|
| 1 | +import os, shutil, cv2 |
| 2 | +import numpy as np |
| 3 | +import torch |
| 4 | +from torchvision import transforms |
| 5 | +from unet import UNet |
| 6 | +from datasets import custom_test_dataset |
| 7 | +import config as cfg |
| 8 | + |
| 9 | +res_dir = cfg.res_dir |
| 10 | + |
| 11 | +if os.path.exists(res_dir): |
| 12 | + shutil.rmtree(res_dir) |
| 13 | + |
| 14 | +if not os.path.exists(res_dir): |
| 15 | + os.mkdir(res_dir) |
| 16 | + |
| 17 | +device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") |
| 18 | +print('device: ', device) |
| 19 | + |
| 20 | +transform = transforms.Compose([transforms.ToPILImage(), transforms.ToTensor()]) |
| 21 | + |
| 22 | +test_dir = cfg.test_dir |
| 23 | +test_dataset = custom_test_dataset(test_dir, transform = transform) |
| 24 | +test_loader = torch.utils.data.DataLoader(test_dataset, batch_size = cfg.test_bs, shuffle = not True) |
| 25 | + |
| 26 | +print('\nlen(test_dataset) : ', len(test_dataset)) |
| 27 | +print('len(test_loader) : {} @bs={}'.format(len(test_loader), cfg.test_bs)) |
| 28 | + |
| 29 | +# defining the model |
| 30 | +model = UNet(n_classes = 1, depth = 3, padding = True).to(device) |
| 31 | + |
| 32 | +ckpt_path = os.path.join(cfg.models_dir, cfg.ckpt) |
| 33 | +ckpt = torch.load(ckpt_path) |
| 34 | +print(f'\nckpt loaded: {ckpt_path}') |
| 35 | +model_state_dict = ckpt['model_state_dict'] |
| 36 | +model.load_state_dict(model_state_dict) |
| 37 | +model.to(device) |
| 38 | + |
| 39 | +def get_img_strip(tensr): |
| 40 | + # shape: [bs,1,h,w] |
| 41 | + bs, _ , h, w = tensr.shape |
| 42 | + tensr2np = (tensr.cpu().numpy().clip(0,1)*255).astype(np.uint8) |
| 43 | + canvas = np.ones((h, w*bs), dtype = np.uint8) |
| 44 | + for i in range(tensr.shape[0]): |
| 45 | + patch_to_paste = tensr2np[i, 0, :, :] |
| 46 | + canvas[:, i*w: (i+1)*w] = patch_to_paste |
| 47 | + return canvas |
| 48 | + |
| 49 | +def denoise(noisy_imgs, out): |
| 50 | + noisy_imgs = get_img_strip(noisy_imgs) |
| 51 | + out = get_img_strip(out) |
| 52 | + denoised = np.concatenate((noisy_imgs, out), axis = 0) |
| 53 | + return denoised |
| 54 | + |
| 55 | +print('\nDenoising noisy images...') |
| 56 | +model.eval() |
| 57 | +with torch.no_grad(): |
| 58 | + for batch_idx, noisy_imgs in enumerate(test_loader): |
| 59 | + print('batch: {}/{}'.format(str(batch_idx + 1).zfill(len(str(len(test_loader)))), len(test_loader)), end='\r') |
| 60 | + noisy_imgs = noisy_imgs.to(device) |
| 61 | + out = model(noisy_imgs) |
| 62 | + denoised = denoise(noisy_imgs, out) |
| 63 | + denoised = denoised |
| 64 | + cv2.imwrite(os.path.join(res_dir, f'denoised{str(batch_idx).zfill(3)}.jpg'), denoised) |
| 65 | + |
| 66 | +print('\n\nresults saved in \'{}\' directory'.format(res_dir)) |
0 commit comments