|
| 1 | +import numpy as np |
| 2 | +import cv2 |
| 3 | +import os,sys,glob,pdb |
| 4 | +from matplotlib import pyplot as plt |
| 5 | + |
| 6 | +disp = True |
| 7 | + |
| 8 | +### |
| 9 | +#numpy.random.normal(loc=0.0, scale=1.0, size=None) |
| 10 | +### |
| 11 | +############################# DATA GENERATION ############################# |
| 12 | +def gen_data(data_points,loc): |
| 13 | + #print('data_points: ', data_points) |
| 14 | + #print('loc: ', loc) |
| 15 | + x_center = loc[0] |
| 16 | + y_center = loc[1] |
| 17 | + x = np.random.normal(size= data_points, loc= x_center)*100 |
| 18 | + y = np.random.normal(size= data_points, loc= y_center)*100 |
| 19 | + data= np.vstack((x,y)) |
| 20 | + #print(x.shape) |
| 21 | + #print(y.shape) |
| 22 | + #print(data.shape) |
| 23 | + #k=0 |
| 24 | + #print(x[k]) |
| 25 | + #print(y[k]) |
| 26 | + #print(data) |
| 27 | + #print(x.shape,y.shape) |
| 28 | + #exit() |
| 29 | + data = data.astype(np.int32) |
| 30 | + x,y = data |
| 31 | + #print('x.shape: ', x.shape) |
| 32 | + #print('y.shape', y.shape) |
| 33 | + #print(x) |
| 34 | + #pdb.set_trace() |
| 35 | + return x, y |
| 36 | + |
| 37 | +results_dir= 'results' |
| 38 | +if not os.path.exists(results_dir): |
| 39 | + os.mkdir(results_dir) |
| 40 | + |
| 41 | +#................................... |
| 42 | +x_data = np.array((),dtype=np.int32) |
| 43 | +y_data = np.array((),dtype=np.int32) |
| 44 | +#................................... |
| 45 | +x, y = gen_data(100,[5,5]) #plt.hist(x) shows that is a normal distribution |
| 46 | +plt.scatter(x, y) |
| 47 | +x_data = np.hstack((x_data, x)) |
| 48 | +y_data = np.hstack((y_data, y)) |
| 49 | +#................................... |
| 50 | +x, y = gen_data(50,[-2,4]) |
| 51 | +plt.scatter(x, y) |
| 52 | +x_data = np.hstack((x_data, x)) |
| 53 | +y_data = np.hstack((y_data, y)) |
| 54 | +#................................... |
| 55 | +x, y = gen_data(300,[2,3]) |
| 56 | +plt.scatter(x, y) |
| 57 | +x_data = np.hstack((x_data, x)) |
| 58 | +y_data = np.hstack((y_data, y)) |
| 59 | +#................................... |
| 60 | +#plt.scatter(x_data,y_data) |
| 61 | +plt.title('k-Means Clustering') |
| 62 | +plt.xlabel('Some Feature x') |
| 63 | +plt.ylabel('Some Feature y') |
| 64 | +plt.grid() |
| 65 | +plt.savefig(results_dir + '/generated_data.jpg') |
| 66 | +plt.show() |
| 67 | +print('>>>>>>>>>>>>>>>>>>>>>>>>>> DATA POINTS GENERATED') |
| 68 | + |
| 69 | +############################# k-Means ############################# |
| 70 | + |
| 71 | +#find out the extremes of our data space |
| 72 | + |
| 73 | +x_min= np.min(x_data) |
| 74 | +x_max= np.max(x_data) |
| 75 | +y_min= np.min(y_data) |
| 76 | +y_max= np.max(y_data) |
| 77 | +print('x_min, x_max, y_min, y_max: ', x_min, x_max, y_min, y_max) |
| 78 | + |
| 79 | +#set the value of 'k' |
| 80 | +color_list = ['Blue', 'Green', 'Yellow', 'Pink', 'Purple'] |
| 81 | +k= 3 #you can change the value of k till 5 because the color_list that i have defined has only 5 colors. you can add more colors to the color_list and then change k to higher values. |
| 82 | + |
| 83 | +#randomly initialize k number of center points |
| 84 | +kcenters = [] |
| 85 | + |
| 86 | +for i in range(k): |
| 87 | + |
| 88 | + x_center= np.random.randint(x_min, x_max + 1) |
| 89 | + y_center= np.random.randint(y_min, y_max + 1) |
| 90 | + center = [x_center, y_center] |
| 91 | + kcenters.append(center) |
| 92 | + |
| 93 | + print('k center point {} initialized at ({}, {})'.format(i+1, x_center, y_center)) |
| 94 | + |
| 95 | +print('kcenters: ', kcenters) |
| 96 | + |
| 97 | +def display_kcenters(kcenters): |
| 98 | + for i in range(len(kcenters)): |
| 99 | + plt.scatter(kcenters[i][0], kcenters[i][1], color='Red') |
| 100 | + #plt.show() |
| 101 | + |
| 102 | +initial_data_point_color = 'Gray' |
| 103 | +display_kcenters(kcenters) |
| 104 | +plt.scatter(x_data, y_data, color= initial_data_point_color) |
| 105 | +plt.title('before kMeans Clustering') |
| 106 | +plt.xlabel('Some Feature x') |
| 107 | +plt.ylabel('Some Feature y') |
| 108 | +plt.grid() |
| 109 | +plt.savefig(results_dir + '/before_kmeans.jpg') |
| 110 | +plt.show() |
| 111 | + |
| 112 | +color_info_list = [initial_data_point_color]*len(x_data) |
| 113 | + |
