpc4LwnEFIaywBjBx15xYv7+A+z5bzcAHZ/H1qr1e2yzafJBznv/Zsb58u3cP8F9O7elYPu3ZeRyy6cBYrZrXq2WyvnftcUwc3N6xvjWvmK9+8zz/5LeX03vad9z18Sru+XQ1AAk1PDG4ZrD2vG9mk59jqbdx11p31Vpna62zgY+Bm7TWn9e7Z4IQZgQSldGcGP/cAt5buhPwjF23Uz0TdNMBs967Tarb9ttP78UtY3s41oc9Opur3lzG8U/O8Thmy6Q4kuNjeHhi/xr7t2DTQY9tqfGxPtsP7Jjutn7F60trPH5jE0go5AxgMdBbKbVbKTVZKXWDUuqG0HdPEMIHixh3n3zsJePUatWUVxv9PmKTHHjrmmM92lePc5+7IY8DBWY0feXxXYiOMj7yjGQz+fmn47O54/ReADx2/gC2PXGW334mxPo2iR9MOZ4vbznBsb50m784k8bFryqk1vrSQA+mtb6qXr0RhDDGKra9RorLq0iONyYnv6SSQQ/P8mhjN+BtUhM89hV58a3buXFMDyosVmYs20XLZOfo+9ZTe3Kri0vHG+sfGU+fv38H4DaJWp3EuGgGdmzBmofO4NRn5tIuPbHG4zY2kqEqCEFC3DI1c/cnqygqNwb6QKF72bybx3Z3W4+K8jSy4/q38XrcW8b2oG16Ao9MHEDOtNOIj/EvzZsUZ9r8fPfYWkv5psTHMLRzS4rLA9O6aSzEuAtCkJAw95r5etU+XrFVOaqu8HjlqGy/7z+1bxtypp3mtm1Yl5b82TYyj4mOIjPFUz7AlRtO7s7fxvdmwd/G8uMdJ9OxZRIAAzqkERcduDlMTYjxGqXTlJBiHYIQJCRaxj/2UbKrBkyLpFhau7hhvrpltM/32413QmwUw7tk8Nwlgx0ZrIEw9cw+juVWLjeCL28eTW3+e6kJsU1eS0iMuyAEiRrctc2StIQYCsqqmDahL4/aJABio81FcjWMN40xLplOGYnsOlzKgA5pNR53/SPjiVKqVkbdH97cQDWRmhBDSYWFKouVmFqM+BuSptkrQQhDfCXANFf6tU+je1Yyk0d3dWwrLjfumIJS49IYkZ3hcMl8ftMJzLnj5BonNcGM/oNp2OtCaoKZtC1qwn53Me6CIISEiior7dIT3Yz19PlG2OtwsQlhfOuaYx0ToK1S4umeldLwHa0DqQnG6dGU/e5i3AWhHrhGyFRKLKQDrTW/7DzqkNK1T4TaQx2fnrURpcL3aSfNNnJ//sfNflo2HmLcBaEeuNrzcNL6DjWLtxwC4JedRwEzEZpsCz+0R8q0So7z64Jpqlhs//gPcnY12SIeYtwFoR64Rsgs2dq0MxYbkupCXQAXDe9EanwMB226MJNHd2vobgWN8QPaOpbrWv0p1IhxF4R64GrcWyb51iVpbjz13XqPbemJsRSWV3HiP34Cwjt0NDpK8coVwwC4/4s1TTKBTYy7INQD19+06Lk7uXxkZwBm3X6SY1uftu5iYEu2HmrQPgUbuxzCgk0HyStyKkZuP1jMgYIyX29rMMS4C0I9sLg43aUSkxOtITMljl4u6o5927nHrz923jHV3xZWTBjYzrFsr/CUW1DGmKfnctzjTrXKR75ey+nPzmvw/olxF4R64OpaqJJoGQellRYPzZYOLZ1CWxcP70TnVkkN3a2gkhAb7ZA+OP2f83l/2U7u/mSVY39xeRUVVVZe/3kbm3KLyHPRg28IxLgLQj3Ye9T5+C2VmJyUeTHusdFRzLtrDMd3a8WD59astR4ujOvnFDOb+ulqfnLRre//wPf0mjbTsf7c7I0N2jcx7oJQD6Z+6hypSSikk7JKq9cY9i6tkpkxZSSJceEZ316d9MTAJ9HfW7qTWb/vD2Fv3BHjLgj1wLWWpiQxGSotVkorLGGboFQbApELvnFMd86wyRVPeXeFhyJmqBDjLgj1oLLKadAtzcS4z9uY55Du3ZdfytBHfmDX4RIA5m/Mo+d9M1m89RAJETI6r4mWSbEM7tSCS47t5Lb9+T8OcSzfPb4PT04a6Fjve/93vLZga8j7JqqQglAPyquco7DKZuCW0Vpz5RvLACPVe/cnprD0e0t3MvXMPnz+6x5H24RGFvdqCGKio/j85hM4UFDG+8t3ObZ3yUhm82NnOibZWybH8e2fT+Ssfy8AoKQBRu9i3AWhHlS41ABtDhOqrnVM7YYdnAlc5S43uMi/Gk7apCWw/ckJ7M8v4+tVe+nfPo2oKIVrUah+7Z2hoC1tdV5DSeTfWgUhhFS4GDNvce65BWV8t2ZfQ3apVlRZrG5PH/7YeKDI6/YFmw56aKyUVTaMb7kp0TY9gWtP7OZXH35/fmnI+yIjd0GoB+WuI3cvPvcr31zOun0FrHt4fJOLEDnhyR/Zc9QYmZ/uHEPXzOQa26/bV8B5Lyz0uu/nzQc59/mfHccDmDS0Q/A6G2EM75IR8nPIyF0Q6oGrcdfac1J1zxEz0VhY3vTEpVwN8din5/ptv9SLXMDAjumO5d1HSh1yDMvuO5Xzh3Ssdx8jjX9dMpjrTuzK2D6tQ34uv8ZdKfWGUipXKbXGx/6JSqlVSqmVSqkcpZTvAoiCEGG4+twBRj/1o9t6vC1UrikXdQiU6vK8UQo+uXEU0yb0ddv+yhXD3GqiCk4mDu7AfRP6Nci5Ahm5vwWMr2H/HGCQ1nowcA3wWhD6JQhhyb58d8GoeFvESEETlYWtDa5up0fPG8Cmx84iNjqKa090l+4d2zv0o1LBP36Nu9Z6PuBTqFprXaSdepfJNK9JckEA4O1rRnjdbjfu3jS/jxRXMPSRH/h155GQ9q2uHC6u4K8frnTUCX3k67WOfZeP7EK0y6Th5sfO5KXLhrLgb2Mbvb6pYAjKf0Epdb5Saj3wDWb0LgjNgnbpCcTFRNG3mpytnQxbyNvDX6312Ld8+2EOF1fwwk9Ns1TbK/O38Okve3hvyQ637X+xiWW5EhMdxZnHtKNTRniLgUUSQTHuWuvPtNZ9gPOAR3y1U0pNsfnlc/Ly8nw1E4SwoXVaAiO7tSIm2vlTcg0ttKenbz1Y7KE9Yx/hllc1fPKTvS8n9cpi8uiuJMR6mgK7iuETM9fz4/oDju23n96rYTop1IugPj/ZXDjdlVKZPvZP11oP11oPz8rKCuapBaFRsFo10co5Qgd4bcE2r22PlLi7ZuJsN4QFmw6GroM+sN9QRvdoRXJ8DGWVVqzVIn0+/cWZbTrtszXERis6tEhECA/qbdyVUj2UbRpdKTUUiAPCu8SKIASIxardfM8A//f9Bseya6WmHYeK3dq5Co01pFogOI17fEy0Q+CrpieIovIqWqeapxQhPAgkFHIGsBjorZTarZSarJS6QSl1g63JBcAapdRK4AXgYt0UCwoKQgiwak/jDlBSYSYhcwud0TMXvrzYrU25SwbnlHdX1CpTtL7YS8QlxkWTaHPJlFZaKK+y8N7SHR4hngVlVew5WurVfSM0TfxmqGqtL/Wz/yngqaD1SBDCCG8jd4CjJZVEKeWRrn+kuILf9xZw+etLOX+IewbnRzm7uXxkl5D2F4zA2br9BYAphWd3ChWXV/Hmwm3858fNHCjwXjVozrpcHjs/5F0UgoDchgWhHli0Jkp5GveySotDd+bu8X0c24c88gOXv74UgM9cFBQBpn3uNU8w6Dz69Vquf3cFAK2S48lKiQdgs0spuH/P2QTAiT3dp8/+e+1xDdJHof6IcReEeuBr5L4/v4xKm2sjJT6aftWKQ/ti1BNz/DeqBbkF7klVVRYrby92hja2SomjhU3R8eq3lrvJ1gLcOa43Fww1MgLXnNCVHq1Tgto/IXSIcReEemCxaqK9jNz/+NpSh2Z3bHQUD030XTPUNX1/b7UM1/owc/U+Rjw+h/eX7XQkSv3LNiK30yo5nm5Zvg12Ylw0F9gEwCYMbBu0vgmhR4y7INQDq1X7lHe9yDaBWlxhoUUNtTbP6N+WNmnxjvVgxSOs3H0UMIWbz39xEQD/+dE9YSoxLpr0xFi3Qs+utEyKY1SPTNY+fAbDGkDJUAgeYtwFoR5UWjWx0ca4/3D7SW7Zm/ttLpHdR0rcCimf0b8Np9uM6aBOLeiUkcTSe0/jnEHtAe/SwXUhKdY9XsL1pjGuXxt+unOM32NkpZqbTlKcqIOHG2LcBaGOWK2aI8UVtEwyCUw926QyrEtLj3Z/Pb0XaS7G/ZUrhpNvS2jKbuVM1x9gq9RTl4zVtxZu4/wX3bXWk6rpx3e951sARnVvxfQ/DXfTbz+mg1O695MbR7HknlP57rYTa90Poekgxl0Q6sjWg0VUWbWbEe3VxlNjJjUh1iFDYOeZPwzilD6teeoCZ+Fku8jYY9+sY82e/Fr15cGv1vLrzqNuevLf+UiMio32/NnfMKa7Y3lYl5a0TU+gT9vAJoGFpok8awlCHblkuglpdHWRt01PIC0hhgI/+u2dMpJ446pj3bbF2Qpuzli2k09+2c3GR8+0HV97aKn7YtfhErJtI/IVOzzVJqee2YdLju3ksT02OooPrz+enYdLAjqP0PSRkbsg1IEteUUcLDIx4ecN8V1Obm4Afm07iXHOn6M9Q/SeT1dz2WtLa3yfqybMA1/+DsC9n6322vaGk7vTIsl7ceYRXTO4cJhUT4oUZOQuCHXgx3W5juW0BPdImD8M78RrP29j5f2nuxnSSUM6EF9D+n6PLE+XzoxlO/32xbVId0p8DGWVFv631P19J/bM5B0fmvNCZCLGXRACxB5topRyEwdLjnf3p997Vl9uP70XyfHuP69nLx5c4/EzUpw3guFeJmZ9UV7pNO7frN7HNaOzHevnDW7P1DP7kpkSF7BrR4gMxLgLQoDYo01uHtvdbbQcU22CMipKeRj2QOjQIpGXLx/K9Plb3RQjwXcmLOAhOHbBS06BsltO6UHbdKln2hwRn7sg1JIXftriWD7XFpseLMYPaEe79ESKyirdIl9+3+s7esYeOjmpmu9/TO8serT2XiFKiHzEuAtCHTg227hN/nVJza6WupCaEENhWRXbXfTf9x4tdSzb4+vt2EfuY/u4F6Z+ZOKAoPdNCB/EuAtCHUiOj2FQx/SQ+LGjoxS5heWc+sw8x7YZy5yCXu8s3s6QR35g2bbD5Gw/7NCJj4+J4qXLhrr1UWi+yH9fEOqApQZNmfry3lLPCJl5G/Mc8e525cY/vOJe/CM6SjGuf1tm/uVEPszZRcsk33o2QuQjI3dBCIDqYl4WqyYmRMbdVSVyYMd0R/Wjh79eC0DHlt7rmNqzYPu2S+OBc/pLdEwzR4y7IASApVr0yp6jpT6jV+pL5wyn3sxHNxzPsdlGjfGtRdsBHFo2dkZkZ3Dz2O6M6i71TQUnYtwFIQCWbT/str7jUAnF5aGpeXpKn9ac1rc1H15/PPEx0bx+pZEpuHREZ8AUq+7mIvp1x7he3HVGHxmpC26Iz10QAmDnIU/NlVDpsMRER/HalU7dmbiYKLJS4x2uoaLyKjeVSfvIXhBckZG7IATA1E89tVqqu2pCSV5huSNipqi8ipT4GLY+fhbbnjgrZBO7QngjI3dBqCPWIFVMCoROGYnsOlzKS3O38OvOo6QnxopRF2pERu6CEAAdWpgIlScnHePY1pAj9wnHtCc2WvHUd+sBQjaZK0QOfo27UuoNpVSuUmqNj/2XKaVW2V6LlFKDgt9NQWhczh1sZAYuGdGZBX8bCzTsyD0+JopKi/N8X9x8QoOdWwhPAhm5vwWMr2H/NuBkrfVA4BFgehD6JQhNiiqLlURbHHmKLfOzZwPqtrhKBT94Tj86uYRLCoI3/PrctdbzlVLZNexf5LK6BBC1fyHieHXBNsdyy+Q4nrt4MCf1ymqw8yfEOGWFzxjQtsHOK4QvwZ5QnQzMDPIxBaHJUVP1pVDg6mNvl+49Q1UQXAmacVdKjcUY99E1tJkCTAHo3LlzsE4tCCGnW2ayQ1q3MTjkogIpCIEQlGgZpdRA4DVgotb6kK92WuvpWuvhWuvhWVkN90grCPWh0mJl15ES+rRtPG30/BIx7kLtqLdxV0p1Bj4FrtBab6x/lwShafHQV79TadEcbkQD+8fjujTauYXwxK9bRik1AxgDZCqldgMPALEAWuuXgfuBVsCLNm2LKq318FB1WBAamp/W5wGmSEZj0bttKv+5dAjdspL9NxYEAouWudTP/muBa4PWI0FoYpRUVAGw7WCxn5ah5Zwgl/QTIhvJUBUEPxwpqQSgoKyqkXsiCIEjxl0Q/NC7jRSZFsIPMe6C4Ic+7YxxF7l0IZwQ4y4IfoiJMj+T/u3TGrknghA4YtwFwQ92gbB3rzmukXsiCIEjxl1ospRVWjhYVN7Y3aDKqumWmUzL5Dj/jQWhiSDGXWiyXPXmMoY/Oruxu4HFahX9dCHsEOMuNFmWbDVFqXccatz48oNFFbRIivXfUBCaEGLchSZLj9YpACzYdLBR+3GgoIy2osQohBli3IUmS7dMk2pfUFbZaH3ILSxjx6ESSissjdYHQagLYtyFJotdysViaTxNl/eX7QJg9roDjdYHQagLYtyFJowx6pYGrFVaHftE6mPnD2i0PghCXRDjLjRZqmxDd4tVU2mxUlze8Noue46Wkp4Yyx9HSHEZIbwQ4y40Oe75dBXvLN5OfqnxtVusmmvfzqH/A983eF+OllTQOjUeJdoDQpgR7BqqglAvth8sZobNz92xpYlQsVg18zYaTfVKi5XY6Ci01hRXWEiJD+1XuKjcQlKIzyEIoUBG7kKTYtw/5zuWdx8pBeCV+Vsd217/eZvj74AHvie3oCyk/Zm/MY/ySomUEcIPMe5Ck6LCUnMR6idnrufs/yzg0W/WAbD7aKnXdoVllfz98zWU1cMw5xUa6YP1+wvrfAxBaCzkeVMIO9bsKXAsV/kIkzzmwVkAZGcmM3l01zqdZ/Weo3V6nyA0BWTkLoQ1i7bUnL1an5H7kWIzoXvTmO51PoYgNBZi3IWw5rnZm2rc3z0rpc7HLrRlxtZ15C8IjYkYd6HJkpkSX6f3ucoV2LXY31q4jeyp31BeFfhIvtBWMzU1QUTDhPBDjLvQpOjT1lmvND3R+5TQkM4tWPfweEZ0zfC6f9KLixzLlRYrF7y0iAe/WgvA0RJ3nRqrVaN9ZMAWllcRHxNFXIz8TITwQ761QpPCqjWDOrUAoG87Z1m7Lq2SWHLPqfzl1J7MuG4kiXHRjMjO8Kqzvjm3yLGcs/0IK3Yc8bqvuLyKYY/+wH9+3AzAD2sPuO3feaikzk8PgtDY+DXuSqk3lFK5Sqk1Pvb3UUotVkqVK6XuDH4XheZEWaWVrq2SeH/KSP5x4UDH9k9vHEXb9ARuP70XCbHRAMTFRGGxaixW39oz7y7Z4bZ+2WtLHcvbDxVzpKSSZ3/YCMB17+Rw2rPzAFi/v4Dvft9PTLRkpgrhSSAj97eA8TXsPwz8GXg6GB0SmjdllRYSYqMZ2a0VSXFOt4zrsp3YaPP1rXSJjbdLFgR2Luf7KqvF12/JNQVCzjqmXcDHE4SmhF/jrrWejzHgvvbnaq2XA40nui1EDHbjXp2EWM+vaqxtVO2a+HThS4s82lXHPqm6YFOeY9vpthE7wIc5uxyTsleM7BJgzwWhadGgPnel1BSlVI5SKicvL8//G4RmRUWVleIK78bdm3BXvG2is6LKadw32Xzm0yb09XmewrIqisqr3MIotx8qcSz/7eNVvLnQyBy0TJKi2EJ40qDGXWs9XWs9XGs9PCsrqyFPLYQBv+48gsWq3SJmasLulnlvyU6PfTE1FLQuLq/iLzN+rfHYGw8UERcT5fWJQRDCAfnmCk2GElspuy6tkhzbJo/u6tPY2437P2ebCdEqF/fMyO6tmDi4PWAM/fUndePUPq0BWLevkEVbDvntT0WVVaR+hbBFtGWEJsOh4goA4mOcbpm/n93PZ/vqFZo+X7nXsdynbRr/umQIEwe3p3NGMj1apzDr9/3MWZ/LDf9d4fV4n940yi1GXhDCGb/GXSk1AxgDZCqldgMPALEAWuuXlVJtgRwgDbAqpW4D+mmtC3wcUhC8cudHvwEEHH7o6pvXWvP4t+s82pzSp41jOd6LLx/gf9ceR6eMJDplJNEiKdaR6DTlpG4B910Qmhp+jbvW+lI/+/cDHYPWI6HZ0yIpsHT/0/saw31a3zbkFpZz2Dby90WsFz/8tAl9GdUj07G+8v5xXPDSIlbsOOKYsBWEcES+vUJQOVxcQc/7vmXR5prVGmuidWpCQO0S46JJiY9h9roDbuqP6Ynebw7HVpMrePGyoVx7oufo/PwhHQD443FSN1UIX8S4C0Fl44FCKi2ap2dtqNX7lm71P8HpjSJb0eyFm53vn3/XWK9tY6OjeH/KSMd6aoL3B9fLR3Zh/SPjaZeeWKc+CUJTQIy7EFTsWi97jpbyxLfrapQGcMUuAVBX7B6Xly8fRnoNbp2kOKffPbmG2qjeYu0FIZwQ4y4ElUpbQtGBgnJemb+VtXsDm1evjWyAK38b3xtwhlH6i0tv5SIEliqFr4UIRoy7EFTKq2m0BKqfXlxh3Cv2WPRAGdjBKEg+Y3MDJfoZcXdo4XS1dMpIqqGlIIQ3YtyFoFJe6W7ctx4sDuh9R20l7WpylXgj3jZSL3aM3P27U57/4xCuHd1VXC9CRCPGXQgq1Ufqv+0KrMh0Vppxl5zQo1Wtzte+hfukZ0ayfy2Yswe2Z1oNyVGCEAmIcReCSnmV+8jd6qPKkStllRa25pkR/h+Gd6rV+aqHPYqrRRAMMqMkBIWCskr+u2QHyS6667HRiiPF/idKn5y53rFcWy2XBJdEo5vGdK/VewUhkhHjLgSF//tuA+8u2cHwLi0d23q3TeVwSc1ZowC/780HalZy9EVMtNO4j+xWO5eOIEQy4pYRgkKV1bhj9h4tBeDx848hMyXeLXPUF/3bpwOw6sFx9epDcrxMkAqCHTHuQlBIsUW57M0vA+DSEZ2IjY5yK6Thi+/W7CclPsZrKb1AsHty6vp+QYhEIsa4/7Qhl7ds1XOEhqelS5RKXHQUSinioqOoCiBDtaCs0iEjUBfsc7bJYtwFwUHE/BqufnM5AOcMau+WhSg0DApPf7nFqtlsK3tXE6kJMZwzsH29+yBuGUFwEjEjdzv3f/F7Y3ehWeLqfrEb2e9+3w/4lxYoKqsixYeIVyB0yjCx7lLvVBCcRMzI3c43q/fxQmN3ohnimryUmuAee55bUOZThve3XUcprrCwYX9hnc/90fWj2HqwiKg6RNsIQqQScSN3oXFwHbnblRefmHQMAPtsk6zemPiU1ebpAAAgAElEQVTCQgAWbam7/nvb9ARGdc/031AQmhERY9y7ZSY7lqss/iM0hODimplqn0Q9ta8RAfPmd1+zJ5/sqd841v9yaq8Q91AQmhcRY9wrXAz67R/+RkFZ3SRkhbrh6pYpsUW+ZNh84N4iYf7wymK39ZvHSnapIASTiDHulS7G/avf9vLnGb82Ym+aH4VlTgP+d5soV0x0FNFRymsik6vkzBUju7hlmgqCUH8iZkK1erLMxnpM0Am152hJJcO7tOTFy4e61UBNiInyEBMDSEmIodRm9Mf1b9Ng/RSE5kLEDJdKKiycO8gZKx1YcTchWBwoKKNNWoJHceuE2Gi/EgTZrZJr3C8IQu2JCONusWrKq6y0cKmdWVOEhhBctNbszS+lXXqCxz5j3D1H7q5utHg/pfEEQag9fn9VSqk3lFK5Sqk1PvYrpdS/lVKblVKrlFJDg9/NmrE/3vuKpRZCS2mlhbJKK5mpnpnB8bFRlHkpteda7s5faTxBEGpPIEOmt4DxNew/E+hpe00BXqp/t2pHia3+Zlq15JlFWw5y9ZvLHPuF0GCfTE31kmUaHxNNuYtbpqLKyj2frub3vQWM69eGWbef5JH0JAhC/fFr3LXW84HDNTSZCLyjDUuAFkqpdsHqYCCUVZhH/LREp3EZ1KkFf3x1KT9tyOPfczY3ZHeaHYW2sFNvRnpLbhGz1+U61lftPsqMZTsBWLzlEL3apDZMJwWhmREMZ2cHYJfL+m7bNg+UUlOUUjlKqZy8vLwgnNpQUmkfOcbyxKRjaJEU61a7U2LeQ4s9SSnVS3Fre/6BfVI12kUioDQArXdBEOpGMIy7N0EPr8EqWuvpWuvhWuvhWVlZQTi1YfxzCwBIjIvm0hGdOVribsx1AHU8hboz9dPVgPuTk53Jo7sC8MXKPQBuk6vvTB7RAL0ThOZJMIz7bsC1qnFHYG8QjltrkmwTcyOyM9y2W0WNICRs2F/IZa8tobVtInVQxxYebezhqUdsN1zXydVumSkN0EtBaJ4Ew7h/CfzJFjUzEsjXWu8LwnFrTaJNsKr6iPCDnF0cKJDQyGDz3yU7WLj5EJtyi2ibluA1y9TuU7c/3pWUO417Wy+hk4IgBIdAQiFnAIuB3kqp3UqpyUqpG5RSN9iafAtsBTYDrwI3hay3frCrESbERnuM3o97fE5jdCniKKmo4orXl7I1r8ghEKY1xMZ4l9uNizFfsSdmrudwcYVj8vWrW0Y3TIcFoZniV35Aa32pn/0auDloPaoHiS5l1u4+szczlu3i4xW7G7FHkceizYdYsOkgpzwzj4mDnRnBsT60YVwnUIc+8gN92pqRfHZmUmg7KgjNnLBPDbS61OiMczEww7pk8PRFg9za+kuDF/zjmgX8xUrn1EpMgIUy1u8vJEpJvVNBCDVhbdytVu0m9dsqueYyaxUB6Ly/8NNm1u0rqHffIhVfI/SNB3zXSn3gnH5u61aNVE0ShBATtsb9Dy8vptu937LxgFF/vP/sfl4Nxte3On27rqN8b1RUWfm/7zdw7vM/B7ezEUSVn2vojRQv8e+CIISWsDTuc9YdYNl2kzT72a8mftqX+NSADuncd1ZfwAiMuXLRy4t44AsjmVNlsfJhjsnFqrRIXLwvrD5yBmpyy9gnVbNbiZ9dEBqKsBxSTX47x7H85sLtgLu/vToJtigaV9s+b2Mey7cfYfn2Izw0cQCPfbvOcSwwqoW+XBDNmSrbje+KkV0Y1qUlt32wEoC5d43x+Z6YKHMd+7ZL46tbR8t1FYQGIGJ+ZSUVvidL7YNK+6iz0mJ1i6KxWjU/rD3g9p5Tnpkb9D5GAvann3MHt+e8IU6VCVeVx+rERpt/QKVFk5oQS0KkqUBaqqCqvLF7EdmUN1DxnaoK9zJhYUzYjdx9Fb8+sWemz/dEK2Nc7Iap530z3fZvziuiQ4tEdh8pdWzbdbgUwROL7YtvD3H81yWDWb+/EKV8u2WO69aKbpnJ3HZazwbpY4Pz+mmw91d44CjUcB2EANEalk2HtV/CDpf5r8k/QCcfkhWVpRAVA9GxsGeFueF2GlG7/8eWH+Hja6D0KEx8Ho7sgPn/MPsyusGYe2HgRXX/XA1M2Bn37YdKHMvnDW5PcYWF+8/uR6cM3/5c+0SrL3/xpdOXcHz3VsHtaIRisWk52H3sEwd3YKKf96QnxvLjnWNC27HGZK+tXu+i/8AJf27cvjQlyvJh2wI4tBl6nAZtB7jvryiB2ESY9xQseh6G/glOvANeOQkKvOSnvH66+TvxBYiOh9gEiEuGX96B3z/z3Y+4FBh+NexaDoktYeNMaDcIuoyGikJISIfyIljxpvM9X1RL3Tm8FT691rz6T4Ks3nDMRdCq6RZ2DzvjnlvolBF47pIhAb0nynb3tlq9i4gdKq7g151GRfKNq4ZzzVvGp2+xarckHAHKbcJf4jf3wpIXxbi78sUtsO5Lszz7AfN3zD0wZioc2Q6vngolB53tl7xgXnbOfR7ikqDvRFj8vPMY1Q2vPyqKzI3XlX2/mVd1psw1Tw4bvoXs0ZDRHeJTQVvhpVFQuA9+/9S0nfsE3LQEWvetXX8aiLAz7gWltS+8YbdDFq29FmsG2HPUuGFO6dOGaRP68ug36+h+77fMuv0k0Rx3Ib/UyAdI1SsvFDaKpFLTZMdip2F3Ze4T5uWKioLLP4Fdy8y+nmfApTMgymVuZvRtMOrPsOEb+PU9yFsHcanQfSxk9YEBk4xbZv8qaD/UuGPsA7m8DZDWDuLTjMsmfze07gcr37ON4E+AXUuMO6a9bcDYwUtBuTvWg6XS3CzWfQ1f3gIvjgQVbW7q/SeBtRJmP2TanfEYlB427p3KEuh7DiS3NjesBiDsjHunDDNxN7iTpwKhLxwjd635ZccRt3292qR4JOAMcjn2kq1SUMIVuzZ+mhh3w6bZ7utVFRAT576+awl0Palh+xUIhQegcK8ZlbbsCkkZ/t+zOwdeO9Ustx/idEmd9DdjYIsPwttnO9tPfBGGXGYM7f5VxuVi58z/g+OmONe7n2JG9b6IijIGsu85vtt0GOZctvvbW/dxbus43LwATn/Iub2fP+eijehY49oZegXEJMAPfzc39Z//aV6uvDrWfX3WNOfyNd9D55GBnbOOhJ1x798+ne1PTqjVe5xuGU1ekXtUwzd/PtExwXrL2B6A+40jQibOg0aRTdUxKdIiXurK4ufd1x/Ngnv3OUdnS182BqDXeLhkhjFQdrSG2Q8aY1OTwQoVr46Fgj3O9eoTwiWH4b+T4NhrzWh6/Vfw9e3O/XbDDmbi0T75aKf/+cawgzluu0HwYL7nDTBcGXiRef36X3PTs1ZB7looK4CBF0P+Ttjzq7lhtcyGTbPMDaC8ALbOFeMeDOx+c4vWDveLHVffcf/2aY5tgzqm89vufPIKJcTNlXkbTQUtkQ+wkWC+M0yebaJmAB5vZwx57zOdk3Qbv4OHW0Jqe6gqNZN8gy6Fhc85j9V+KJzwF+h/XvD6t+cX44KoLDEjc0uV8Wuv+dTdsAMsfcVMMK76CDK6mj6Ddx/3CbdBWgfjFomONcfbMNPc1E69H9I7QZKPIIVIMOyuDLncvPzRdgAcdz0U5xljH2KahXG3j9ztFZtSE2KYcd1Ierd1d7f0b5/uWP74xlH0vG+m2wRusNBaM3tdLqf2aR1WRjK/pNKtfGGzZ/23sPYL6DQSOh0LvScYnzDA+z7EVAttYmulRzxHunt/gY+uhNVnw+i/QsdhJsTv6C7I6lVzX1a8BQv/DVd+Cekdzah74XOw8F/ONh2Phd3L3d939XfQqgc8dwx8d7dz+8EN3s9zwetwzIWe20/8q3kJNROXbF4NQLMw7j1au1/MwrIqBnRI92jXoaUzESc2OooBHdI4WFQR9P58sXIvt32wkocn9udPx2cH/fih4nBJ8K9FWLHsVfj9c+OftVTArPvM9m5jzN+Jz8Oh25whe3Zu/cWEzL0w0kwEnvqA8VcvfdlEY4x/HHavgB0LjQtn/dfmdf9heKqrGenfuBja2ATYtIaDG6FFF4iJNzeKr/5i9v2zP8QmmZF6dXYvh+Qss7/HacYd1OV4Wx9z4L8XQN56GPeo2b/6YzhlmnGplB4xvmYhbGgWxj3Qcm7Vwx7TEmIpKA1+cW3708Cuw+4/wG9X7yM1IYYTewavvmwwadaSyVrDt3ea5R3VhOVOvMP8TcqApBHGKG+bB9knGpeFnau+Mf7WDFNXlu4uE24dh5lXXBL88ICJyHjYZYLzpeNh/JMw8kYT0/3x1b776mrYz3vJ9L39YEhpC8k+XCXpHeHmpe7bTv27c1kMe9jRLIx7ddfH0M7ukTYf3XA8LZM8/YBxMVEUlVcxd0MuV725nPenjGRkt/onO9ndRK8u2MadZ/QmPsZMTt703i8AtZ4wbijsYaR3ndG7kXvSCOS87n37g/me26KiTeRHdZJb+Taudo691iTHPNnZrI+6FTJ7m7C776aaV3VS20GXUTD+KWOEi/NM0k32CTWfS4homoVxr84zfxjstn5stvcQsLjoKCqqrPzt41UAXDJ9icPwaq3RddQld31C6D3tO7Y9cRZPzFzv2LY1r4huWSmMf24+MdGKr289sdbnCAX2kfuQWoShRgRWC3xjG50PuNCMrn95B3qOC835EtI9bxqF++Cnx5zrE1+AAReYvsVXezJNa2deQrOmWRr31ITAPnZcjDHuuV4iZqZ+spoPcnax+bEzHYWhDxaVs+NQMcO61BwvXF3kLL+0kunztzrWf9qQx+HiCtbvN2JJZZWWJiG2ZR+5+5JXjlhcsxsvtI3gxz3WYBNjgInGsBv3+4+4h1QKgheazTfENXw3MyU+oPfExUR5ZLTe9dFvHCoq5wOb9vtDX6117DvvhYVc8NJiv8fdmlfstr62WuWnR75ey4UvO49jf3JobMptI3e7GynkFB+C395v/GSDMi8RQglp7hmUoSatPUzdBffsEcMuBESzGbmvfWg8s9cd4BgvUTK+aJ2aQG5hGe3SE9iXbyZBP1qxm49c5ILfXbKDq0/IpltWikNV0p8mTUmFu4TCrN8P+GhpmL2u5v0NRZntRpfQUCP3eU8adcCCvY0XZldV7sw8vG114/TBjj2mXhACoNkMARLjojlnUHuyMwN/lC6vslBp0Q7D7otJLy1yWz/qJ2Sw+tPAW4u2A9A2LcFr+5q06huSBhm5lxyG18fBT0+YSUEwQk1LXoY3xsP+1SbD0WqBjbOMGlwoWfCs+Tv4cmjRObTnEoQgEpBxV0qNV0ptUEptVkp5TNcrpboopeYopVYppeYqpToGv6sNT872IzXut8veVi8xN+zR2dz1kRfFORsVPsTLltx7KqN7OHXpn/9jYKqXDYX9JpMYF0Lj/s0dsGupGbVvtum27F9tEmx2LoaXR5sU/4cz4H8XwYvHeT/Omk/gwXSTOWmntOb/pweFB0w/wMSwC0IY4de4K6WigReAM4F+wKVKqX7Vmj0NvKO1Hgg8DFSTfQtPOrvU/Lz3rD4e+zc/fhYAJ/XMInvqN277XF031SmvMkZykkslIzttbKP30/q25uyB7R0VjkKRKVsbcgvKHMXI0xJCKBpWnFe79gc3GjU/VxY8Y4ougJHhfTDdvJ7KNolI1duu/tgsb18IO2xPYVo7hZ5G3iRFOISwI5CR+whgs9Z6q9a6AngfPOoz9APm2JZ/8rI/LHngHOc9bEhn70kcnTISWbm7din5FVVWTu6VxbMXO0MyM5JNnH2HFsa4Hy0xyVPP/mEQAAs2HqQxGfH4HN5bupO2aQmOgtchoXC/+dt/ElzyPxPDDUYWdsKz0ON0uPi/cOMimPCM2bfHWVOXzbNhzsPO9erp9t/eac5RUQL/PMa0/WSyMf5vnQVvnmmWP7kWVn9o4sbHPRq6zysIISKQX2kHYJfL+m7bNld+Ay6wLZ8PpCqlwr60UetUpw+8Xbq7P3yUrXJTanwsuQWeoZI1GcDyKivx1fa/dfWxgDNyJscmTTywo4kpP1DLkftnv+4mvyQ42bUWl8rifdsFIH9cVz/4L+/AoU1mpHzRm9BnAvSwycveuw+OnQyXf2wUFNv0hyxbkYT/2r56OW86l7NryA14pjf8o5tR7fPFGttofsrcho2KEYQgEUi0jLfn0eqxaXcCzyulrgLmA3sAj6oaSqkpwBSAzp3DY3Lq/SkjWbevgI4tk1h276ks3nqIlPgYRttqtqYmxFBU7vyoQzu34GBRBTsPl7Avv5R26Z6Fo8urrB7G327EzzqmHbPX5fLmVcbYJ8ZFkxgbzSEvGjf5pZXcOuNXbh7TneNcMmf35Zdy+we/MaJrBh9ef3y9r4HrBLFfHXdLpdE3GX6NUSPsc3ZgoXvFh+DLW83ywIud2yc8C2OnmZJq1Wnj4h3MXQdf3+Zc/9OXRv9lx0KjwJfSBkoOwb8Gmv1VLuqgw642N4tWPYxff95TZntiywZR7xOEUBCIcd8NdHJZ7wjsdW2gtd4LTAJQSqUAF2itPfKytdbTgekAw4cPDwul9JHdWjkkB1qnJTBxsPtDS6qL/3nGdSM5vnsrHv5qLW8s3Ma9n67mzas9C/pWVFl9RpycP6QDo3tk0tolcqZVShz7CzxH7k/OXMf8jXnsPlLCj3eMcWw//okfAVi27TBr9uR7FUmrDde/u8KxHOevvF7hPig64Ky2c8rf4aQ7/Z9kyYvO5fYuGcQx8b6zLRNbwjF/MO6TF120sW/42dxQohKcI38wmZzX/giv2aQBLv0Aeo93P2b3sabwxPYFTbPAhiAESCBumeVAT6VUV6VUHHAJ4FY/SymVqZSyH+se4I3gdrPpUmFxuiDsRbavGpUNmEzT13/e5tZ+6ier2HO01JHl+fRFg7h5rLPIrlLKzbADDOyYzsqdnn79GcuMt+xADaGaZ//nZ5/7AiXHpXrVraf09N6oogS+/ivsXem+fetc/yc4uAkWPG2WT3uwdp2rHsVy/Xxoe4zv9h2HwaTXTGhjz9O9t4mOMUZe3DFCGOPXuGutq4BbgO+BdcCHWuvflVIPK6XOtTUbA2xQSm0E2gCPeT1YKDmy3ehZVzVscQ37BKgr9lKAYLJNF202k6Faa95fbgxypm0C9cJhHbnrDM9IHFeO6dCCPUdLKSxz96GPsGniVFk12VO/Ye3eAl6Zt8Xj/X94ebHXwuB2rFbtc7/rOdc/Mt4tgsiNbfOMuNaHVzi3dRsD2wO4udgnQONSYPTtNbetToxLtvGoW021H38MvAjOe0GMtxDRBBT2oLX+VmvdS2vdXWv9mG3b/VrrL23LH2ute9raXKu1bvjyRW+cabSwH23doOnqKfHGs+WqlKiU4tZTejjWf7UVuHAd5bdJ956w5I02acaAufrdf915hGXbDwPOpKiz/r3ATYDMzrLthzlc7DuxqvffZ3LZa0u97lu2zZwjLSGmZn2bCndJBe7Zbfs/aKNV7g1LpRnp2wsp37vHezt/HHeD+dv//Lq9XxAikMjJUHUdhb0+zpQXawD+eFwXMlPiOHdQe7ftd4zrzfYnJ5AQG+WYkHRNXvKVjeqNlrZRvmuxjA+W7/LVHIBv/+weLTLs0dlkT/0Gq9X9xvfEt+uotGgWbTnkdfRu9/V/ccvomjtpD2G0E59qKtYDrHrfs/2mH+CRTJh+sllPq0fe29j74NL33YsjC0IzJ3KMu2vl9t3LPCuPh4iumcnkTDudThne3RVllVZeXWD87m7GvRYj9wyb1vx+F996+xaeUTiu9GufxuoHPSVp7fo3dl5xUaNcsvUw2VO/4dq3nbHh+/PLiI5SdPbx+RzsWWHcKpm94GxbXdDup5i6oAc3ebZf8Zb7evVCEbUhIc3UKxUEwUHkGPejO2HwZe7bct4wCSn7G1nwyYarWybQ6lAA3VubtnYJYHBqwp85oK1H+ycmmQnFVC+ZpAs2OzNAq2vgXPrqEgBmr8ul0tbX/fllZKXE1yiEhtawZY4pP3fLchjuUiUoKQO2/uR0lVmt8NFVpoycnRsWemqSC4JQLyLDuH9yndENyaxWRPhr2+Tc/y72fE8DMaijCUN8ed4WvvrNGUFaG32WlPgYWiXHcbDIOZVRUFpJXEwU423G/ZGJ/R37Lh3hzCGYc8fJbse677M1jqSkv35o9G+qa+MAvL1oOxarZn9Bme+njMoy+Pk5k9Jflm9ixauTYAvDtBdqLthjysQBRMXCX9eZqvCCIASVyDDuqz80f9M7mgo2185x31+wx4zgGziSBmDa2SbR5smZ63n8WzPZ+d/JPsSuasCqNf9b6syoPFJSQcukWM4d1J4V007jCh+FtrtnpfDb/ePY/JjTbbE1rwirVfPj+lwAJg3t4LgJ2ecCHv1mHXd8uJJ9+WXu8wNWKzzdGz64AuY+DrMfgJl3mX0DvdxE7RIBsx+A545xGnaAGxcanXJBEIJO+Oq5718NG7+DY69zbku1uSg6DodbcowO98r3nPsPb4XWfZ3rlWUQFWPimu3M+z/I6g39ziUYeKv6ZI9+qQ1HbFICrgJlfdqmopSila34yDvXjHAb3dtJTzLumelXDGPKuys4/Z/z3fbfekpP0hJNMfAqq2bs03MB+HzlXhJio9yUKikvgKL9zggXV5IzPbe5FlY+utNENIHRhslqhrVYBaGBCD/jvnMJvHGGc/1Hm6hTchZku0R0ZPaE816EU6bBszaDbg/Xs1RCeSH8w1aF/oGjkLsWXhrlfP+VXwUlQ9GbgqKrZk19cPXBA5zUK6vG9r722yeD0xNjHYqVdsoqre66OpXuE7IBMWWeMyrGTuvqwqKCIAST8HPLFPtQRzz5bu/b09obnRFwumUeyXQadoAnu8CKt93f9/Y5piBEPfEW1ZKWWPt76rQJff038oO3OPWLhrmHIMbHRNOtWkGTNq5umcoS83fABXD+dBhxvVm/sYbyglm2JK1jr4M7NsJdW0VCVxBCTPiN3F2Nwph7jZug47HQtwY3ij2LsarMjNqrU54Py14xy9knGl0RMAUh/vQldDvZ8z214KpR2by1aDtf3zqalslxqDoYtktGdObRb9a5bbtzXC8frQPj5F5ZPD7JM1X/6z+PprTCwrBHTbEMt+7a9dYHXgK9xsExF8LYe9zdL9WJTYC/bYP4NHcXmCAIISP8Ru69xptK8CffDWPuhjMeg/7n1aw8GG3ixFn7BSx5yX3f8Mnu61d9bbIr7XxSbX8dePDc/mx/cgIDOqQ7im9wdGetngxS4mP45e+nc/bAdkwebZ46Sitr/2Tx9EUmPX/dw+N5+5oRxHoRAkuKi6FVSjy3n2ZuHqf2bePcOfsh8zfTloEbFV2zYXccNEMMuyA0IKomzZFQMnz4cJ2Tk+O/YTAo2Ov0u9sZcw8ktYIR15lIGoDrfnRmOZYehae6QEY3uPUXOPA7tOoOsTUnDwXWn33wbB8YcoW78NXuFWZkXF2psBp7j5Zy8fTFvDd5pG+tl1BgtZinGYC/H4ToEFZkEgTBK0qpFVrr4f7ahd/IvS54C7cbM9UYdoAznoDOo9zT1xNbwAl/gfzdJpvy5RPgsbbOZJyiXPj+PlOs2Y6lCvI2+u9PgS3e/dd3nTeW7+8zUrQzLjZiW6VHYfoYeOE4D92W9i0SWfC3UxrWsIMpXg0QmyyGXRCaOM3nOTmzl6m3CXDHBvd9x99kXtVJ72QKPrgWgXiohXubxc+baJD2g+GH+2HJCyYxp6b47W3z3Nd//qc5jp23Jrjvf+VkuLWBnnJqwu5vl2LRgtDkaT7G/do5sH8VpLR1xsP7IybAkMXpJ8NFbxvDDsYFNPgyE4rpjcJ97uuzH6z5+Ic2mdF7XHLN7UJJZSnk2RQnk2sOuRQEofFpHm4ZMOJS2aOdE4GB0NHFrTXwEs/9t9k0a5Iy4aMr3fetfM/dZeOK3b1RXbv8wXwY/6Rz/e4dplwdwCIfo+XSo8YdVJ0tPzrdP8Hg3UnwsU0zplUtrqEgCI1C8zHudaF1Xzj9EbM8/gm44nOItoVVTnoVWnSGoX+CEh+x949mOQ25ncL9cGCN8e+f9qBz+zWzzN9uNjXLXmcav//Z/4Q2A2Cbe1YpYLTQn+oC757nvv2HB+Dd880TxK/veb6vtmxfCDsXOdd9lb0TBKHJ0DyiZULJ8tfhm7+a5T//aqJrSg67J0md9xIM/qNZtk+g9p4Al/7PjLDXfAITX3C2Ly9yV0mc+5TRcbklx2TegpnYre7/H3ufiepZ+7n79ug485SR3Np7yOiaTwAFAyZ57qssNRPJdq6eCV1GebYTBKFBkGiZhqK7rdjySXcZww4mpvusp51tPr/R830dhjjf72rYwVP+tu855u+Ohc5tO5d4HvOnxzwNO5hJ4Wd6w8Mtjb6OK29OgI+vMS6XvI1GEOzHR51RQfbztB9i3EZi2AUhLBDjXl8yusLUnWbU7MqI64wxtLPibTMCt9OrFsUlMntCfDpsdlG7zLclWvU8w7N9iy5GL+ev6zz3/XuIeTIA2DgLdrjUOH3hWCMINv//jMBX8SHYsQhUlNHaEQQhbBC3TKjZtgDePtt927Cr4ZznanecR9tClRfRrru3G031PmfDnIeMdML9h51lB8sLYfXHUHrYlLbb6UUDJqO7yfxd8oLnPjCj9ilza9dfQRBCQqBumeYTCtlYZHupPTrSi5vGH33OsvnGq5HYEk63SQJc9jEU57rXk41PdVZGOuE2Z4apKzf8bDJvT3vA6PDY5wXsiIKjIIQd4pYJNUoZWQOAYVeZePi66JhPes2UsXOlZbb7emyCieDxRVS0eWqwk9nLTLTGJZl+2gXW7toCV3wGHWyDg25jat9fQRAaFXHLhBtlBSaZae4TJgyzJmPuDa2h5JD3whrVsVpNFasWnerWV0EQgk5Qo2WUUuOVUhuUUpuVUlO97O+slPpJKfWrUmqVUuqsunRaCFhMTpoAAATmSURBVICENDMCP2Va7Q07mBF6IIYdTNikGHZBCEv8GnelVDTwAnAm0A+4VClV3Qk7DfhQaz0EuATwkXcvCIIgNASBjNxHAJu11lu11hXA+0A15y8aSLMtpwNBzHsXBEEQaksg0TIdgF0u67uB46q1eRCYpZS6FUgGTgtK7wRBEIQ6EcjI3VtNuOqzsJcCb2mtOwJnAe8qpTyOrZSaopTKUUrl5OXl1b63giAIQkAEYtx3A66zah3xdLtMBj4E0FovBhIAj1k7rfV0rfVwrfXwrCyRjRUEQQgVgRj35UBPpVRXpVQcZsL0y2ptdgKnAiil+mKMuwzNBUEQGgm/xl1rXQXcAnwPrMNExfyulHpYKXWurdkdwHVKqd+AGcBVurEC6AVBEITA5Ae01t8C31bbdr/L8lrghOB2TRAEQagrjZahqpTKA3bU8e2ZgI8KGc0SuR7uyPVwR66HO+F+Pbporf1OWjaaca8PSqmcQNJvmwtyPdyR6+GOXA93msv1EOEwQRCECESMuyAIQgQSrsZ9emN3oIkh18MduR7uyPVwp1lcj7D0uQuCIAg1E64jd0EQBKEGws64+9OWj1SUUtuVUquVUiuVUjm2bRlKqR+UUptsf1vatiul1L9t12iVUmpo4/a+/iil3lBK5Sql1rhsq/XnV0pdaWu/SSl1ZWN8lvri41o8qJTaY/t+rHStqaCUusd2LTYopc5w2R4RvyWlVCdbPYl1SqnflVJ/sW1vlt8PB1rrsHkB0cAWoBsQB/wG9GvsfjXQZ98OZFbb9g9gqm15KvCUbfksYCZG9G0ksLSx+x+Ez38SMBRYU9fPD2QAW21/W9qWWzb2ZwvStXgQuNNL236230k80NX2+4mOpN8S0A4YaltOBTbaPnez/H7YX+E2cg9EW745MRF427b8NnCey/Z3tGEJ0EIp1a4xOhgstNbzgcPVNtf2858B/KC1Pqy1PgL8AIwPfe+Di49r4YuJwPta63Kt9TZgM+Z3FDG/Ja31Pq31L7blQoxMSgea6ffDTrgZd2/a8h0aqS8NjcZo5q9QSk2xbWujtd4H5gsOtLZtby7XqbafP9Kvyy02N8MbdhcEzexaKKWygSHAUpr59yPcjHsg2vKRygla66GYcoc3K6VOqqFtc75O4PvzR/J1eQnoDgwG9gHP2LY3m2uhlEoBPgFu01oX1NTUy7aIuybhZtwD0ZaPSLTWe21/c4HPMI/VB+zuFtvfXFvz5nKdavv5I/a6aK0PaK0tWmsr8Crm+wHN5FoopWIxhv09rfWnts3N+vsRbsY9EG35iEMplayUSrUvA+OANZjPbp/RvxL4wrb8JfAnW1TASCDf/ngaYdT2838PjFNKtbS5LcbZtoU91eZUzsd8P8Bci0uUUvFKqa5AT2AZEfRbUkop4HVgndb6WZddzfv70dgzurV9YWa6N2Jm+u9r7P400Gfuholm+A343f65gVbAHGCT7W+GbbsCXrBdo9XA8Mb+DEG4BjMw7oZKzAhrcl0+P3ANZlJxM3B1Y3+uIF6Ld22fdRXGeLVzaX+f7VpsAM502R4RvyVgNMZ9sgpYaXud1Vy/H/aXZKgKgiBEIOHmlhEEQRACQIy7IAhCBCLGXRAEIQIR4y4IghCBiHEXBEGIQMS4C4IgRCBi3AVBECIQMe6CIAgRyP8DAMQBM/f3q4kAAAAASUVORK5CYII=\n",
"text/plain": [
- ""
+ ""
]
},
- "metadata": {},
+ "metadata": {
+ "needs_background": "light"
+ },
"output_type": "display_data"
}
],
@@ -566,51 +581,51 @@
"output_type": "stream",
"text": [
"Epoch 1/20\n",
- "7451/7451 [==============================] - 1s - loss: 0.0118 \n",
+ "7451/7451 [==============================] - 1s 103us/sample - loss: 0.0332\n",
"Epoch 2/20\n",
- "7451/7451 [==============================] - 0s - loss: 1.4968e-05 \n",
+ "7451/7451 [==============================] - 0s 50us/sample - loss: 1.2320e-05\n",
"Epoch 3/20\n",
- "7451/7451 [==============================] - 0s - loss: 9.7235e-06 \n",
+ "7451/7451 [==============================] - 0s 49us/sample - loss: 1.0278e-05\n",
"Epoch 4/20\n",
- "7451/7451 [==============================] - 1s - loss: 9.0429e-06 \n",
+ "7451/7451 [==============================] - 0s 48us/sample - loss: 9.9471e-06\n",
"Epoch 5/20\n",
- "7451/7451 [==============================] - 1s - loss: 1.0248e-05 \n",
+ "7451/7451 [==============================] - 0s 47us/sample - loss: 9.8869e-06\n",
"Epoch 6/20\n",
- "7451/7451 [==============================] - 1s - loss: 1.0652e-05 \n",
+ "7451/7451 [==============================] - 0s 48us/sample - loss: 9.6331e-06\n",
"Epoch 7/20\n",
- "7451/7451 [==============================] - 0s - loss: 1.0775e-05 \n",
+ "7451/7451 [==============================] - 0s 48us/sample - loss: 1.0694e-05\n",
"Epoch 8/20\n",
- "7451/7451 [==============================] - 0s - loss: 1.1454e-05 \n",
+ "7451/7451 [==============================] - 0s 48us/sample - loss: 1.1236e-05\n",
"Epoch 9/20\n",
- "7451/7451 [==============================] - 0s - loss: 1.1335e-05 \n",
+ "7451/7451 [==============================] - 0s 47us/sample - loss: 1.2764e-05\n",
"Epoch 10/20\n",
- "7451/7451 [==============================] - 1s - loss: 1.1369e-05 \n",
+ "7451/7451 [==============================] - 0s 49us/sample - loss: 1.2035e-05\n",
"Epoch 11/20\n",
- "7451/7451 [==============================] - 0s - loss: 1.0755e-05 \n",
+ "7451/7451 [==============================] - 0s 47us/sample - loss: 1.3691e-05\n",
"Epoch 12/20\n",
- "7451/7451 [==============================] - 1s - loss: 1.1995e-05 \n",
+ "7451/7451 [==============================] - 0s 47us/sample - loss: 1.3934e-05\n",
"Epoch 13/20\n",
- "7451/7451 [==============================] - 1s - loss: 1.4330e-05 \n",
+ "7451/7451 [==============================] - 0s 48us/sample - loss: 1.4127e-05\n",
"Epoch 14/20\n",
- "7451/7451 [==============================] - 1s - loss: 1.4510e-05 \n",
+ "7451/7451 [==============================] - 0s 49us/sample - loss: 2.8624e-05\n",
"Epoch 15/20\n",
- "7451/7451 [==============================] - 1s - loss: 1.6119e-05 \n",
+ "7451/7451 [==============================] - 0s 50us/sample - loss: 1.5024e-05\n",
"Epoch 16/20\n",
- "7451/7451 [==============================] - 1s - loss: 1.6437e-05 \n",
+ "7451/7451 [==============================] - 0s 47us/sample - loss: 2.1077e-05\n",
"Epoch 17/20\n",
- "7451/7451 [==============================] - 0s - loss: 2.2215e-05 \n",
+ "7451/7451 [==============================] - 0s 48us/sample - loss: 1.8178e-05\n",
"Epoch 18/20\n",
- "7451/7451 [==============================] - 0s - loss: 1.5089e-05 \n",
+ "7451/7451 [==============================] - 0s 48us/sample - loss: 2.2788e-05\n",
"Epoch 19/20\n",
- "7451/7451 [==============================] - 1s - loss: 1.7636e-05 \n",
+ "7451/7451 [==============================] - 0s 49us/sample - loss: 2.3774e-05\n",
"Epoch 20/20\n",
- "7451/7451 [==============================] - 0s - loss: 1.7340e-05 \n"
+ "7451/7451 [==============================] - 0s 47us/sample - loss: 3.1842e-05\n"
]
},
{
"data": {
"text/plain": [
- ""
+ ""
]
},
"execution_count": 20,
@@ -637,17 +652,19 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "R-Squared: 0.998666\n"
+ "R-Squared: 0.996083\n"
]
},
