forked from LAION-AI/Open-Assistant
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
272 lines (229 loc) · 9.31 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import collections
import random
import threading
import time
from typing import Iterable, Literal
import interface
import lorem
import pydantic
import requests
import sseclient
import transformers
import websocket
from chat_chain_prompts import V2_PROMPTER_PREFIX, V2_SYSTEM_PREFIX
from loguru import logger
from oasst_shared.schemas import inference
from settings import settings
shared_tokenizer_lock = threading.Lock()
class TokenBuffer:
"""
A buffer for storing and managing tokens based on various conditions including stop sequences.
The TokenBuffer class accumulates tokens while keeping track of the length and manages the tokens based on the stop
sequences provided during initialization. Tokens can be added to the buffer and later on iterated upon finishing
depending on the reason.
"""
def __init__(self, stop_sequences: list[str]) -> None:
self.stop_sequences = stop_sequences
self.longest_stop_len = max((len(stop) for stop in stop_sequences), default=1)
self.tokens = collections.deque()
self.token_lens = collections.deque()
self.total_len = 0
def add(self, token: interface.Token):
self.tokens.append(token)
self.token_lens.append(len(token))
self.total_len += len(token)
while True:
if not self.tokens:
break
head_len = self.token_lens[0]
if self.total_len - head_len >= self.longest_stop_len:
token = self.tokens.popleft()
self.token_lens.popleft()
self.total_len -= head_len
yield token
else:
break
def finish(self, reason: Literal["length", "eos_token", "stop_sequence"]) -> Iterable[interface.Token]:
if reason == "stop_sequence":
end_sequence = ""
end_tokens = []
while self.tokens:
token = self.tokens.pop()
end_tokens.append(token)
end_sequence = token.text + end_sequence
if end_sequence in self.stop_sequences:
break
else:
self.tokens.extend(reversed(end_tokens))
yield from self.tokens
elif reason == "eos_token":
if self.tokens:
self.tokens.pop()
yield from self.tokens
else:
yield from self.tokens
def get_max_input_length(worker_config: inference.WorkerConfig, plugin_used: bool):
"""Get the maximum possible input length based on the worker config and whether a plugin is in use."""
max_input_length = worker_config.model_config.max_input_length
if plugin_used:
max_input_length = max_input_length - 1
return max_input_length
def truncate_prompt(
tokenizer: transformers.PreTrainedTokenizer,
worker_config: inference.WorkerConfig,
parameters: interface.GenerateStreamParameters,
prompt: str,
plugin_used: bool,
):
"""
Truncate a prompt to ensure it does not exceed the maximum input length. Regardless of truncation, the system
prompt is always retained if it is present. If truncation removes the final prompter prefix, a new one is added.
The stream generation parameters are also updated with a maximum new tokens value which will not cause the total
length to exceed the maximum specified in the worker's model config.
"""
with shared_tokenizer_lock:
ids = tokenizer.encode(prompt)
prompter_prefix_id = tokenizer.convert_tokens_to_ids(V2_PROMPTER_PREFIX)
system_prompt: str | None = None
system_tokens: list[int] | None = None
if prompt.startswith(V2_SYSTEM_PREFIX):
system_prompt = prompt[: prompt.index(V2_PROMPTER_PREFIX)]
system_tokens = ids[: ids.index(prompter_prefix_id)]
max_input_length = get_max_input_length(worker_config, plugin_used)
if len(ids) > max_input_length:
logger.debug(f"Prompt too long, left-truncating to {max_input_length} tokens")
num_system_tokens = len(system_tokens) if system_tokens else 0
# Maximum token allowed for the conversation, ex system prompt
max_conversation_length = max_input_length - num_system_tokens
ids = ids[-(max_conversation_length - 1) :]
with shared_tokenizer_lock:
prompt = tokenizer.decode(ids)
if V2_PROMPTER_PREFIX not in prompt:
prompt = V2_PROMPTER_PREFIX + prompt
ids = tokenizer.encode(V2_PROMPTER_PREFIX) + ids
if system_tokens:
prompt = system_prompt + prompt
ids = system_tokens + ids
max_total_tokens = worker_config.model_config.max_total_length
input_length = len(ids)
spare = max_total_tokens - input_length - 1
if not parameters.max_new_tokens:
parameters.max_new_tokens = spare
elif parameters.max_new_tokens > spare:
logger.debug(f"Max new tokens too high, reducing to {spare}")
parameters.max_new_tokens = spare
return prompt
def wait_for_inference_server(http: "HttpClient", timeout: int = 600):
"""Wait for the "health" endpoint of the inference server to return status 200."""
