forked from LAION-AI/Open-Assistant
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinterface.py
75 lines (59 loc) · 2.16 KB
/
interface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
from typing import Literal
import pydantic
from oasst_shared.schemas import inference
class GenerateStreamParameters(pydantic.BaseModel):
max_new_tokens: int = 1024
do_sample: bool = True
top_k: int | None = None
top_p: float | None = None
typical_p: float | None = None
temperature: float | None = None
repetition_penalty: float | None = None
seed: int | None = None
stop: list[str] = []
details: bool = True
plugins: list[inference.PluginEntry] = pydantic.Field(default_factory=list[inference.PluginEntry])
@staticmethod
def from_work_parameters(params: inference.WorkParameters) -> "GenerateStreamParameters":
return GenerateStreamParameters(
max_new_tokens=params.sampling_parameters.max_new_tokens,
do_sample=params.do_sample,
top_k=params.sampling_parameters.top_k,
top_p=params.sampling_parameters.top_p,
typical_p=params.sampling_parameters.typical_p,
temperature=params.sampling_parameters.temperature,
repetition_penalty=params.sampling_parameters.repetition_penalty,
seed=params.seed,
plugins=params.plugins,
)
class GenerateStreamRequest(pydantic.BaseModel):
inputs: str
parameters: GenerateStreamParameters
class Token(pydantic.BaseModel):
text: str
logprob: float | None
id: int
def __len__(self) -> int:
return len(self.text)
def to_token_response(self, request_id: str) -> inference.TokenResponse:
return inference.TokenResponse(
request_id=request_id,
text=self.text,
log_prob=self.logprob,
token_id=self.id,
)
class StreamDetails(pydantic.BaseModel):
generated_tokens: int
seed: int | None
finish_reason: Literal["length", "eos_token", "stop_sequence"]
class GenerateStreamResponse(pydantic.BaseModel):
token: Token | None
generated_text: str | None
details: StreamDetails | None
error: str | None
@property
def is_end(self) -> bool:
return self.generated_text is not None
@property
def is_error(self) -> bool:
return self.error is not None