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VNX5wPHvmT0rSSDsYNjdUURFpWrd6laRn9WK1qrV\nUvdqtVZta7UurVrrUhfqVtyqtlSt1g0VF1RQg7LKDkFAIARC9lnv+f1xh5lMZiaZJJPZ8n6ex8d7\nzz333jNjfHNz7jnvUVprhBBC5BZLuhsghBAi+SS4CyFEDpLgLoQQOUiCuxBC5CAJ7kIIkYMkuAsh\nRA6S4C6EEDlIgrsQQuQgCe5CCJGDbOm6cb9+/XRFRUW6bi+EEFlpwYIFNVrr8o7qpS24V1RUUFlZ\nma7bCyFEVlJKbUiknnTLCCFEDpLgLoQQOUiCuxBC5CAJ7kIIkYMkuAshRA6S4C6EEDlIgrsQQuQg\nCe5CdNOCDTtZvqU+3c3IWb6AQU2jp8fvo7Xmy6qd+ANGj98rFSS4C9FNZzw6j5MemJvuZuSsB95b\nzcTb36Ouxdej91n2XT1nzpjHfe+t6tH7pIoEdyG6aYJaxbGWBeluRk4yDM3fP1jBPqqqx5/ev9vV\nwrGWBTz/wcIevU+qpC39gBC54mXnLcGtm9PZjJw08qY3Odf6IXfYn2LdhtFQ/oMeu1dj7TaedNzL\nUqMCX+As7NbsfvbN7tYLIXLeHfanAFB1G3v0Pp7a7wDY11JFQ10tAG8u2cLdb6/o0fv2FHlyF0Jk\nHMPQbKptocp1TqjMG+jZZ1Ff3dbQdkvNt1TcPT+0/8iHa5l7/fcZVpbfo21IJnlyF0JknOc+38CR\n93wQUebz92yfu9FYHdpu2LUDBz5usP2TNxw3UkQz37v7g3bOzjzy5C6EyCiGofnDf5cw1fJpZLmn\nOaHzV29rwBsw2Gdwn07d11O7JbS9aM0GVrl+Fdpf4rqY63y/AE7p1DXTSZ7chRAZ5bu6Fo63LOA+\nx6MR5YY3seB+/H0fc8qDn3TqnlprrE3hbplVy6JHP/3F/vdOXTPdJLgLITLKNS8t5DHHfVHl2hc/\nuDd6/KHJR0dYlnCZ9b+duufGnS3spb5lp3MIANOs2dUFE0uHwV0p9ZRSqloptbSDegcrpfxKqR8l\nr3lCZI+5q7enuwk5oZDoIO7RNvC2xD1n3z+8w3X/XsSna2p43vEnrre/hGHohO9Z7/ZxhHUZ3n77\nUq1LGG35LqqOoRXoxK+Zbok8uc8ETmyvglLKCtwFzE5Cm4TISsvWbUp3E3LCZfw7Yt847zXcONC+\nZgIxAnZVTRMT1QqWLfqCWQvC/w32uulVPl1Tw44EJj953OYvFIvVSoPOizw4+EC+3OPnWJSmpamh\nC58oPToM7lrrj4GdHVS7EvgPUN1BPSFy1tGr7kh3E3LCNvuwiH1LfiktOFm5sZoDbo1+fnxjyRZm\nOf/Iu87r2bAw3J1ylvVDzn3ic86cMa/De3pbzODeMmAioyzmi9Xag66C39fAxe9jFJttuv+1+XGv\nkWm63eeulBoCTAUe7aiuELms0Lst3U3IWlU1TVQ3uAHw7k7cdeilcNRvYOB+tGgHe1s2sK9vUdS5\npd7wKJdLba+Htm+zz+R624vsu3M22xs8VNzwBs/Oq2J9TVPUXwA+dyMAVmd4HHtpcRFY7WCxYivq\nB8C6pR3/osgUyRgKeT/wG621oZRqt6JSajowHWD48OFJuLUQmcNi+NPdhKx19F8+BKDqz6egdr84\n/f5N4CoGYITF/MX5guMO4PqIc/NqV4a2j7dGjnK5zPYaAPd/fgGl1PP7/y4DoNBpY+mt4VQGfk8T\nADZnHlzwJrx3C0z4aej4yOHD4TN43PFXnpl3Pj89rKJbnzcVkjFaZiLwolKqCvgR8IhS6vRYFbXW\nj2mtJ2qtJ5aXlyfh1kJkDmX0bNbCbLVhRxM6zotIrTXvL9/GFMsnXGR9A601674Lvpi2x54NWrku\n8sW1393UYRu+XrSQr12XUOU6h9/YXmB/30LcvgANbh/3vLOCnbvqALA5C6DiCLj4XSgaGDq/dED4\nYfRv//2EZm/m/yLvdnDXWo/QWldorSuAWcBlWutXu90yIbKMVWf+//CptGjjLi55dgFH3fMhL30Z\nOy/MnBXVXPR0JQ84HuH39ueZu7qGviqYG98au2Phgsc+ZGud2YUTMDQLVn8bVSew99SIfe+OqtD2\npbbX+afjTs54eC773TKbhz9Yy/OfmE//Nldh7A9Tugc7tXnsS9fl7HPzW7h9gbifPRN02C2jlHoB\nOBrop5TaBPwBsANorWf0aOuEyCrZM0wuFU5/eC5FNPM72ytsWjUNDonuit26s553HOFulq3V27nA\nFmPQ3YijYP1HAPzP8Vsm/SmfY/fsz+LNdfzesiyiasPw4yia8hB880qozOzOiVRe/Sk/tDTzN8dD\n5lBLIC+/IO7n8dkKIWD2zd9he4qzHyvj1cuPaOcbSK8Og7vWelqiF9NaX9Ct1giRxSw6s5/kUu0K\n66tca58FwPpVXwFToupYm7YyzhIevvjpnNc5K9bFzpzJ5odOZkjzcios27jL9hh3rjiHYtXEac7I\nl5z+vaeCsxAcheBtjNu+mY67Q9tOZf7V5ciL8+QO9C9ywi5z+xzbHFZ8NwzI3OAuM1SFSBIlwT3C\nydYvQtsjLNvw+sPL1zV6/FTc8Aaz5q+OOGeU9xsA9KGXRF4sv4w55eeFdn9s+5BFrunMdV4TKlue\ndxAABcVlZsENG2HiReFrnBM5fj4W5Yqfj0ZNexH2PDW0/0f70x1eL50kuAuRJNLnHsnfJrzM/HRd\nKEXAd7taOMnyOcPdKyPqXGUzX9epA86Nut7wfkXxbzbhfMYOM1+AOnbf1mKBE26D8dPgxs0w9oTY\n545v1TnhLI5/jwF7w9nPw/F/jF8ng0hwFyJJLBLcI/jb9Poufecpnpm3AQCvL8Cjjgf4qyPOa7u+\no6OKjhzRTnA/+R6sp9wN48+BUceEyx0FMHWG2U0Ty5CJcNrfwvvOdu6x2xG/ZG7ZGTSQ2bndJbgL\nkSRW6ZaJ4MMasf+g42HKNpovSxvbTuO/8K3IfUd04FR7ngL7nRl9o1PvA5sT+gyFqY+C3dVx46b+\nHcr3govfMycq7ZbIuYDhKKKAlozONSP53IVIEnlyj+TX1qiyk9fcCvyClvrayAPDD+v4gjYHnPEE\nLGnVdz7pcpj4s8QbdeVX0LILhh4E488Ol//sHajqRJpgZzEWNNrTgHK105WTRhLchUgS6XOPVJDn\nAm9k2dp+32cvwNPYJl2VUvgcJdi9u+CSyEU6ovzwAWiphcIBsNdpnWtU31Gxy4dPMv9JkHKZ3Tfu\npl3kZWhwl24ZIZJFyf9Ore2wmvlYOPc/obJ6r5mixNdcF6547M0A2I/9rbnfb2z7Fz7oAph8DRxw\nTvy+9B5myTNH1TS1/Qskg8hPoxDd0HpavU850tiSzGNozQ5rOYw5LlS2tWYHALU7zRQCxvhz4PBf\nmgcPnQ631JndLxnOmmc+rbc0SHAXIie1fp9W7apIWzsyTW2Tl4amZpoDwX73cScDMMX6GYahWbTc\nHN9uOeKXcdMMZLKA3Qzuv33xs9DwzkwjwV2IbjC0ZqNhJsFzG9EvEHurz9fvYKr1U4YRXJd02guh\nYw0eP/fuHgJZWpH6xiXBgP4DAHjGcRdba+vT3JrYJLgL0Q2GBqXMx3evx53m1mSOyiXfRJUt6ms+\nvS9Y12pNnwSHHmaaMSMqwjubv0pXM9olwV2IbjC0xoL5Z/l4Izqg9VZrln4ZVbazeG8A/vicOaZ9\nfv8fp7RNSVXQj5b8wQD87qV5+DKwa0aCuxDdoDVYgtkgmzJ8xmIq3dhvblTZ8MGDAPjQeS0AfRtW\npLRNyVZ5uLn43EzH3eyo3RUqf3PJFhZv2hXvtJSR4C5EN5hP7rvfqmbubMVUW1lwsLnxk/AwyPxR\nkROVxrREL5mXTQ7fuyK0HVhlzrzduLOZ25+fzdUPhydanfP4fCpueCPugiU9JfteUwuRQQytUcFu\nGSuSfmA35W8xN4aFJwb1HzYmslICWRozmbWsIrT9h/+t4nBjPW8v28pnrqsAaGg5H4fdyuiqfzLT\n+RzV9ZsY0Cd1f93Jk7sQ3bClzh16crdJcA/zB18u2/NCRVZ7m/Hr8bI0ZpENxz8BwBOOe9n81j2M\n/jb8C+u0Pz7DuN+9xR/tT+NQAV75339T2jYJ7kJ0w+9mLaCvMpNg2QhkdCKpVLL6W/BhA0ub4aHX\nr4f++8A1y2KfmGXUiMmh7d/bn+dO+5Oh/Q+c11LlCqcuPmjlX/myqk3ahR4kwV2Ibvh+89uRBYY8\nvQNYAh68yhl9IL8MLvvMzOCYA1yF8Rf3aOtgyyruf+yxlK29KsFdiG6wBjyRBUbuJw/bsKOJuavN\n9AFuX4BbXltGXbMPgFXbGqi44Q1q6+rwxQruOaZPfgKfsXgoTePOAOB5x5847uZneG3Rdz3cMgnu\nQnRP22Bu+NLTjhTRWvN/9/yXl/7xAM1eP3v9/k2GfXEb/55tLl79/JyvqXKdwzTbB/gsmZ8jpruc\nNis4Cmka+r2I8o0H/za8c9E7FPzo4dDur2yzWFMdf23XZJHRMkJ0g2G0mbyS40/u3oDBAtelABz7\nh+G86HiSQy0r2L62CjiOEfXhdVPzjab0NDLVbtpMgd8Lt5eHigaUlcCvlkPdpnAX1C8XwQPj+T/r\nJ/wj3x7nYskjwV2I7mjbxx6IDO5aa3Oik0WlsFE9p8kTYHdHxPvOX4fK6xwDKQcs/nAKhl61eInN\nAdeuBG8TvHszjn2nQNEAKB4crlNawUajnGGW7eQ3VAEjerRJ0i0jRDfoDrpl7nl7BYfc9EJGZg58\nc8kW7p29kic/WZ9QfY8/wEG3vRPz2KJqH4/MWYnLEv4+HNobs27OKhpoLgZy9vNmYI+hNDiy6qil\nv415PJkkuAvRDZY2wVwHIvfd8x6n0nUpLZszL+/M/154hNFzr6bknSu48T8dzxZ9ZcG3rHf9JOax\nM6yfMPHD89i1eVW4cPAByWpqzihU5l82/fN6/pe9dMsI0Q3WNk+nCzfUcGDpHqH9wy3meG7v1mUw\nfN+Utq0jjzgeDG2fseRIOKOundrgqmv/Cf8Qy0oOsaw0d069D+u+Z3S7jTln4s+g8iksF77Z47fq\n8MldKfWUUqpaKbU0zvEpSqnFSqmFSqlKpdTkWPWEyEV2HfmkXv+fqyP2/cERI+6W5pS1qafsTm0c\nYdqL+A84L7p84s/AlfgY8F7j1PvM1abyy3r8Vol0y8wETmzn+PvAeK31AcDPgCeS0C4hsoKdyD73\no6yLI/YDFnNUhNcTO7hvq3enPKFUV23atj2y4KL3YNxJ2E5/KKLYOPvFFLZKxNNhcNdafwzEnTOr\ntW7U4Z/OAiQ1nuhFdndDtOxxTMzjhsUcW+Jujg7uq7Y1cM2fH+DFjxdHHUuLNr9kFmzYydE3PsHK\nLWZ3jbHirfDBW+pg2MHh/SuDC1aUjcLSas1UkT5JeaGqlJqqlFoBvIH59C5Er9DgHGj+e+rTMY9r\nRwEAH1VGv7DcVF3LPx13csin03uugXHE/GvBH7mS1ILK+XzovJba2XcBcKXt1fgX7DvKDPhXfQXW\nnh/DLTqWlOCutX5Fa70ncDpwW7x6SqnpwX75yu3bt8erJkTWqLMUU20bhNMZzn5Y1xLuh9fKHLNw\nie11vLWRU84dyqxX4V1FqvkC4eDuthYEC1si6uyq3gzA6HXP8sz7rZaSa5WjXWSupA6FDHbhjFRK\n9Ytz/DGt9USt9cTy8vJYVYTIKhZtYGClT174aXXOrBmhbTvhQN+4bW3Euc7gSBsrqR8D7w0YbNWl\nLB80lbkV5ktgwxM5ozR/s7maUj9Vz3FzWy2JN+LoVDVTdEO3g7tSarRSSgW3JwBOYEd3rytENlA6\ngKHM/42WGeYQyKlrfxc6bjPCQyW37Ywcauj3hbtBZn/6Bank8QVw4gObE+U0F5DwuCOD+xW2cP7x\nwVTzhRpPVd4+YJUR1NkgkaGQLwDzgHFKqU1KqYuUUpcopS4JVjkDWKqUWgg8DPxYZ8vrfyG6yYKB\nVmbOcjfhRFnNLWYXR8AbDuAfzn4l4tyAN9wNcsK7x+P1p+4J3kwj4MNid2IJLqjhbWnCFzB4+atN\nMRd81gEP2pr7ycByRSKjZaZprQdpre1a66Fa6ye11jO01jOCx+/SWu+jtT5Aa32Y1vqTnm+2EJlB\n6QBG8H+j1sMim6sqcfsCDPKsCZVdyiwaGupYtHEXJ9w4g+VrqiKuVfnRaylps9aamro68pUHW0EZ\nVqfZ5+5uaeSJdxdR8sq5vPTGO1TrkojzDrWsYETj1ylpo+g++ftKiG5Q2kAHu2XyCed293ma8QYM\nhqgavJY8HIb5lP6Pu65ijTGU2c6HYE3ktQ75+EI49vQeb/OM95fR9MH9TLCDvagf+S4ziNfX1tBn\n0wKOsS5keeWv6W/Z1eNtET1HcssI0Q2tu2VcKty/7nc34w9oHPhZM3RqqPwq26s86Hgo6joANmXw\nxOsf9WyDgbzP7uU6u7nWp6vPAFxlZubCb955ggXrtgGwl2UjAN+NvzLy5N9s6PH2ieSQ4C5ENygd\naPXkHu5fn/PmS/gCBjYCKKud1Yf/Je41lpefFNq+eMFpSWvbN9/Vc/5Nd7Jmy05avGZq4o++2cjZ\ngddDdQrKBtBvwBAAplg/417HjIhr6P57M/egBwCo6Xcw5EV21YjMJcFdiG5o/eSeR/jJ/XzLW/z7\n3U/MfniLHWPUsfGvsdcpkQVJWod1/sfv8LTjLr575DTuvPVXAMx7/nZcKjw8M79kAIPK+8a9hkMF\nmHzc6bQUDqfvD/+YlHaJ1JDgLkQ3WLSBDv5vVN93fMSxK5acgUMFUNuWUNAnfgAdd/gU6kdPCe0H\n6rckpW1FFvMviSOtS7jNPhMMgxvskXlfVNlIAN4rmxbzGv0Gj0TllZB33RLUHocnpV0iNSS4C9EN\nFsMXmm4/YPrLLD3u2ag6I9QW+hTmhwvGT+OF4lZZOlzFFP/kGT4Ya46P9zXXd7odm3e1MH9d5PQS\npyMyDcCidRvx6+D/8mc9A9evD7W9wW+NqLtt4FEAqOGTOt0WkRkkuAvRRW5fgBJdhz8v+FTuKsY9\n4KCoes6f/ocCR6uBaSfczuhyM9i78weFiv3OUgBq6xs7vXLTjAduY9IzI8EbTlBm8UcmKxv/3P7Y\nVPC6e0+JSDs7+YwrQtuBM/7BgIv/DVcvAUtk0BfZQ4K7EF006/M1VFi2EfCEX6QeNGpgdMWykZFr\nqNrzOPjHN+E/9HJcV30eKrbYzQySi56/iedmPtKptvw0YCb1aqkOpzioWfhWzLp+a15UWfkee4W2\nrXueDDYnlAzvVBtEZpHgLkQXaK3xv212owyxN4TKlcXKbNp0ZbSdrm9zgaMA20l3RixoYbWbsz9P\ntH7JBRvNNTa31LWwdHP7KyQBjLGYSb6WLjR/WWyqbeYC2+zodk++Dtsvv4oqB/Be9hXeE+8Fu6vD\n+4nMJ8FdiC549+s1oeAZOOqGNkdbZd+4bH70yXG6OvLyi6LKnrrnOux/PxyM+N00rbtwDq68FoB/\n/OXXMeuqo6+H4sExjzn6j8Ix6eK49xHZRYK7EF2wc/Pq0LazKHLJtJGHnAqAcd5r0D/c3bFx3IU0\nlu4T95r9RuwXVfZb23OMs2wCX/xl+jytctJstlewvcHD7+3PRVe8udbsbhG9gqQfECJB2+rdFDpt\nFDht7Pz8hdD/Pa6CyIk9o0+6Er53FpaiyP73YdPub/f6JaXhNNg+7ESMdfG1gLMw5nlev0EwIztD\nfFVUbtpERELtq5dAXilY5FmuN5H/2kIkaMk9J1Lwp748fd8NXGYLJ/myuNp0pygFRTFerHagb5GL\nnSc+yjfOA2hS+RHHPE3x87x42mSTHP5ieMm/umPvMV+MOqO7fERuk+AuRIKOs5oZEc+vezTyQH7M\ntWm6pGzSOWzO35N83RzRl77lm0/jnuP1BQhoxdIScxZsfxX+RdBn8s+T1jaRXSS4C9EFH+T/wNy4\nYWPSF68wHEU48FFVHV6Xvrl2W/i4oalrDqcQ8Hg9WJXGNnjfiOtsP/1F868I0StJcBeiC/zWPBpU\nIbiKk39tu9mD/s7D14TKWtaGn9xfnz2bHX/elzXfLGTNlhrmP2HWUzYXVQdeH6rnsiQnR43ITvJC\nVYguUIY/tEhHsnk3fAlWuLxVv/5BTR+B1qAU9QtfZaRlK/zLTBEwenebbA4qTruODf3GsMe7P6ew\nInq2rOg95MldiAS0XTnSqv0Yqmem5hfsdULE/lKjAoAv/nUXAA5H7KXuXLvM4Zl7HHEW3FKHKh4U\ns57oHSS4C5EAo82qwCW+bRj0UN6VkUeHNhun/ZeVTrMv/ZDlfwKgKC/2DNKhp0tKXhEmwV2IBKzb\nWhuxf6Dva2z44tTunsP2GwNAo3MAheOO5phLHwSg3mpOlrL4Ggm0+l938z7T4ZY6LMUDeqQ9IjtJ\nn7sQCViz8TvGtCnrY3Sc86UrigoK4JY6dk9ZKi3ry2LGkpdXQjFg9TXiVi4KtDlrtc9BZ/ZIO0R2\nk+AuRALWz30hrfcvMBoY3rgOAJu/GbfKZ9Oxj9C/0EbpyEPS2jaRmSS4C5GAA+vm0FNd7InwYsOO\nn62b1jOiaRHKphk3eWrHJ4peS/rchUhAgPROBtow0BxBU/z4oVRYtlFm7OjgDNHbSXAXIgE7hp8I\ngPfC2bw+5vbUN6DIHNaYrzwAbC3YM/VtEFmlw+CulHpKKVWtlFoa5/i5SqnFSqklSqnPlFLjY9UT\nIps5guuROkqHcfCpqc/XomyRwx/7X/l+ytsgsksiT+4zgRPbOb4eOEprvR9wG/BYEtolREYxdpkr\nHWGxU5xnvqpaV3xoyu6vHOHgvrn/UVhcsdP/CrFbhy9UtdYfK6Uq2jn+Wavd+cDQ7jdLiMxySu2z\n5obVRr7DRt01VYwoKGj/pCSy2MLrnvY7++GU3Vdkr2T3uV8ExF6VF1BKTVdKVSqlKrdv357kWwuR\nAnYzz3qfPqUoW+w0AD3Bq8L3cpYNS9l9RfZKWnBXSn0fM7j/Jl4drfVjWuuJWuuJ5eXl8aoJkXE+\nch7FVuugtC1T1+CRDI+ic5IS3JVS+wNPAFO01jJGS+QUj8/HEe65BCype1Jvy98cfyUmIWLpdnBX\nSg0HXgbO01qv6n6ThMgs7zxxCzZlMMS3IW1tOPIHkmJAdE6HL1SVUi8ARwP9lFKbgD+AuXav1noG\ncDPQF3hEmau++LXWE3uqwUKkmqpZke4mMGxgPz77/r8ZVFbAiHQ3RmSFREbLTOvg+MXAxUlrkRAZ\nRhtGx5VS4PCjTui4khBBMkNViA4of3O6myBEp0lwF6ID262SJ11kHwnuQnSgbz8J7iL7SHAXogN2\nlRl97kJ0hgR3ITpgwZxAtOKUl9PcEiESJ8FdiA4ow08AC3sefGy6myJEwiS4i4y1cu7L1N21L/g9\n6W2IEYhYkFqIbCA/sSJj2d69iT4tGzG+/Tyt7bD7m/CSnpwyQnSVBHeRsVZoM/vht4s/Tms78t1b\nqbVLojuRXSS4i4zlLxsLQEv1urS2Y5LvcwK21OVuFyIZJLiLjGVX5igVbfjT1oZl35irS1a0LEtb\nG4ToCgnuImNZdDCHuZG+XOZLvvkmbfcWojskuIuMZQ0+sSudvuDeL7ANgBXHPJ62NgjRFRLcRebx\nNoG3Cav2AmZw9+zaQtPCNEwi2rEWgHGHn576ewvRDR2m/BUi1Zru2os8owmX/VCzwAiw9pGz2Nu7\nGMYcCQX9UtcYbyMtuMhL4XqpQiSDPLmLjFKzZgEFgTos2k+Bf6dZqAO43NUA+Oq3Bss0rJ1j/rsH\nWf3NuFVej95DiJ4gwV1klKbnzg1tjzeWA7Bn7YeMtJhBXT1xHGjNglcfhGen0lj5Qo+25/uNb1Cq\na3v0HkL0BAnuIqO4DWu7x22BFri1hIMW3QxA/ZbVMesFWuppvmtPjK1dH+1S1yCLdIjsJcFdZBRv\nJ18DaSN2t8y6e44iv2ULzc90fWHp9Su+7vK5QqSbBHeRUXydDO55334Us3yMYc5qVX53l9vSUL8D\ngNm2o7t8DSHSRYK7yChe7J2qX7bzK/B7o8pfDRwOwPoR53S5Lb7megAOOvM3Xb6GEOkiwV1klCbt\nitivNMZ2fJKnIXLfCHC69TMA7Hbzl0X1onfglj5QuyHhthgtdQDkF5UkfI4QmUKCu8goXkvksEMH\nvpj13ji1kn/4f2DutMk9s+Tlu0PbOuBlx+s30/+VswBoXD034bYYbvPJ3VVYmvA5QmQKCe4io5Q4\nDFZSAUAzLhyEA/fz459hhv9U5k/5mFMmjmHA2InmgUBkt8x+S/8c2ra4a+m74IHQvr++OqLu1kd/\nSO1/bzR3tq+CneEMlLbm7RgoVJ4Ed5F9JLiLjGIz3NgcLi7TN/DlSf8LPbl//L3nOef007jo1meZ\ndOB4AJTVnDWqA9F97ruNXf9cxH7JJ7eGtjdX1zBw28eUfv2IWfDwwfDggQB4m+s5ZuuTWNBgj+wq\nEiIbdBjclVJPKaWqlVJL4xzfUyk1TynlUUpdl/wmit7EbnjRNheP3HojRx16MA5lPrkfOGoISins\n1vCPrAqmBPD7OrkMn2EAUFffELfKwqVLANilijt3bSEyRCJP7jOBE9s5vhO4CvhLMhokeje79hCw\nhp+UncEnd2d+UVTd3U/urYP71vcf6vAeers589XvDgd3z4YvQ9veRbPwNpjDIKuOegAhslGHwV1r\n/TFmAI93vFpr/SXEefMlRCc4tBfDGl6vdHdwd+TFCO7BJ/eAN9wtU/ORmZr3G+f4uPfwuFsA2H/W\n98L3+cdx4Ta8chH52yoBGD50SKc/gxCZIKV97kqp6UqpSqVU5fbt21N5a5EFGut3MoLNuF0DQmW7\ngzuO/Kj6ymb+EtBbFoXK/MEf6T4F8ZN9tTTWsmPFJ+22ZcIq84m9oE8KM1AKkUQpDe5a68e01hO1\n1hPLy2WSdK4pAAAc30lEQVTBYRFp5dr12JSBbegBobIleoS5YY8O7labOYa96L1fh8o8mE/zjXnx\nn7i9LS188/KfEmqTs7BvQvWEyDQyWkZkDL/XTBVQWByeNLTymCf46x4PgyU6odjuJ/fdfE21HGpZ\nAUDeD+/ib5O/ZJsu4S0O54VjPuHvFebTePkbF7LZE/1k/1bg4OhGOeWFqshOsliHyBgq+KLTbg0H\n8nOPHg9Hx+4/9xMZ8OfM/4rgtCaGDyznyoHlfD7yK/YtyWNYWT6f2uuhCizaz9nq3dB5S4wKVurh\nHHjVC/Bwmyd+izz/iOzUYXBXSr0AHA30U0ptAv4AZgIQrfUMpdRAoBIoBgyl1NXA3lrr+h5rtchJ\nh1ReC0D+9oXA2R3W9xWE++a11vxg7v9F1Tl0ZLhbxepwRh0H0Kfcx6Sxkxhams8J3ruZ7bgegEZb\nGYWd+QBCZJAOg7vWeloHx7cCQ5PWIpH9dn0LRYPA2rkkYLt5Dvp5QvWOnLAf7715IGNd9bgaPfTv\noL7fGTnTdKsu5dWDn+MXhxyBUgqAd+6Yzot/WczZTc+xuWg/xnXlAwiRAeRvTpFUbncL3L8fzS9c\n2OVrDBo6MqF6hU4be9q2MNy3FrXxi1D5aiP2y9QJY/cI56MBtu/3Cy45dXIosAMopdgx7se8HziQ\nvFPv6uInECL9JLiLpFq83lwOL3/N6506b+fKVgm9WgXbjgzV5v12Lng5VGb9+bsx6+Y7bFRMuSm0\n74gxMQrgklO/x5DLX2P4qL0SbocQmUaCu0gqpwpPKGqYcTw0Jjaf4aO3ZnXrvr5gNsnKcdcxclj8\nYZBlpeGuGZsrdnC3WhR7DpRRMiK7SXAXSRXwhlMBFG39gl2fPJ7QeR5PS5fud0WfvwHgthaY9yxs\n/xWoK79PaNueLwFc5C4J7iKpAt7IZe2aPYkl9TIC/o4rxXDeUfsCMLrqnwBYHPFnpgKMHhgO7oVD\n9uzSPYXIBhLcRVIFvG2ewJvjpiWKYPjM7hyf6twIG2swHW+JezMAdkvsBbND9S2KXzj+xL/9R1I2\nRMbCiNwlk5hEUvm9kU/qgc0LEzrP5/eDFZYUHcmETtzPVTIAj7bhDKYGtsbIQdPWPb/6OY3uC2WC\nkshpEtxFUhn+yCd3f4I/Yj+xmiNcBp3/VKfuN6SsiCZcOGkEoO+kdqdlAFDsslPs6toYfCGyhTy6\niOSp+hSjzYtRm7+pw9Oqv34Le3A5vUF9O7cYtcseTkGw1hhEvtPRqfOFyFUS3EVSfFv5Bsw8mdEr\n/x4qa8GJy1/X4bnvzZnd5fs6bRbKlPnU3nTARV2+jhC5RoK7SIo5X5lJvwbVm33sO3Uhn7sm4ww0\nd3iu4TCHMT455LZO39diCU94yiuIPW5diN5IgrtICovTDKxWzPVJd5z9Bh57H6x0PMRxsM3surnw\n/MRyyrT1UWB/894uSfMlxG65E9z9Hqj/Lt2t6LVc9sgXp6MH9QWLDavuOLiP2PY20PEY9XiUMoc/\n2iW4CxGSM8F92z/Ohb/uFVrZXqRWsSPye1c2F9piD70obU+9LsCnoxfjSJRFm/d2xknpK0RvlDPB\nfcBmcyide/ataW5J72QNtFkf3VFAYWCX2U3jaWj/XAusKzqoy/fOV+bYemd+QZevIUSuyZngvptr\n/v3pbkKvpP1t0gw48plc/wYALV//q91z99WrsXZjQtEr1pMAKBq6X5evIUSuybngDpj97yKldMAd\nVTYnYC503eAOxD1v20JzGOTo+vldvvfFV9zI2z9aiaWgtOPKQvQSORPcFxsjwjuN1elrSG/l90YV\nrT38HgCaG+Lkl2nawYBXz+z2rffoW8CJ+w7s9nWEyCU5E9zd9vDMRmPXpjS2pJeKEdxPPHRfdupC\nfNVroo7Vr/oU7gmvuPR+8dQebZ4QvU3OBPfWQ+4sM0+E6uVpbE3vo2J0y/QvdtKMi4A3eiLTxn/9\nOmL/0J/Ii3AhkikngzsAj0xKT0N6Kau3PrT9r8HXA+CwWnBrByrGO5CNnnD2xlnqBAr779HzjRSi\nF8mZrJC2BCbLiJ5j99ZTo8qYddS7XDjZfP+hlMKrHNgC0cHdb8uHYOr1Mft0JsmvECIROfPk7tRu\n3udQ3FpSuaZDgXc7Dfa+XHL0aJy28IQkn7JjidFlowjnhOlfsU9K2ihEb5ITwV1rjRMPpX36oFsF\nDZE6Rb4aWpzlUeU+5cQaiH7ZaujwiklOHR38hRDd02FwV0o9pZSqVkotjXNcKaUeVEqtUUotVkql\n/G9sX0CThwfseeSp6EAielbA0PTRdQTyooO7XzmwGNHdMgXWcDea1SXZHIVItkSe3GcCJ7Zz/CRg\nTPCf6cCj3W9W57T4Arjwopxtpp97GmDJLIgxWkMkT6PHTxEt4OoTdcxvcWA12vzCXfYKQ9nGcmM4\n16jryNvzhBS1VIjeo8MXqlrrj5VSFe1UmQI8o7XWwHylVIlSapDWekuS2tght9dPP9xYWq2f2YKT\nvD8NBaBx9GkU/uTZVDWn12lscTNEeVAxnsCVxcJQ77rQfk3tLvr9+wLGAljgvj/8PnUNFaIXSUaf\n+xBgY6v9TcGylGl2t2BVGquzgNcChwGY3TRBnm8XpLI5vU5zwy4AlKs46tgR3s8A0MF5B99Wx5mt\nKoRIqpS+UFVKTVdKVSqlKrdv35686y6ZBYDVmc+eV/ybt2zHRB5H0gD3JPenZk9cnvJFHbvX9yMA\nvKvmAGDX4S6a2dYjU9A6IXqnZAT3zcCwVvtDg2VRtNaPaa0naq0nlpdHv3zrqopPzNmOFkc+YwcU\nMcD7bcRxW4wXeiIJtIa1c9iw4isAjMHRaXv7T/oxADVf/w8Arzv8/mPPI89KQSOF6J2SEdxfA34a\nHDUzCahLZX97a9bgC9UXKyLX4iz2S1dAT6j6/HV4dirHWczgPvKAo6PqHHzwJFq0g51Os6fO720J\nHcsfJbOIhegpiQyFfAGYB4xTSm1SSl2klLpEKXVJsMqbwDpgDfA4cFmPtbYDu5dZu+P8E3k7cHDE\nMc/bN6ejSbmp/jsI+Pj8m9UAuILvNyw2R1TV4WX5OPExrPYLAPxNdQB8ZYym39AxKWqwEL1PIqNl\npnVwXAOXJ61F3WAPruNpt1rYUDQBmr8MHXPOfwCOvBryy9LVvJzgdbfg+OteeEaegMWYGCo3UFgs\n0UvlOawWLEpT0rIBPrgTW635C7jwtLtT1mYheqOcmKG6m1OH+9bH/fAari+fwceBVqvzdLDcm+jY\nZ6vMHjfnutmcuenOULkfG6jo2cE2a6sfsY/u4tDF5tDHQQMG9GxDhejlsj6461bT2G154aF4R+81\niLsvn8bhlmWhMl9zXUrblosKHLHTOziIHimz2/8Ch0aV5ReVxKgphEiW7A3uWsPWpXj9fup0Pg06\nD9fe0RNpb/JfFNr2+DpOTbBr5o9xz5Eug3jyu5BH1LvfOVFlVukeE6JHZW1w3/zkuTDjCDzzn0QB\nG4adjtMeHXkOOfXi8E6gzVqeAX/ECkIBQ1NS9Tauj+/ooVZnv0Ag/hN6PMUlMQJ5q9nEQojky8rg\n3rBmHkM2vQGAZ+EsilUz2Jwx6049dBx/LrsdgIAROZmp4b6JeO/b39wxDOo+fbLnGp0jdNtfkAlQ\nzuicM0KInpV9wX3DPIqeC3e/lO8wR8TkGY0xq1stiokjzCdHbYQzETZu/oaixvU4mswXhN+9+yBl\n718bPlGSjcUU8JtP7v8JTOZQ90M0afOX6gffeyHuOYbTzDnTYsnn2RMXs+DCqh5vpxC9XfYF96bq\nmMUud038c5TZXaNbPbn/b87c8HFvM1988WnkOXcO6nITc5kOmL8gDzhyCp//+TyaMYP7kRP2i39S\nMLhbtZ/zJu3BQXuU9ng7hejtsi64a2v0RBmA9cPPiHuOxWJ+TMMIdinc0oez114fOt688n3qHAOT\n18gcFgh2y1is5pj2W+2/4vXAJKwlQ+OeU1ZaympjCK9X/C4lbRRCZOEaqh6fgSu4vdwYjgMfN/sv\nYOZJP4l/Utvg3kb+f36CveQX0NLmgM8NdlfMc3orbQRfqFrMH52br7qUevfPY45x3+2gin68e/YH\nnDKmXyqaKIQgC4P7tpoa9ghuj/j1x9T4nTxf2v7IC6XMp8z2XgYe7P0cgGv8V3Cf7SGzsGk7lAyL\ne06vFBxdpKzmWrX9i130j870G+X4vWXSkhCplHXdMu6W8ItOV34hQzsI7AAEp8VrIxAx6am1Mc0L\nAbjp+t/xZ9/ZAPhnHAU71nazxbnF32JOBLMXSL+5EJks64L7+v7HhXeCT48d2Z3zRGuD+rraduuW\nF+ex/zFmmlqbewc7Xrm+3fq9ja/JXJjDVSjBXYhMlnXBff9RQ/nVuPd44vAPEj9pd597wM+qld9E\nHHroyEq2ajNQ1WozqdXwceE1vv1Nki64Nb/bHHKaVyhj14XIZFnX5z64JI+/Tju444qtqN3ZCg0D\n366NEccuOWoUWz60gYKqkedQCuw9uA9N2kmB8lDQsjVJLc8N2m0mX3PlJ9DRLoRIm6x7cu+K3cE9\nf/3beHdsAGB24CCu9F6BzWphmMVc8s9SPtb8t0Xx66H/BGC7a48YV+y9jl/3JwAswdz5QojM1CuC\nu+EwJ9GUrPwXR682g9OIS2dx/+23R9TrP3L/0PaDPzuGOYEDsLuT3y2jvU247x2PXvdR0q/dk+qa\nWiVesxekryFCiA71iuA+YPjYqLIxg8uwWiLHZpcPHxfatlktGHlluPy7kt6ez+bPw9VQxa5Xs+tl\n7c7GpvCONet69IToVXpFcB/dv6jd48sNcyy7LT8yx7i25YUX125qJ71BJ33XYE4E8voiMyzueOly\n3I8clbT7JJvf03aWlxAiU/WK4B6xGhDwGftH7K84/U3mnbs66jxtsWPTPmo+exbuGYX/gYOS0h5r\n8A+GAS1rYeMXofK+y5/DVb0QdufAad4JO9cl5Z7J4PWYcwxeG3JNmlsihOhIrwjubQ0/LDIPzdQJ\nwzlsTP+oeobVgV37+PqD/wBgq10TPuj3Qk30L4RE2HWrJ/Ynjweg8cEjQkW+2eZi3u77JsCDB3bp\nHj3B73UDsNfQ6O9KCJFZemVwt42YnFA9bXFgw4/F1yqdsLsegC3/vhYemgjbwsv40bgdvnjcXCWq\nHfnuLRH7zV4/hTuXhva3r5xP3eI3cPmCE652rk+ovT3N5za7ZSwOybcjRKbrNcH95UA4oA8Yk1j3\nirY6sGLgDIRTHvgemQxrP2DQymfMgkcPDx2remwavHkd1Kxq97qW7Ssi9mvXfR2xP7j2S/q8HF6a\nTj84gUzg95rB3SrJ1ITIeL0muPf/6dOcxl+ZdeQ7qHYyGLbmdpndD4Ps4VEi9voN8OzpEfUCaz4E\nwLfrO8DMYdMev6cpYr9x/sx26yuMdo+nSiDYLWN15qW5JUKIjvSa8WyTx/Rj8i0XdVyxlYIicxbm\nKKOq3XrW56bALXVYMYO6r6mW2FnnTSoQuVD3uKrnANik+zFUJW9UTrIFfOaTu80hwV2ITNdrnty7\nYvPW9lMPrDMiF/hQmH3tjmdOpvm5+PnlLYY3ZnnDJV/ztiu8hOBl3qsSbWpKGMG8MjaZnSpExkso\nuCulTlRKrVRKrVFK3RDjeKlS6hWl1GKl1BdKqX2T39TUCwTCL0ZfyYte6Wnb+Z8BsNw1Hs/TZzDC\nsi10LH/N63Gvawk+uW/SkYtX7DWoGG+wK2iLdRAP3HYrHwfM5ev01qWkVcBv5rcH8ookI6QQma7D\n4K7MlS4eBk4C9gamKaX2blPtJmCh1np/4KfAA8luaDp4x50W2p4wJDpv/GGj+vKF2o+CQAPO9e9F\nXyDOqBmL4WW9MYCN530edcxTXAHAoMAW7FYLbwz5JQDVC17rwidInvpHj+Po5X8AIK9U1pcVItMl\n8uR+CLBGa71Oa+0FXgSmtKmzNzAHQGu9AqhQSmX90jvTT5wY3ikfS4uO7kn3WPIp9sXpJ3fXxSy2\naS92Zx6HjQ4/uX/qMMe52xzOiLpXnX0qO3QRu7Z2cjhkw1ZzmcAkKa4Jj+ixFpQl7bpCiJ6RSHAf\nArTOk7spWNbaIuD/AJRShwB7APFXTM4SdquFX3ivxqPt9Jk8natLHuC1wGG8FTiYpybMAsBrK6SE\n+tgXaNgSs9hq+AhYIn9R7PWzRwHY2GiO5FluDAegvNBJrS7C0hIngdmil6JmsRqGhnvH4Z55euxz\nOskXCI/WabS0n8pBCJEZkvVC9c9AiVJqIXAl8DUQNR5QKTVdKVWplKrcvn17km7ds26+/gaqLl1P\nSYGLh686mwOveZnx177Oz04zZ5b6beHsiIuNETw2eS739bsFAN9zZ8W8ps3wElCRwb2srByACcec\nxbXeS7BOnwOAw2ahThVj80QH952bVsIr03E/dkJE+faV8wBwbZ6XlKf32tXzQ9ttfykJITJTIsF9\nM9B6leihwbIQrXW91vpCrfUBmH3u5UBUUhSt9WNa64la64nl5eXdaHbqDCnJY9xA82nVZrUwrCyf\nwSXhoYCNzvBU/KILXmL6cftjH2i+krDXf2vmh2mtZjWjjXUErGaQfD0wySy3m9ecPLace++8i7FD\nw99PtW0Q5U1rovrwq5+bDoDLHfmLcsBLJ4W2A3eP6vRnbmvHv8Kjdhb3+X63ryeE6HmJBPcvgTFK\nqRFKKQdwNhDxdk8pVRI8BnAx8LHWOk5fRW7ZpsLBfcRIM2XwGccfGa5w9wioaZWT5qGJ9KERn9V8\n4nec+TjPfO9DaGdiVV3f8RQa9VAXuYrUmqZWM0W/eBw8jWbOm1asvkZY+XYnP1WknT7zP+3vfBcy\n5ic58a5ciJzXYXDXWvuBK4B3gOXAv7TWy5RSlyilLglW2wtYqpRaiTmq5pc91eBMs3uiU6MOB9qB\nxZHT87e9dx8AutWTty/PfDL/wf7D+emx7ScHyx84BoDmmg0R5cfZFoZ33rwO/wMH0PzX8dEXeOHH\n0N5Qyk0LYPW7MQ817tzCEVYzf87vbrmXgaUyxl2IbJBQn7vW+k2t9Vit9Sit9R3Bshla6xnB7XnB\n4+O01v+nta7tyUZnEn8wSG8ceHyoTCnFb/f/iHO8NwFQt3MHAL5W4+Z1UeQEqPbk9zH/OmjcGR5H\nv2nJh7h0ZH+6rXk7+c1mCoTZgcj8Oe5v3oT1c2N8AC88cQw8/6NwquFWVqwwA/vcwL647NaE2yyE\nSC+ZodpNEw47lqu8V6BPvCui/I7/O4B/3vkblukKHME+cW+rUSf2PomPFc/rYw6Z9NSHh1y+u7D9\nPO/FZz3Cfb7wxCvXx3fA06eid0Se993jZ4Z3dm0Avwd2rA0VuXeYr1cGnvHnhNsrhEg/Ce7ddODw\nUh688w72HtF2dKhpH1VFRX0laI3PHw7uRS57wvfILzGf3I0d4bHuBTbzr4ClRkXMcybtO47jLr0v\nqrxx/RcR+4O3fRjarps3E27vD3+bEEptvDsZ2vA9RibcXiFE+klwT5XmnRFP7kUTf5zwqUP69+Nb\noxxfTfiJuq/VTOJVVXpEVP2/9fs9KMW+Q4r5LBA5mdg///HQdpPHH3Gsz5f3h7aN2m/NjcYtBLDg\n7JN4N5IQIv0kuPew63y/AKD5Xz/H/vrl5rZ2Ulqa+CzP/sUutqu+WFt2hMp0i7lwd/3w46gyBvDr\n/NtCx6686GLA7Ptfe8qLvBk4hHcC5mzb0prK0OidXf806zXpyFmxAP63b4KGrdiatlGrSsAi/e1C\nZBMJ7j3s9LMuBCB/w/uUrTZntS7a76ZOX0dZbYxo/MpM4KU1BIP7KSf8gI9OnM1t11weHrHjLA6d\nd96kPfD/6Gn2vPo1qgwzI0Rj1QJo2MqQDa+Y17Y5+KPvPABe9B8NgGPDR3DvOPI926m3RyY4E0Jk\nvl6Tzz1dSvpEZ1AcMGhYjJrtm2AEhzLe1heA44Am8uhTVMD5h5tj5i8vn4GrZjH3WiJ/Z582fjAA\nV4+Ywf0bplL4v+nwv/DxOYc9zZFD9+GGr89h2uFj4R/hiU9jfCvYWHRAp9srhEgvCe49zJVXEFVW\nXJqcJ+ECWiL2/3bZ6UD8fDK/nnoY2+8rplxFzi875dhjUEpx9J4DqWn0RLaVJnz5WZ8DToheR7pl\netjAkuhVi4rKO//k/iP/bR3WsVgUFkv8ma6D+7io0X0iyrbpkohlB/sWOMIpEYKsBX072VohRLpJ\ncO9hhU4bd/qmAebL1Wv6PoqzvPPDCm+8aFpU2TeO/Tp1DaUUe1nCKQwMrdg47cOoOsaUR7h/n/+E\nygY0Lu9cY4UQaSfBPQV+8PM7uWL0e9x1213cd+U5XbrGhIp+nNNvFsuN4dxrMV/SljljLwbSnsuD\nS/f9cdiTVF2xiYl7joiqM2XiKK4+8zhu950LwIYDftWlNgsh0kfpOKsF9bSJEyfqysrKtNw7W/kD\nBq8v/o76mq2c/+mxvD/qRo49L2rVw3Zt2NHEzM+quPnUvSO6Y2JZvGkXz87bwN0/2r/DukKI1FBK\nLdBaT+ywngT37OP2Bbj3nRX88vhxFDrlnbgQvUmiwV0iQxZy2a389tR90t0MIUQGkz53IYTIQRLc\nhRAiB0lwF0KIHCTBXQghcpAEdyGEyEES3IUQIgdJcBdCiBwkwV0IIXJQ2maoKqW2Axu6eHo/oKbD\nWr2HfB+R5PuIJN9HpGz/PvbQWpd3VCltwb07lFKViUy/7S3k+4gk30ck+T4i9ZbvQ7plhBAiB0lw\nF0KIHJStwf2xdDcgw8j3EUm+j0jyfUTqFd9HVva5CyGEaF+2PrkLIYRoR9YFd6XUiUqplUqpNUqp\nzi1DlKWUUlVKqSVKqYVKqcpgWZlS6l2l1Orgv0tb1b8x+P2sVEr9IH0tTw6l1FNKqWql1NJWZZ3+\n/Eqpg4Lf4xql1IMqS5eXivN93KKU2hz8GVmolDq51bFc/z6GKaU+UEp9o5RappT6ZbC81/6MAKC1\nzpp/ACuwFhgJOIBFwN7pblcKPncV0K9N2d3ADcHtG4C7gtt7B78XJzAi+H1Z0/0Zuvn5jwQmAEu7\n8/mBL4BJgALeAk5K92dL4vdxC3BdjLq94fsYBEwIbhcBq4Kfu9f+jGits+7J/RBgjdZ6ndbaC7wI\nTElzm9JlCvB0cPtp4PRW5S9qrT1a6/XAGszvLWtprT8GdrYp7tTnV0oNAoq11vO1+X/xM63OySpx\nvo94esP3sUVr/VVwuwFYDgyhF/+MQPZ1ywwBNrba3xQsy3UaeE8ptUApNT1YNkBrvSW4vRUYENzu\nLd9RZz//kOB22/JccqVSanGw22Z3F0Sv+j6UUhXAgcDn9PKfkWwL7r3VZK31AcBJwOVKqSNbHww+\nZfTaYU+9/fMHPYrZXXkAsAW4N73NST2lVCHwH+BqrXV962O98Wck24L7ZmBYq/2hwbKcprXeHPx3\nNfAKZjfLtuCfkQT/XR2s3lu+o85+/s3B7bblOUFrvU1rHdBaG8DjhLviesX3oZSyYwb257XWLweL\ne/XPSLYF9y+BMUqpEUopB3A28Fqa29SjlFIFSqmi3dvACcBSzM99frDa+cB/g9uvAWcrpZxKqRHA\nGMyXRLmmU58/+Od5vVJqUnAExE9bnZP1dgexoKmYPyPQC76PYPufBJZrrf/a6lDv/hlJ9xvdzv4D\nnIz5Nnwt8Nt0tycFn3ck5pv9RcCy3Z8Z6Au8D6wG3gPKWp3z2+D3s5Isftvf6vO8gNnV4MPsB72o\nK58fmIgZ9NYCDxGcxJdt/8T5Pp4FlgCLMYPXoF70fUzG7HJZDCwM/nNyb/4Z0VrLDFUhhMhF2dYt\nI4QQIgES3IUQIgdJcBdCiBwkwV0IIXKQBHchhMhBEtyFECIHSXAXQogcJMFdCCFy0P8DOEldEFEw\n/9IAAAAASUVORK5CYII=\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd4HMX5wPHv7FU194qNLQM2xZhiTAsOJZTQew8hdExJIAT4mZjiBAgQAg4tdDDVhBoDNrhh415kcG+4d0u2ZHVdnd8fe7qiO0kn66Qrej/P40e7s7N7c2fp1Wp25h2ltUYIIURmMZLdACGEEIknwV0IITKQBHchhMhAEtyFECIDSXAXQogMJMFdCCEykAR3IYTIQBLchRAiA0lwF0KIDGRN1gt36dJF5+fnJ+vlhRAiLS1cuHC31rprY/WSFtzz8/MpKChI1ssLIURaUkptiqeedMsIIUQGkuAuhBAZSIK7EEJkIAnuQgiRgSS4CyFEBpLgLoQQGUiCuxBCZCAJ7kI008JNxazcUZbsZmQsj89PUbmrxV9Ha838DcV4ff4Wf63WIMFdiGa67NU5nPPCjGQ3I2O9MPkXjn1yMqXVnhZ9nWXbyrjy9TmMmrymRV+ntUhwF0KkLL9f8/LUtQDsrmjZu/cdpdUAvDJ1XYu+TmuR4C6ESFkH/HV8cLva7WvR1yqudAe33d7075qR4C6ESAs1npYN7uF/GZTXmF1Any/cyhPfrkBr3aKv3RKSljhMiEzhxIWVlg08bY3Pr1lXVBFRVuNp2bvp3RVuFH40BuU1Xo55YnLw2FszNzD1/lPp1yWnRduQSHLnLkQzTXPcxzLnLcluRkZ5d9YGzho1HYAj1Vom2B/EX7qtRV9zb2kZCx3DuN3yDUUx+vdP+9e0Fn39RJPgLkQz9VAlyW5CRvH7NU+MWxnc/4ftbQ42tpK3fVZc5y/bVsrCTU3/P9mzcyOdVAUP2cYwfnHL/iJpDRLchRApZUtJVXD7d5bJDDTM9OUuf3zh6vyXZnLZq7Ob9Jpaa6qLtwf3p86dF1Wnb+fsJl0z2SS4CyFSyp0f/RTcftL2TnDb4/XWe05heU2zHrhu3FNFV1Ua3M/DHBbZkz3cbJvArw/qjKuF+/wTrdHgrpR6RylVqJRa1ki9Y5VSPqXU5YlrnhDpY/KKXcluQkbolucAIJuaiHK/pypWdbTWHPfkFO766KeI/4Mqd/2/DOqqdHnpqvYG99upSj7uP405zj/yiOU9Xtt5NVlV29Jq1Ew8d+6jgbMbqqCUsgDPABMS0CYh0tIKSUGQEAf3aMdAtYEVzpsiyt3VlVS6ogP2ml3mqJopqwr5alGor/ywRycwfumO4OSkhtR4fBF37l0p5Vdb3gju53hLmGr9I9UtPBwzkRoN7lrr6UBxI9X+CHwBFCaiUUKko0zJSZJsNR4fTzvejSr/ed12Bj4Wff84eWXobn3ckh10oZQjlTmr9c6PfuLClxt/EFvt8TFAbcVv2AH4lbE8Zr1hH/4UszwVNbvPXSnVC7gEeK35zREifXn86fMne6pZurWUjbsrAah2uRnE2ojjXm2QpdyxTsVqqIj9qY77GOt4NLhfVO5i295q8oeP44HPFlOwsRiXN/IOvNrt43hjJRW9hoI9lyutP8Z8relripr83pIlEQ9U/w38n9a60b9XlFK3KaUKlFIFRUXp8yEJEQ9vAw/8RMMueHkmpwbGkR9b9EWdgy9SjYMsYueWqXB5aUclWYE++jxldsNYwiaWfbpgCwCfLdzK5a/N4eCHv4+4hsvtpoOqxKI05HSNeg1P//MAsOPhyXErmv4GkyARwX0I8IlSaiNwOfAfpdTFsSpqrd/QWg/RWg/p2jX6AxQinZ20LborQcC89Xvw1/NXjd+v+XDupoj99dvq9O72PIIa7GRh3rnXfXBdVO5iifNWJtr/j75qZ7C8jzKvc2DXHF6Y8kvUa1e6vOypcHHr+wWsDbymp+/JUBYYEjnwUrjxe7h3GbYBpwPQgQrenLGBXWU1UddLNc0O7lrrflrrfK11PvA5cKfW+n/NbpkQaaZf2YJkNyGlTFtdyCnPTuWqN+by9swNMeuMX7aDh/8XGog3eeUuiskLVXC2h879ycnJo5MqozOl3PJ+AUu3mg8/azw+xi9YBcD+RhHnG3ODp051/IXfGD/h2B27/3zQyAkc88RkJq3YxcczVwNgdeSAL/AXQqd+0PdE6LA/ZHc2i1Q5AMf/Y0qLpyBurkZzyyilxgCnAl2UUluBxwAbgNZa+tmFCDB0av+wt7Yb3g39slu+vTRmnZLKyH70ogoX2bXdL/+3EbI6ApCtXJxjWcA5lgXk13zMBS/PpFOOneJKN6cYof75B2yfRlzvHfu/AMiv+Zjj+3Vi3obQ2JDwPyacynxNe1YunPoQTHsKDr0gVCGnCwDfO4aTX/MxAGc+/yPzR5zR2MeQNI0Gd631NfFeTGt9Q7NaI0Qas2jpc6/P/xZt599XHx1R5vL6cAVS6w5UG8hT1Yz4Cu60BIK7LSxJV2X4MzoNqGCK3vr64sN9ceNAjhlzJDjhGvcIfvH3Zjftg8dru3zszhw4ZjicOjzyAtldoq5Z2AqrQzWHzFAVIkEMCe4Nqggbo15S6ebgh78P5pAZ5xjBJ/YnAPMuXSsLWGwxr5NdJ5jnqViTmyJH0BxjC/Xrj7E/SYHzjuD+xqfPC/2CsGXFbnyX/qH6+z3CYT3bcXSfDrHrpggJ7kIkiNIyzj2Ws435dKCcJ8etDC64Ecq6qLnLEnpEZ8XL3daxKO0DFRagO/QJbj5g/W/E9S/uG6M77IHIoZR8FD1xfoDawoI/HwUvH8t1lkB63/qCu2GBXkPM7eJ1XGafQ0VNav8yl+AuRIIoZJx7uNONhWx0Xstr9n/ziu1FxszfzOvTzSXsavPA7MeeiH7ywSp6VAsAV48Jbt5oncAVlmko/By1XxYnba8zSumi/wT7yIN80WPkJzr+j66vHga713CF1UwvjK2B5GBFq4ObN+96kn7VDWZkSToJ7kIkiHTLRLrfGgraJ1nMEStG4G68rNr8rLJUZBfLwYY5Hp39BkderMfhcOX7wd1nbW+wwXkd/yu+JFSn3ynm18BDWO5dCv1ODh0/8trGG+1oV/+xSyLHj7zh+Wvj10siCe5CJIg8UI3kxRJVlm03y8prPByottFTRWY2edw22ty44N/RF7TY63+xPr8Cq5lwjNrusQ594OJAQL5zLlzyauxzLY7QtiMvdh2AQ8+HR0ug/2+DRfWN308FEtyFSBAJ7pGyHI6I/ePUSqoCfe7lNV6mOB7gQ/tTsU9u1yu6zFVe/4td9QGcdK+5vf9xofL2vWBkKXQ7tP5zw/vnnQ3cuQMYBvzuU5b3upISnUtlEzJPtjYJ7kIkiEXWUY3gqXPn/qnjcQrXzAegoqoysvL5oyL36/aZAxx0RuTwyFpHXWfWzz/JDOS53Rpv3HG3m18fLY4M6A31uYdztiOXaipqUndugwR3IZohPL+34U/du7hk8Ojo8HLnzocB2LB1R+SBo69v/ILZneCvdZa/O+R8uPDF+Bt1/Vi4+FU4+2kYscscBQNwzrPQfVDkCJ0GGM722JSPopLYk7NSgQR3IZohvMtVumVCNu2ppDTGHJ9l/n54fH5mLFsXecBiDU0U+n0D2UuUMmeOdh8Ex90G5z4bCtDxOOBUOOpas3vF5gyVH38b3DEz7su4LOYd/s2v/9CsFaBakgR3IZoh/M7dL0Mhg1ZsL6OQwCSf80MPR8ttnal0eWlH2MSjwy8zvx52kfm197ENX/yqD81AfO6z0G6/BLY6fn336wmYE6iKUnSmqgR3IZoh/M7dTQOjOdqYF39Yi1dbKdQdYMiNwXLDU8m/J/9Cu9pZpd0GhoL/Oc/AfavAkZuEFjdNx07mXxl5VKVsAjEJ7kI0gz/szn2n0SOJLUktfr/Gpryo2q6PQI70SyyzGD17I50IjHy57M3QA02LDdr1TEJr90FgyGSequb8l2YGZ96mEgnuQjSD1rDZbwauChVjJEcbdeKBnTnPmEcXFVhX9p7FEcf/ZP3S3Gi/fyu3LEGcZpfT07Y3AU1xVWgG7LAPFvLBnI3B/d0VrmCSs9YkwV2IZvBrjaHMu3d5oBpiVO/BoTwoT6D7xZ6De/+TAFD4OcgILIjR2LjyVJVlBvfeajdHqnXB1MWrd5bz/fKdPDI2lEP+2CcnM/jxSa0+4anRlL9CiPr5tQ7mlDnSl9q5RlpTXtXmqDLbYefBllm0JzDG/YirWrlVCRT2ILeDquT8l2ZyXL9OzA/LF7+2sByrYVDbc7dhTyUHdm295wly5y5EM/y4pggjENzLiXMCTBvwm6KPospUVicAFjkDE4h8qfkgMm7DZgEwwvohFnwRgR3gjOenB9eFBbhpdOuu1CXBXYhmeGvGBgzMXCbxTX9pG5bajzQ3woZB0n1gZKXlX7Zeg1pCID3wAGMbpxqLgsUWfMHFusNt2lPFaz+uiypvKRLchWgGr98fvHO3In3uYC5YrWvvygeF5VHvenBkxXP/1XqNagmdDohZvM75e1Y6bwruf3VKIbN6PA/A09+toqyVUhZIcBeiGTzeUJ97W8kt8+2S7Tw7wVyUes2ucvKHj2NtYQUA3y3dwbFPTqaweK9Z2Rq2+IU1MpEYx93aGs1tOUqhA7+gXnW+yonGck41fg4e7oKZmuDoeffSa28BhypzNagjRk7kxSn15K1PIAnuQjSDx+MODvez4QOd2bNUtdbc/fHPvDJ1HZ8WbOGsUeYiF58VmHnYJ67YBYBTufFhMdMKhLt9hvn1jjmt1uaWpAKza+3+KsbYn2S0/dngsYK8v7CxQ2g5v08Hzm3VtklwF6IZTnf/EFmQ4UvtVYflUXnw8yXB7U455uxct898/1m4cSknUXoeYWZu7H5Yyza0tTjb13/MUwU1ocRieWvHcmBgCGjH7NjrwyaSBHchmiHbXyfHeJ0RIKXVHhZuKmnFFrWsbSXVMctX7Syn2u0L5tpx4sat2kA6hniTlnUzf5lNsd9PN0paJR+NBHchmkH76/Sz10n7O+yDhVz26uyUzBx498c/kT98HMc8Pimu/ChbS6o4c9R0cqjmWLUqUKq5yjKVmT8v47q357FxRxEFjmFca/0Bi72exaYzUfs+kfunPxravmcx3DQhuHuLdTz9urb8bGYJ7kI0g/ZFBm2/NzJILttu/lle6Uq9kTTfLjFzqu+pdHPck5MbrT850J++3Hkznzn+TmdKGWH9iGdsbzLK9h8WbirhgOKZwWcQuSr2XX7GGbET7qzzDMGWA7f8ABe9Ah3zzZm4t04F4DbrOC4+KsZKUwkmwV2I5tCRwf2Z8Usj9h1W80esvCb1gns4l7fxZwWqzkIWC513cKt1PABuzD7k8AWvlS+133PC2LLMTJbDZpkBfb/BcPA50PsYOPq6UL1eg811YA0rqnJ3izer0eCulHpHKVWolIo5t1opdZFSaolSapFSqkApNTTxzRQiNRl1HqB+tTBy2r3DasGCL+WDezwMBdSTs74YM0eMLXw4qLeN3LnX6nG4GdBvmwod+8auk9XR7Lr7/MbYxxMonjv30cDZDRyfAhyptT4KuAl4KwHtEiIt2FRk0LbVmch0tp7JOufvce9eS11aaz6YszFpXTZDjaU8YP2Eh6wfESto+/2aOev2BB+Svjd7I/Mdd8W81uWW6YyyvcKlA8KGPnbs1xLNTm8VZtcWJRtb/KUaDe5a6+lAcQPHK3RoOZoc6vvVLkQG6mCP/Ha3qMg7+dP1bAD2ri2IOnfm2t08MnY5j3+7ouUa2IAP7U9xl/VrbreOY5r9vqjjYxZs5po35/L9sp0A+Hf/Qje1t97rXWKZxZANr5s7pz4EN45vkXantf5nmV/DHrC2lIT0uSulLlFKrQLGYd6911fvtkDXTUFRUVEiXlqIpOpYJ7gPs3wTWcFqjvX+9qcNEUvyAXgCY8J3lkXnIWlpddPP5hu7ourUDnt8f84mKlzeYA6dCBe8AAefG11+6nDI7ZaQtmaU331mjvNvnyYPVLXWX2mtDwEuBh5voN4bWushWushXbt2TcRLC5FUVh25CMO11h8o2Bj6Q9cTGOvtUB6q6qzWY7eYY6R37G394F472aghb85YD8Cc9Xv405ifyabO2OzL34FjboCrP44sv2J0YhopmiWho2UCXTgHKqW6JPK6QqSqAd7V5kavIcGyZ75fFdz2BoK7HU/UajxKwRFqHVt3Fbb6Mm2xRsd4vJFt8Ph0ID+KZvn2Us7LXR06OLI0tLC1UnD79NCxAee0QItFUzU7uCulDlKBMVJKqcGAHdjT3OsKkQ5KVWAloRu+DZYt2BiakVqF2S3TnkqWbiuNONfjquZrxyO8bnueuz/+qeUbG8bljf5lUlNTFbHfT+2gwHkHN1gmsLvCze2eD+u/YM8jzYA/shRsMdIOiFYXz1DIMcAc4GCl1Fal1M1KqWFKqWGBKpcBy5RSi4BXgKt03c5FITLUHtWJImvPYG7vWsWVbvx+TWGlGUT/YvucRz6aGuzrXrq1NBhMjzdWMWVVIYWt2PdeFmNGqquqkq0lVfzurbls3lNFD2V2L91iHU+WvzJU8coPWquZohkaXWZPa31NI8efAZ5JWIuESCNK+/CryPwipxk/U+k6DafNwOdxBX/K+qpdTFq5i1lrd/P+nE0c3t7F2YBNmb8Anp+0hqcvO6LF21xc6eaT+Vu4WXdCHXQGO/IO5+hFj1JRWcYrBbuYtXYPT4xbwdHKHL7ZW+3mC/vI0AUOlm6XdCAzVIVoBgM/Wpk/Rmv95rqa79qfxeX14/Fq7ITukB3Kw+0fLOT9OWZe75LSsuCx7hTzyYItrdL3fudHC3lr5gYcuLE5ssjONtf1XLR+B7bAjNqJK3bxoO2/wXMONrYy3TcIf69jwdLyGQ1F80lwF6IZjLA7972EFj9es70Et8+PIyy4H6tWR5zrUKFjPzj+AsChj36fsLb5/ZoFGyOnqFS4vMxdb5Y58eDMysaeZSaxemPyMj6eF72wda2DOlkxpD89bUhwF6IZlPahMYN7+F36m//9grIaDwcbW4Jl99k+x4E5Yqaf2kF7Qv3YOcrFMXWCf3ONWbCZK16bw3MTVzN1VSEAj45dFmxrtnJhz+1Ir27mwtVO3GRTw6u2URyotrFLd4i43n6lP8OW+Qlto2g5jfa5CyHqF94tEz4O3KncnDVqOnNthfiVBSOQYOxWyzhW6T68ZX8Ot47sq//Q/hSHukajtY5K0rUvNhebD2xf+sHsO9/49Hl8+dM27Hi4wWL+hWDL6wrZZhBvpyo5Xf3EOZYFdFcldI81G9XX8nnIRWLInbsQzaC0Hx3olslvHwrITtz4/BobPhZ0uTRYfr/tM96yPweAXUX2r2cpN90pxuNLzGCzHHvse7e7rV/xV9sYcye7S3Am6QWWudgDuXEGG4FcOL/+S+TJD6xLSNtEy5PgLsQ+8vs1fp8XIzDT1OoLDWX8lbEcMBOJDe7XDc95L9R/odrJQMA8591xzR6t69MFW/jDO5FdJtl2C0ONpVgDAXvQyAnY8HKrbWJYpc6QYwb3yywzeM7+WuSFux8emoHa50TIkfmJ6UKCuxD7aNveapT2Y9QuAu0OTQK61Tqe3qoIG15sdge2Q2PkX6l16AURu29P/4X1RRVNasuDXyzhxzVFETljdqyYxYf2p3jT9hzXWSZRXuPlBsv3ZOmwyUo5XcCeXf+F/T7oexK06wW/ebhJbRLJJcFdiH1018c/YVF+PP5Ad0yvYyKOz3TcY3a97FwKzg4xrhBw4G9gYKjrZsyUBVzx2pz66zdgd0WoT3zlJnMx5tMsi3nC9i4KPyNsdfLAdDrA/HrSPbEv2G4/yOoA962AfFmqIZ1IcBdiH5RWeViytRQbXrq2D6yHec3HcP3Y6Mp71oI1bLHoI66KXGPT2R6ueJeCQSMByFE17Ankoflk/mb+/k3DKYHDJ4T/LZA++L3ZG9FEPpTNJWwG7OXvwoMbQmPWrXWGONampu1zQoOvLVKXBHch9sEnC8zx4J0pw8gLpLZ1tofex0VXvvbTyP3f/iO03X7/4GaHLj0AIsbGD/9yKe/M2tBgW9w+P5dbfmSj81rs/mq01jz29XKy6mRxXOq8JbRz+KWQ3Sm0f+TVoe0rRsNVH8K9S8GIHNEj0ocMhRRiHyzeuhcHbvKNXfj8YUG07h0whLo+atmy4PhhUFMKv74/WJyTbfZ9/9n6BbPzfgucF1dbXF4/t1vMxGWqeCPLtx8OwKnG4tgnONo13MYB54DVAR36xPX6IjVJcBciTq9OW0ely8vZh/dg/NKdPG41syRaqsNmgRoGHHYRrAjrnrHU+TGzOs074jP/HlHcraMZdM+0LOTMqoXA/wWONDw00uXx09/YBoB35wo+mmfmp7neOim68inDzRzssfxpEayfJlkdM4QEdyHiVJun/eWpa8mjit9bJ5sHTh1e/0l3Ry+vV19Xh6XOqBWtNXdaxnKFZRrbSk6jV8ecmOeFD5180f4y+fN/xTDL17Hb8+u/RPb/h+vUz/wnMoL0uQuxD3qrsGUine0jDx50pvn1xu+hS/9Q+dD7zLHi9ek6IGK32uPjQdt/6WfsYtOO3fWe5vKEJkOt8fcCNMNtn0RXfGxv/YFdZBy5cxdiH9zXZQGUB3bseZEHj74ODjkv8oElwBmPNXzRsOGSNdj4eN5mah+BFpWUAH0BWFtYwdeLtnHPGeYvg58376W2x3yAsY0O1Bkjf98qcLYzV0wSbYYEdyHi9Kn9bxxnrOZ5z+WcWf5l6IAjN7KiUtGBPR5KwZUfsOir59nfvZYnxq3klkD397+/LeCik44CYNSkNYxbuoOJK3ZRVu1he2kNl4V1ky9w3hXaufBlaNez6W0RaU+6ZYSI03GGmbXxPtvnkQdyErjY+2EXssTXN3JMOjBIrWdnqVm2epf5J8OqneVsL60BND6t2NLbnOlqC6QbAMy/IkSbJMFdiDiET+sHmJIdWI3or9sTPhb8hEPzcShPMD0wQBdVxpWvm7NWB/eJnO1qxYdFaTr0GRh5od//T7pi2jAJ7kLEoW4yr81lfipULthjj2BpDmeuGbxHWD8Klp1iLMZqmIG6R8Uqljlv5mC1GScuJgz4BoC83Fw4f1ToQl5Jz9uWSZ+7EHGYsrIwYkqRFR/eFro36lP+MxA5Tv0UyxKGHtQZgP57Z5BLNRMcgSGYtYsnGVYYchN07g/vnQ+9j22R9on0IHfuQsShsDyyD9yOF49uoR+fQVdE7gdSGgzd/i4AVf567sn2BHKt9/s1jCyFnM4t0z6RFiS4CxGHv9VJ3pVv7MSnWyjvSq8hoe1hM6GvOTb+rMK3AXDVt5jHb0a0THtEWpLgLkQcwtdHBTjeWEVWnREtCVM7+ib/19BjEJz6EACb/N3414TVlJWW4NNhD0pPuse8U8/q2DLtEWlJ+tyFiMOhnYCqyLL2qjJm3WazWM1gXcuWxbbcw9lSpnh56loes9ZQqbJpV7vA9lEy3FFEazS4K6XeAc4HCrXWh8c4/jtCGY4qgDu01vWkoxMiPf258/yo4N6a2rkLGWoUApBLNdm57eHa8aCMqLQFQkB83TKjgbMbOL4BOEVrfQTwOPBGAtolRErJ37tvKyMlSpXD7Ko5UG3jCut0rN4q2O8o6HlEUtslUlejwV1rPR0obuD4bK11SWB3LtA7QW0TImWs39v0RasTaUNPc9LUFMcDZkHN3iS2RqSDRD9QvRn4LsHXFCLpJvoDI1jumA03tv63uL9ucrI6i2oLUVfCHqgqpU7DDO71rqKrlLoNuA2gTx9Z5UWkjxy7Ya6ZkdUJug9stH6ilXrq/KhePrrV2yDSS0Lu3JVSRwBvARdprffUV09r/YbWeojWekjXrglMtiRECzvGvtXcqF1QukMfOPHuVnv9cm/YmPqjfx+9upMQdTT7O0Qp1Qf4Evi91npN85skRGqZuHwn57rGmztG4Efm3qWt2oYenTtAYAIqZz/Vqq8t0lM8QyHHAKcCXZRSW4HHABuA1vo14FGgM/AfZWag82qth8S+mhDp5x/jV3K8zqa9qgJHXuMntIBfH9oL5gd2ktQGkV4aDe5a62saOX4LBBeMESLj1Hj8/Og/kmNsm+iV4PS+8ZLEvaKpJP2AEI0oLyvhQsscPF5f45Vbit/beB0hwkhwF6IRf7R+BUC+sSt5jeh3avJeW6QleeQuRCMGdfSGFsNOFsOABzeY6QaEiIMEdyEaUbsCUtLty6Lbos2S2wAhGuHQLZTaV4gWJMFdiEZsdfRPdhOEaDIJ7iJl7a5wsXJHWbKbgV/Xs/KREClMgrtIWZf+ZzbnvDAj2c0IDUPM7ZHcdgjRBBLcRcraXGyujrG2MLlDVWpcLnPj7gVJbYcQTSHBXaSsI3s4OUhtZc76epcTaBUutxsfFnC2S2o7hGgKCe4iZd3ve4vJjgfxlBUmrQ0llW4qq2vwy/hykWbkO1akrL4uM8lo792zktaGD+duoqsqpcgvybpEepHgLlLWSufRAHSuWJ20NhiGoit7IW+/pLVBiH0hM1RFynIpOwA2X1XS2lBcVsHJlqVo3S1pbRBiX8idu0g5YxdtY/GWvfi9HrPA7+WtGeu54rXZrd4W2x7zrwZVmbx+fyH2hdy5i5Ti9vq555NFADybZ077V9rPE+NWAuD3a4xWzPXiqNltbvT5Vau9phCJIHfuIqXc9kFBcNvjcQNQXB7qlllXVAGYY9/v+eRnPD5/i7anU/VGc+PK91v0dYRINAnuIqVMW13EJcYMLjWmYw/0tZdV1XCdZRIbnddy3qgpTF1dyNVvzGXsou0s21Za77V2lTUv4VeNx0dlyU7c2gK5sqC7SC8S3EVKceBmlP1Vnre/Zo5SASz4GWb9BoAeqpgb313A7grzrt5fT9qX5yeu5vh/TGHGL0X73JbVO8vJpoZKsvb5GkIkiwR3kVKetL0T3N5fmQ8xz7XMp7cy+77PNeYBcKDaxkbntfiLfol5nRd/WAvA8u37nnhsS0kVB6gd+3y+EMkkwV2klKPU2uD2AcbOqOOLKp0uAAAgAElEQVTDbZ9wp2UsUxwPADD9q9frvdZQYyl5ln1fe7S8xsvJlqV0VBX7fA0hkkWCu0gpnjgGcD1o+29wu75xM3flTOFD+1OcuvZpACpcXhZualqOGr13a5PqC5FKJLiLlOJq4ujcDjHuqpds3csDvrcB6LZ1Ai6vj7s++onLXp1DWY0n/otXRP/lIES6kOAuUorN7mxS/Zus30eVXfjyLBb5DwBge88zOPjh7/lxjflgtbwmsptm5Y6yegO+rzowEucP3zapTUKkAgnuIqVUaUfE/nJ/3zhOiu5uKdM5AEwr7gxAR8oYYf2QOWtCD0h3V7g454UZPPTlUgBemPwL01abD3G11qzcEOiWkYWpRRpqNLgrpd5RShUqpZbVc/wQpdQcpZRLKXV/4pso2pIKHXnnXm8f/KVvUZh7CABeb+Sd92C1hpMtZsAu3FvB4Wo9r9n/za3W8fz4v7eD9XaWmuPgxy0xA/6oyWu44V1zQY4FG0vwVAdG2jgkj7tIP/HcuY8Gzm7geDHwJ+BfiWiQaOO0n53OA4K7DsIC928eMb9e8joccQUrel0BgMftClYpLK9hjP2J4L5defjW8TDHG6vMfULdMi6vj+sskzjTKMDl9QEaA3PGa1G5iw4E+vOd7RP5DoVoFY0+vdJaT1dK5TdwvBAoVEqdl8B2iTbKpl34DAcccwP0Pwv7x38BQF/8GuqIq+Dk0B+HymJmjfS6QzNRz31hBgUqFMBvtEyIuP5z9teo8fwDp83C5GVbecL2LgD9HzuWSfYH8WEwetbhOCwwwvaxeZKswCTSUKv2uSulblNKFSilCoqK9n3moMhMbq8fq9+Fz+KEC16AQ84L3mmrboeCEfntalhtAHg9oTv32pmrtdqp6HTBFS4vlS4vH89YGSzz+DT9jW0cYmxh5Dcr+H7GnIS9LyGSoVWDu9b6Da31EK31kK5dJVeHiLRoy16cuHFmZQfLHCrQLWPPjT7BavbPT10eGo8+SK1v9HVcheu555NFEV0+ilACskPUZsqKAw9WL3mjSe9BiFQho2VEyqh0e3Hgwe4MBffc2hmm9uyo+obV7JYZPcNMQaC15p82c8ZqTfsD632d8tLdzFxbxJv254JlG5zXBbe/dwynp9oDgOpc/3WESGUS3EXKcFdXsr8qRGd3DpZlGz5zw54TVd9vmN0y3VUJAOOX7sSFGfCdnfev93VGfjaXHt5tHGnUf5f/H/uL5kZWxya9ByFSRTxDIccAc4CDlVJblVI3K6WGKaWGBY73UEptBe4DHg7UkSdQosleGjuTXFWDp9uRocLaVLu26ODuDYwHeNP+PAD/LdgSOujsUO/rOPBwt3VsfI2S4C7SVDyjZa5p5PhOoHfCWiTarJqaKnAQGVBvGAeb54Il+lv16AO6wVxze0+Fi3lrtnGUc51ZcO6zcN7z8OwB0Lk/XPtfViyczmGz72WkdTTT/UdEN8CeB+7yyDIZBinSlCyzJxLK6/Pz3KQ13DK0H51zHY2fEKav2gVAtw5hD0879DH/xdAhN3Q37/HpYIpgAHIDC1o/XATKAIuV/Q6ugtnQz9hFP2NSqG5WR8jrCXfOgZF1grlhadJ7ECJVSJ+7SKiFm0p4ddo6Hvx8SZPOK6/x8HbtA86tC+I7KadbxOtOdjwYXcdqD971d8iLMeIG4OoxZmAH8y+FAN2+/n57IVKdBHeRUBZD0YM9lJRXsrUkeox5fR75X1h2iyE3xXdS+17M8g1khb8vFa44sj1mRfbD+6w5cMds6HtiqDB/KJz6VwBU54Pia4cQKUiCu0gov9fNXOcfuaHwaYY+M5Xte6vjOm/97srQToc4koUF9Db2cJixifZ7FoUK67vjzurI3v6XBXcLj/0LdB8YXe/o30G/U+D8UXG3Q4hUI8FdJJTXZd6tX2gxuzniXaQ6vyrszl3VtwRHtL7KzLneY9vEUOGwGfXWzz738dB2Tj0PS9v3hj98DZ36xd0OIVKNBHeRUD536E59mv3P+Eq2NFA75LCaRY1XasAP683X3XLsiAaHL9qz8oLb7drXP1xSiHQnwV0klMcVCu75xi6qCj6K6zyfJ747/LpWX2aOeqnETEVgiTGTNULYZCglwxxFBpPgLhIq/M4dzD74eHTP3bdRud07mwtpPGL7EICOHRoJ2OFDG7sevE+vKUQ6kHHuIqH8de7A86oa75bZWVrD3vIK87vR2rRl9hzOrIj9LOWtp2aYO+bAirH1P3gVIgPInbtIiM17qvj92/Mor6yMKM92NZ7aefiXS/DXfiuecGeTXtfRvgfV2h4qaLdf4yd1PwxOe6hJD26FSDcS3EVCPDdpNTN+2c38X3ZElHt9utFzlfZzmzUweah2taU4GRYL1YQF9wG/bdL5QmQqCe4iIfLs8EfLlxjVkYtV5/jLGj33An4M7RhN/5asXdBjb58zm3yuEJlK+txFQhxTOYNLbJ+z1dMFAr0dJZbO5PnLGz4RWLdle7NeO1eZ/fw1fU9t1nWEyCQZc+c+dXUho2dtSHYz2qxsh5kkrLfabRYMvp4luUNxaFcDZ5k8gZTt3DG7WW2wOvMaryREG5Exwf3Gdxcw8psVlFbHkWNEJJzHEjlqhaH34VU2lG589MoJllXmRpd9G5r4o89M32vPluAuRK2MCe75agfXWqYw8uvlyW5Km+T31QniVgdrdruw46W8puFfuD38ZqrfWDnb42G3mA9tc3MkuAtRK2P63L+xP0yequbsNScARyW7OW2O9taZYWpx4MGCQ3nYWu4iz2mLed6W4irKtYNfso+k/z6+9lG98mAbGPv4y0GITJQxd+55ypwZ+bpnRJJb0jZpb52+dWd7rssz88VUbiio97xf/3MqOdSwqWLfvxWzaicyyZJ4QgRlTHCv1dcoxO9vfGy1SLC6wd1ipVP1RgBcG+dHVS+udHPLewU4cHO4sZGjHDui6sTtopfhjL9BzyMbrytEG5FxwR3g51Vrk92EtscXPSrGc+XHAJR7o2eC/uGd+UxeuYvHrO8B0MW7c99fu91+MPRemXEqRJiMCe6zjcHB7Xs/mMGr09YlsTVtj88dHdytA87Apa3kVm6OOrZ+RxEv2l7iWuvU1mieEG1OxgR3S9iQu5ss3/PRbAnurSlWyl5ldVBCO+yukqhjIx1jggt6AHDtpy3ZPCHanIwZXmD4vcGZkTdaJ3CgtwQ4K6ltaku0qyK0075PcNOl7Bi+6MC/H4WRBf3l/0qIRMqI4K61xqI9weAOcLI/+iGeaDmqppRKS3tyLngaDjk/WO5RdowY/fElOje