time_limit = time.time() + timeout
while True:
try:
response = http.get("/health")
response.raise_for_status()
except (requests.HTTPError, requests.ConnectionError):
if time.time() > time_limit:
raise
sleep_duration = random.uniform(0, 10)
logger.warning(f"Inference server not ready. Retrying in {sleep_duration:.2f} seconds")
time.sleep(sleep_duration)
else:
logger.info("Inference server is ready")
break
def text_to_events(
text: str, seed: int | None = None, pause: float = 0.0
) -> Iterable[interface.GenerateStreamResponse]:
"""
Iterate over stream generation "events" derived from the given text, where each word in the text is treated as a
generated "token".
"""
tokens = text.split()
for token in tokens[:-1]:
yield interface.GenerateStreamResponse(
token=interface.Token(
text=token + " ",
logprob=0.1,
id=0,
),
)
if pause > 0:
time.sleep(pause)
yield interface.GenerateStreamResponse(
token=interface.Token(
text=tokens[-1],
logprob=0.1,
id=0,
),
generated_text=text,
details=interface.StreamDetails(
finish_reason="length",
generated_tokens=len(tokens),
seed=seed,
),
)
def lorem_events(seed):
sentence = lorem.paragraph()
yield from text_to_events(sentence, seed=seed, pause=0.2)
ws_lock = threading.Lock()
def send_response(
ws: websocket.WebSocket,
response: inference.WorkerResponse | inference.WorkerInfo,
):
msg = response.json()
with ws_lock:
ws.send(msg)
class HttpClient(pydantic.BaseModel):
"""Basic HTTP client built around `requests`. Supports simple authentication."""
base_url: str
basic_auth_username: str | None = None
basic_auth_password: str | None = None
bearer_token: str | None = None
@property
def auth(self):
if self.basic_auth_username and self.basic_auth_password:
return self.basic_auth_username, self.basic_auth_password
else:
return None
def _maybe_add_bearer_token(self, headers: dict[str, str] | None):
if self.bearer_token:
if headers is None:
headers = {}
headers["Authorization"] = f"Bearer {self.bearer_token}"
return headers
def get(self, path: str, **kwargs):
kwargs["headers"] = self._maybe_add_bearer_token(kwargs.get("headers"))
return requests.get(self.base_url + path, auth=self.auth, **kwargs)
def post(self, path: str, **kwargs):
kwargs["headers"] = self._maybe_add_bearer_token(kwargs.get("headers"))
return requests.post(self.base_url + path, auth=self.auth, **kwargs)
def get_inference_server_stream_events(
request: interface.GenerateStreamRequest,
) -> Iterable[interface.GenerateStreamResponse]:
"""Query the model inference server specified in the worker settings and stream the generation events."""
http = HttpClient(
base_url=settings.inference_server_url,
basic_auth_username=settings.basic_auth_username,
basic_auth_password=settings.basic_auth_password,
bearer_token=settings.bearer_token,
)
response = http.post(
settings.inference_server_route,
json=request.dict(),
stream=True,
headers={"Accept": "text/event-stream"},
)
try:
response.raise_for_status()
except requests.HTTPError:
logger.exception("Failed to get response from inference server")
logger.error(f"Response: {response.text}")
raise
client = sseclient.SSEClient(response)
for event in client.events():
if event.event == "error":
logger.error(f"Error from inference server: {event.data}")
yield interface.GenerateStreamResponse(error=event.data)
raise RuntimeError(f"Error from inference server: {event.data}")
if event.event == "ping":
continue
stream_response = interface.GenerateStreamResponse.parse_raw(event.data)
yield stream_response