| 114 | +#print(color_info_list) |
| 115 | +#print(len(color_info_list)) |
| 116 | + |
| 117 | +print('>>>>>>>>>>>>>>>>>>>>>>>>>> KCENTERS INITIALIZED') |
| 118 | + |
| 119 | +def assign_cluster(x, y, kcenters): |
| 120 | + distances = [] |
| 121 | + for i in range(len(kcenters)): |
| 122 | + #print(i) |
| 123 | + dist = np.sqrt(np.square(x - kcenters[i][0]) + np.square(y - kcenters[i][1])) |
| 124 | + #print(dist) |
| 125 | + distances.append(dist) |
| 126 | + distances = np.array(distances) |
| 127 | + #print(distances) |
| 128 | + #print(type(distances)) |
| 129 | + |
| 130 | + return np.argmin(distances) |
| 131 | + |
| 132 | +def get_mean_shit_value(old_point, new_point): |
| 133 | + #pdb.set_trace() |
| 134 | + mean_shift_value = np.sqrt( np.square(old_point[0] - new_point[0]) + np.square(old_point[1] - new_point[1]) ) |
| 135 | + return mean_shift_value |
| 136 | + |
| 137 | + |
| 138 | +iterations = 100 |
| 139 | +stop=[False]*k |
| 140 | + |
| 141 | +for n in range(iterations): |
| 142 | + #iterate over the data points and assign them to one of the k clusters |
| 143 | + print('iteration number {}'.format(n)) |
| 144 | + |
| 145 | + for i, (x, y) in enumerate(zip(x_data, y_data)): |
| 146 | + |
| 147 | + #print(type(x)) #<type 'numpy.int32'> |
| 148 | + cluster_index= assign_cluster(x, y, kcenters) |
| 149 | + |
| 150 | + color_info_list[i] = color_list[cluster_index] |
| 151 | + #print('point {} goes {}'.format(i+1, color_list[cluster_index])) |
| 152 | + |
| 153 | + |
| 154 | + plt.scatter(x_data, y_data, color= color_info_list) |
| 155 | + display_kcenters(kcenters) |
| 156 | + plt.title('k-Means iter {}'.format(n)) |
| 157 | + plt.xlabel('Some Feature x') |
| 158 | + plt.ylabel('Some Feature y') |
| 159 | + plt.grid() |
| 160 | + plt.savefig(results_dir + '/iter{}.jpg'.format(n)) |
| 161 | + plt.show() |
| 162 | + |
| 163 | + #calculate the new position of the centers |
| 164 | + |
| 165 | + for i in range(len(kcenters)): |
| 166 | + |
| 167 | + x_coords_list=[] |
| 168 | + y_coords_list= [] |
| 169 | + for j in range(len(x_data)): |
| 170 | + if color_info_list[j] == color_list[i]: |
| 171 | + x_coords_list.append(x_data[j]) |
| 172 | + y_coords_list.append(y_data[j]) |
| 173 | + |
| 174 | + x_mean = np.mean(x_coords_list).astype(np.int32) |
| 175 | + y_mean = np.mean(y_coords_list).astype(np.int32) |
| 176 | + #print(type(x_mean)) |
| 177 | + #print('kcenters[{}] shifted from {} to {}'.format(i, kcenters[i],[x_mean,y_mean])) |
| 178 | + |
| 179 | + mean_shift_value = get_mean_shit_value(kcenters[i], [x_mean, y_mean]) |
| 180 | + if disp: |
| 181 | + print('mean_shift_value: ', mean_shift_value) |
| 182 | + |
| 183 | + if mean_shift_value == 0: |
| 184 | + stop[i] = True |
| 185 | + #print(stop) |
| 186 | + #update the center |
| 187 | + kcenters[i] = [x_mean, y_mean] |
| 188 | + |
| 189 | + if disp: |
| 190 | + print('...................................') |
| 191 | + |
| 192 | + |
| 193 | + #check if all the cluster centers have converged |
| 194 | + if sum(stop) == k: |
| 195 | + print('all the {} cluster centers have converged on the {}th iteration'.format(k, n)) |
| 196 | + exit() |
| 197 | + |
| 198 | + |
| 199 | + |
| 200 | +''' |
| 201 | +data = np.array([ |
| 202 | + [1, 2], |
| 203 | + [2, 3], |
| 204 | + [3, 6], |
| 205 | +]) |
| 206 | +x, y = data.T |
| 207 | +plt.scatter(x,y) |
| 208 | +''' |
| 209 | + |
| 210 | +''' |
| 211 | +def save_plt(m,c,epoch_id): |
| 212 | + |
| 213 | + |
| 214 | + # Plot |
| 215 | + plt.scatter(x_list, y_list, color = 'cyan')#, s=area, c=colors, alpha=0.5) |
| 216 | + plt.title('fake data') |
| 217 | + plt.xlabel('x') |
| 218 | + plt.ylabel('y') |
| 219 | + plt.grid() |
| 220 | + #plt.show() |
| 221 | +
|
| 222 | + x_temp = x_max - x_min |
| 223 | + line_coord1 = [x_min , x_max ] |
| 224 | + line_coord2 = [x_min*m_fake + c_fake, m_fake*x_max + c_fake] |
| 225 | + plt.plot(line_coord1, line_coord2 , color = 'green')#, 'k-') |
| 226 | + |
| 227 | + line_coord1 = [x_min , x_max] |
| 228 | + line_coord2 = [x_min*m + c , m*x_max + c] |
| 229 | + plt.plot(line_coord1, line_coord2 , color = 'pink')#, 'k-') |
| 230 | + plt.savefig('result/res{}.png'.format(epoch_id)) |
| 231 | + #plt.show() |
| 232 | +''' |
0 commit comments