4XTH4dnKlv1yIhGq0W0Yp9Y5SqlAptaye40op9aJSaq1SaolSanCsei3J49M4cVPkzG/tlxaA1+cn11tMjb0jHHUtONsFj3mUI2Zwt1lD9xW+fqe1SjuFaEvi6XMfDZzdwPFzgP6Bf7cBrza/WU1T7fbhxEVx3oDI3N6iVVS6fPRQxdRkdY865lF2LP7o4G6E3annGpIyQohEazS4a62nA8UNVLkIeF+b5gIdlFI9E9XAeFR7fGQrF8qWQ5YKLev2wGeLyR8+jhXbG087K/ZductDN7UXT4zg7jUcWMP63HeV1ZA/fBxVNaEyiz++pfiEEPFLxGiZXkD4WmpbA2WtptrjIwsXhiNyceTPFm7FjoeP521szea0ORUuL+2oRMdYcHp3jcJVU43W5sSyrSVV9GQP7aikUHeAI6+FQ85r7SYLkfESEdxjPQmLOUVUKXWbUqpAKVVQVNT48mvx2lJcZQb3sJXtAV6zjWKN8w8M3fVhwl5LRJuztohcajCyooO7Cxu9VSFl1eZQVeXzMMf5R06zLMZmAJe8CrasqPOEEM2TiOC+FQhfabg3EHP1Ba31G1rrIVrrIV27dk3AS5tuemc2duVD2SPv3M+2LADg2OJvE/ZaItqocT9hKI09Jzq4X2CZSztVzbiZ5ugljyu0xmpHvbfV2ihEW5OI4P41cH1g1MwJQKnWuhmJQpruWGM1ABZHDowsZU6XyyIraH9rNqfNWLiphNP+NY1rO/8CQI8OOVF1yg+9GoCupUsA8NZUB4/5Oh7YCq0Uom2KZyjkGGAOcLBSaqtS6mal1DCl1LBAlfHAemAt8CbQtOXrE2CM/UkALE4zuJxA5KhNj7uGrSVVrd2sjPdZwRa8e9YzpHQiACo3+oGq7fhbADh0+5cA1NSE7twtpz/cCq0Uom2KZ7TMNVrrnlprm9a6t9b6ba31a1rr1wLHtdb6Lq31gVrrQVrr+vO7tjCrwwzu6op3I8rzqGLoM5LDJBEqXV6ueWMu64oqyK9aygzHnxlobDIPHnxuVH3b/scAMLWoHeU1HmqqQsGdroe0RpOFaJMyJrcMgDUrMOux+0D27n9GsDxHubjJ8l2SWpVZZq/bw+L12zjjuank1Zi9bz1VYKSsJXqOgcViUKNtDDQ2MmjkRKYtCcv50/2w1miyEG1S2gf38NztVmsouHQ4+NcR9R61fUBNeUPD9UU8Otg1K5w38Q/r2/y0ITTiyY8CwxLzHKfyMNhYy+8sk3EVrTfr3zihVdorRFuV9sHd7Qs9LM1VYTMhjx8G13/NZN/RwSJPZXR2wrq+W7qDnaXRia6EyanMIY3XWKfyuC3U/eXR1kbzqT9pe4cX7a8AxBw2KYRInLQN7qMmrSF/+DgKy0IB3eIMWyDZ5oQDTuE31iXBIl3T8ExVr8/PHR/9xGWvzk54ezOF3x9KrZwd9svUoepPIbCt+6nRhY520WVCiIRJy+C+bW81L0xZw7FqFXPX7aJMZ+M1nDDgt1F11fmjgts6LDABvDJ1LZNW7Arur9pZztu2Z7mi4oOWa3ya8/l8TT5nU79rogtlvVMhWlRaBvfTn5vGe7Zn+Mzxd5aNNYP3+j6XxewWUIOuCG77wwJTYVkNL09YzD3vzwRg2upCzn9pJqdbfuZe65ct/A7Sl/Y1PcmX35EXXVhnwpkQIrHSMrgf5VvGKRazu+Vayw+0U1V4jXqyQdqz+eEYs59X+0PB/V8TV7PEcSs/O24D4P5PFvJn62fB458v3NpCrU9vfp+38Up1aIfZv+6r/XZzSH+7EC0t7YK7XjeNT+xPBPcPMcycZXn+8nrPUYFRHP5AcH9s7DIWL5yNTflwKC97Klz8MXsC91i/Cp7z1GfTW6L5aa/2r5/CQ66DEbsoU4FAPWxmvef06GammvBZsmBkKTwUvaaqECKx0i64V9UznLG3vaHgbr7N2jv3T+b8Qj+1M3h84s+/0FvtjjhnofOO5jY1I/kD3TLV3Y4Gm5PcdoHgnt253nP6728mCbWppvfXCyH2Tdots7e9QtM/Rrk66c/1n6TMO3cduOtc7bwh4vDs78ZwRs/uUFH3RFFX7Z27YZjfOsYV78LyryCvgRT+9hwYeClqyI2t0UQhBGl4517tDlvY4YirYeAlcMds6Htiveeo2uDu90VMeqr1kv1llu6sjir/Yu6aYB5yYapxm8Mf7XabWdB7CPz2yYbHuCsFV7wL/U5uhRYKISANg7unKqz75dxn4YrR0H1gg+coS6jPfVd57AlKl1sCfex/CKUHHjV2Ft8uadUElymvqspMwOZ0Sg52IVJZ2gX3w/fLDe3Y4htOV/tAVfv9rNwReyJT7YNZ8odSdPbrAMx03It127x9b2wG8lWXApCV1ynJLRFCNCTtgrvjiMtDO5b4HhmEHqh6KS2OXAFKdxlQp7Ki64DjgruHbRi9T+3MVDoQ3G0xFuYQQqSOtAvuWO3mcLqRpXGfYgT63L1eH1WFGyKOqbsXsEObd6EVHQIpaDv2Cx63VEuysXDTl28EQEn6ACFSWvoF931gWM07/Ce+XcYP83+OOu6vXQb20AvMr0oFH/45Xbuj6jeXx+fntR/X4fKm19DAwvIacnRg0RN79KpLQojU0SaCe34Xc/r7XdaxHK42moWnDIdhswDopfYAkN17UOika83ZqtssvRLenk8WbOHp71bx5vT1Cb92S6qo8fJEbSZICe5CpLQ2Edy79TAD9FHGOv5s+8IsPOVB6HF4RD2jS9gIepuThc4TaOfdk/D2+Cr2sNF5Lf02fxFR/sXCrRGJzFKNyxP2l0acD7OFEMnRJoK70X6/GIUxFpbo1C9it8rSjlx/OVNXFZI/fBxz1ycm0Ld3m7Nj+63/GE9YPvqHPivgT+/XP40/2dzusGGk9SzMIYRIDW0iuDfqhLvMyVC2yLHbPosTm3bz0Oc/c6rxM9e/MSMhL1c7NHM/tZtjHp+E1poXp/zCV/ZHWem8iS3FZr/2Fa/N5qrX5yTkNRPBUyOLjAuRLtpkcK866ubIgrP/YU6GqsNv2LBqD5fUfMlo+7Oscf4heOz5wGIh4SpdXjbvaTwAerxmZsUOqpLzPBMoq/by2qQlwYWmJy/ewIrtZRRvWkbWph/wxZhVmwwel3nnvunEx5PcEiFEY9pkcM/uflB8FS12bHg4SIXS/74zYz1en5/3pvzM+cYcRs8KDa28/p35nPzs1EYvW1S8N7j9lO1t1u+uYIXzpmDZwXPu57wXf2SK4wFG2//JP8avjK+9LczrNlM0WGwyO1WIVNcmgzuDLm+8DmC1O3Hg4YDsUD6bF8fN56AR3/GS7SVetr/EjHEfUFplZkos37yEF2wv4/c2vKBFbuXGiP15GyLH0hdX+3jO9lpwf0NBaiwmHQzudmeSWyKEaEzbCe6XmCkF6HQA5HaL6xSr3bxD3V0VWqBikfN2/ml9nRONFQC8bX+Om95bAMCLtpe5yDIb985VDV63U03kQiAzJ3wWsX++ZR6XWkIPVt9hZFztbWk+V21wlzt3IVJd2wnuR14NI3bBXQviPmXeHjOInWn5KaL8SuuPEbnJz9j2HwBsmL8E/vjJogaHNBp+d8T+ZZb0WBjEE7hztzkkuAuR6uIK7kqps5VSq5VSa5VSw2Mc76uUmqKUWqKUmqaU6p34piaAzRl3PhqALHt8v/vusH7DS1N+wYI5rLFjSWht1lgMX2Rwv8RiTqbizMfZZj8g5jmpMJvVVWMG96wsGeMuRKprNHopMxn6K8A5wGHANUqpw+pU+xfwvtb6CODvwFOJbmgynJQfWtjZ4+gYXeG854Kbz01aE0xj8E/bmxEPSOuqe+ceesE/sbPjMUBgvdF7FgcPzV1bFPucVvLkuBV8M9/sbnJI0jAhUl48t6bHAWu11uu11m7gE+CiOnUOA6YEtqfGOJ6WBuWHVhfafejvoyscewtrjX7MV4PY6LyWA4yd0XViCAb300ZEHdulzV8i2/ydoWM+NUdcD0D1mmlNa3yCfT1jIUONZQAopwR3IVJdPMG9F7AlbH9roCzcYuCywPYlQJ5Sqv5FNdPFwEuDm90dse+2Kywd6OyLnVxM+2KPmrH4Peyy9TZTINRRaDd7tPoY5p267bynAeiwK/Zkpl92lUetLlXl9pI/fBxjF22LeU5T1Xh8zHPezY3WwKiddjFm/AohUko8wT3W+ml1Z9XcD5yilPoZOAXYBnjrnqSUuk0pVaCUKigqSm43Q1zC+ueN/mfB/seHjnXoA4Dbmks3tbfumQB8My/2+HSrduE1HJGFF74MwKVHdo9sgiOHQjphqY5OfbB4y17OHDWdx75eHlG+emc5ZxoFvPV142Pu41GwsSS47cMSNZNXCJF64nm6uBXYP2y/N7A9vILWejtwKYBSKhe4TGsdlXBda/0G8AbAkCFDUmPaZWPuXgi/TICDTof9j4Mt88DvhwNOBcBlySFPha2/2vMoCis9dCtbzjfjv+WCEwehwtYXLa32YPjc+GrXIK014GwA2vUOPM44OXRXX2FpB1XRwf3qN2bxgu1lflwyFC4OJUG75D+z2eh8Hr9P8crUE7jrtDgnbdXjurfnsjEwtN1la4c8ThUi9cVz574A6K+U6qeUsgNXA1+HV1BKdVFK1V7rIeCdxDYzibocBCfeZW478uCgM2DAWeaiIYDLErbs35l/h9t/pPO5jwDwpvUZ+j00PmKR7SP/NhHlc6Pr3rk7A4tf9DwC7lsFp/01eEhndcZeXRS1WPdxvsVcZJnN8/5/smiL+deDy+tjuPVjAAyl+XbiRGo8zRtpc5stNIkqS9ZOFSItNBrctdZe4G5gArAS+FRrvVwp9Xel1IWBaqcCq5VSa4DuwJMt1N6UU53bJ7Qz2Mw9Y+l7YrDodGMhnxaYjyz8fs3Fxkx+ZVmBYQsE90vegP0GgzUs2LfraS4YElDT6VAOZT17yiqDZVprRjo+Du5f/MosPpi7ifNfnMkwa2iR7+8cD3HII99H9cuH27yniqJyV8xjG3dXcoYKrSOrzn223usIIVJHXAO5tdbjtdYDtNYHaq2fDJQ9qrX+OrD9uda6f6DOLVrr2JEiA+mcrqGdrA6RXzFnsOas+w4At8/Pv+3mhCedHVhg+sir4LaG+8Zruh2BXfmo2hGa+fr14u1M9xwS3P/G/lc+GPsdZYWbo85/z/Y0G4rKItILB9uvNSc/O5Vjn5wc87VXbi9liFpj7tyzGA49v8G2CiFSQ9uZodpCzjjKnHTk63Fk5IHBoQySPXebk5TcYcHVyOsR92tY25uDk6qLQ486Zq/axh+sk4L7g4yNTHT8H/Ocd0edf4plCX9/4RX6j/gOb50Af+PoBdxm+YbHrO+htQ7+q1VduA5DBfY75sfdZiFEcklwb6bs/QYCYDn6d5EHLnwRHi1hvb8HO3aZ49/d3lBgtXeMf/m+rPZmLpyyksJg2SmOhvPXcNF/InaftL3NNPuf2bi7PFimtWbbmp/5q20MN1onMGnJJvo9NJ5zXgjlra8pNvPg+E//W9ztFUIknwT35uqwPwzfDMfdFn3MMLArL+dbzD7r8G6Rjp26xP0SfXqbvwhKd4fy1Xh0IyshDbwYbvsxuNtb7Sbf2MWqgmnBspIqD5McoVE5//lkLOcbc/h10RhcHnMkq690h/lWDj477vYKIZJPgnsiONtHPAAN11uZE5xen7aGcUt2BMttHeJPv+Ns3w03VvLKVgfLPNUVAGzte3Hsk+w5sN9RUcULZk8JLv5x/2eLI469bX+Wl+0vMcL2Mf+bXoDfrzEqAm1uQjeSECL5JLi3kq8nTOTFcQWhgv5nxn+yxcYmelG9J5Qq2F9lTizqNeCY6Pr3hU2euvKDiEN/s73H1t3mFITVqyInP3VWoS6bTybPZeQ3y7FXF+JWDvMXmBAibcSfIlHsk3VX/sCBn/6GcY5QHpnSAZfTvp47/frs9OXRTpUGl/a702mmFlBHXAXuShhyEzw3wKycFZbk7LAL4bK3zTvv0ecB8OdR7/KTHsBKxwMA+OztsLjLIl7vK8dj3D5vLyfYiyi3d6FzE9srhEguuXNvYfb20d0Zlv5nNPk6BxnbGWys5WbLeM40CsjzluDTCnK6wmkPQV53GHSlWblueoBBl0P+UFy/+gtgpih+3/YUWcrMl2M56Ddw00TY/3hqbp0VPO11+yg6+/fgyopvcRMhROqQO/cW1rt79IPT7E49Y9RsWE9lLsX3iO3DYFmVdpBthP1+vvhVOH9UvddwnP5X3LP+zZmWhZEHLn4V7Nlw80ScdWbBHm+sYnPOOU1urxAiueTOvYUpqyOqzHDkxqjZsJoDzooqy1Z15opZrNDQtS1WysiJLreHZYuJ0f3iljt3IdKOBPdW4O/QN7RjdUK3Q5t8DeflryekLdqwRxac+6/oStd9AQeeHtztlpUeOd6EECES3FuBcd0XkP9rGL4FHt5lDlNsquxOMPTPQCifTXGXIU2+TFcdlnv+xu/huFujKx10Bvz+y+BuO4d8mwiRbqTPvTV06Q83fNt4vcac/hh0P5ysdvvBu+fQKXcfMjQ+uAG+fwgufCmY2bJe9yyB7x6Es5/et/YKIZJG1U0j21qGDBmiCwoKGq8oovn9MO0pGHy9OUNWCNFmKKUWaq0b/bNd7tzTkWHAb6LXXxVCiFrSmSqEEBlIgrsQQmQgCe5CCJGBJLgLIUQGkuAuhBAZSIK7EEJkIAnuQgiRgSS4CyFEBkraDFWlVBGwaR9P7wLsbrRW2yGfRyT5PCLJ5xEp3T+Pvlrrro1VSlpwbw6lVEE802/bCvk8IsnnEUk+j0ht5fOQbhkhhMhAEtyFECIDpWtwfyPZDUgx8nlEks8jknwekdrE55GWfe5CCCEalq537kIIIRqQdsFdKXW2Umq1UmqtUmp4stvTWpRSG5VSS5VSi5RSBYGyTkqpSUqpXwJfOwbKlVLqxcBntEQpNTi5rW8+pdQ7SqlCpdSysLImv3+l1B8C9X9RSv0hGe+luer5LEYqpbYFvj8WKaXODTv2UOCzWK2U+m1YeUb8LCml9ldKTVVKrVRKLVdK3RMob5PfH0Fa67T5B1iAdcABgB1YDByW7Ha10nvfCHSpU/ZPYHhgezjwTGD7XOA7QAEnAPOS3f4EvP+TgcHAsn19/0AnYH3ga8fAdsdkv7cEfRYjgftj1D0s8HPiAPoFfn4smfSzBPQEBge284A1gffdJr8/av+l2537ccBarfV6rbUb+AS4KMltSqaLgPcC2+8BF4eVv69Nc4EOSqmeyWhgomitpwPFdYqb+v5/C0zSWhdrrUuAScDZLd/6xKrns6jPRcAnWmuX1noDsBbz5yhjfpa01ju01j8FtsuBlUAv2uj3R610C+69gC1h+1sDZW2BBiYqpRYqpW4LlHXXWu8A8xsc6BYobyufU1Pff6Z/LncHuhneqe2CoI19FkqpfOBoYB5t/Psj3YK7ilHWVob7nKS1HgycA9yllDq5gbpt+XOC+t9/Jn8urwIHAkcBO4DnAuVt5rNQSuUCXwD3aq3LGqoaoyzjPpN0C+5bgf3D9nsD25PUllaltd4e+FoIfIX5Z/Wu2u6WwNfCQPW28jk19f1n7Oeitd6ltfZprf3Am5jfH9BGPgullA0zsH+ktbgnYZsAAAE0SURBVP4yUNymvz/SLbgvAPorpfoppezA1cDXSW5Ti1NK5Sil8mq3gbOAZZjvvfaJ/h+AsYHtr4HrA6MCTgBKa/88zTBNff8TgLOUUh0D3RZnBcrSXp1nKpdgfn+A+VlcrZRyKKX6Af2B+WTQz5JSSgFvAyu11s+HHWrb3x/JfqLb1H+YT7rXYD7pH5Hs9rTSez4AczTDYmB57fsGOgNTgF8CXzsFyhXwSuAzWgoMSfZ7SMBnMAazu8GDeYd18768f+AmzIeKa4Ebk/2+EvhZfBB4r0swg1fPsPojAp/FauCcsPKM+FkChmJ2nywBFgX+ndtWvz9q/8kMVSGEyEDp1i0jhBAiDhLchRAiA0lwF0KIDCTBXQghMpAEdyGEyEAS3IUQIgNJcBdCiAwkwV0IITLQ/wObmUl/qYiDhAAAAABJRU5ErkJggg==\n",
"text/plain": [
- ""
+ ""
]
},
- "metadata": {},
+ "metadata": {
+ "needs_background": "light"
+ },
"output_type": "display_data"
}
],
@@ -682,21 +699,21 @@
],
"metadata": {
"kernelspec": {
- "display_name": "Python 2",
+ "display_name": "Python 3",
"language": "python",
- "name": "python2"
+ "name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
- "version": 2
+ "version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.13"
+ "pygments_lexer": "ipython3",
+ "version": "3.7.1"
}
},
"nbformat": 4,
diff --git a/__pycache__/keras.cpython-37.pyc b/__pycache__/keras.cpython-37.pyc
new file mode 100644
index 0000000..41dd67c
Binary files /dev/null and b/__pycache__/keras.cpython-37.pyc differ