Murat Koptur 24 Ağustos 2018
library(readr)
library(knitr)
library(psych)
bfi <- read_csv("../data/bfi.csv",
col_types = cols(X1 = col_skip(), age = col_skip(),
education = col_skip(), gender = col_skip()))
## Warning: Missing column names filled in: 'X1' [1]
## Warning in read_tokens_(data, tokenizer, col_specs, col_names, locale_, :
## length of NULL cannot be changed
## Warning in read_tokens_(data, tokenizer, col_specs, col_names, locale_, :
## length of NULL cannot be changed
## Warning in read_tokens_(data, tokenizer, col_specs, col_names, locale_, :
## length of NULL cannot be changed
## Warning in read_tokens_(data, tokenizer, col_specs, col_names, locale_, :
## length of NULL cannot be changed
## Warning in read_tokens_(data, tokenizer, col_specs, col_names, locale_, :
## length of NULL cannot be changed
## Warning in read_tokens_(data, tokenizer, col_specs, col_names, locale_, :
## length of NULL cannot be changed
## Warning in read_tokens_(data, tokenizer, col_specs, col_names, locale_, :
## length of NULL cannot be changed
## Warning in read_tokens_(data, tokenizer, col_specs, col_names, locale_, :
## length of NULL cannot be changed
## Warning in read_tokens_(data, tokenizer, col_specs, col_names, locale_, :
## length of NULL cannot be changed
## Warning in read_tokens_(data, tokenizer, col_specs, col_names, locale_, :
## length of NULL cannot be changed
## Warning in read_tokens_(data, tokenizer, col_specs, col_names, locale_, :
## length of NULL cannot be changed
## Warning in read_tokens_(data, tokenizer, col_specs, col_names, locale_, :
## length of NULL cannot be changed
kable(head(bfi))
A1 | A2 | A3 | A4 | A5 | C1 | C2 | C3 | C4 | C5 | E1 | E2 | E3 | E4 | E5 | N1 | N2 | N3 | N4 | N5 | O1 | O2 | O3 | O4 | O5 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 4 | 3 | 4 | 4 | 2 | 3 | 3 | 4 | 4 | 3 | 3 | 3 | 4 | 4 | 3 | 4 | 2 | 2 | 3 | 3 | 6 | 3 | 4 | 3 |
2 | 4 | 5 | 2 | 5 | 5 | 4 | 4 | 3 | 4 | 1 | 1 | 6 | 4 | 3 | 3 | 3 | 3 | 5 | 5 | 4 | 2 | 4 | 3 | 3 |
5 | 4 | 5 | 4 | 4 | 4 | 5 | 4 | 2 | 5 | 2 | 4 | 4 | 4 | 5 | 4 | 5 | 4 | 2 | 3 | 4 | 2 | 5 | 5 | 2 |
4 | 4 | 6 | 5 | 5 | 4 | 4 | 3 | 5 | 5 | 5 | 3 | 4 | 4 | 4 | 2 | 5 | 2 | 4 | 1 | 3 | 3 | 4 | 3 | 5 |
2 | 3 | 3 | 4 | 5 | 4 | 4 | 5 | 3 | 2 | 2 | 2 | 5 | 4 | 5 | 2 | 3 | 4 | 4 | 3 | 3 | 3 | 4 | 3 | 3 |
6 | 6 | 5 | 6 | 5 | 6 | 6 | 6 | 1 | 3 | 2 | 1 | 6 | 5 | 6 | 3 | 5 | 2 | 2 | 3 | 4 | 3 | 5 | 6 | 1 |
KMO(bfi)
## Kaiser-Meyer-Olkin factor adequacy
## Call: KMO(r = bfi)
## Overall MSA = 0.85
## MSA for each item =
## A1 A2 A3 A4 A5 C1 C2 C3 C4 C5 E1 E2 E3 E4 E5
## 0.74 0.84 0.87 0.87 0.90 0.83 0.79 0.85 0.82 0.86 0.83 0.88 0.89 0.87 0.89
## N1 N2 N3 N4 N5 O1 O2 O3 O4 O5
## 0.78 0.78 0.86 0.88 0.86 0.85 0.78 0.84 0.76 0.76
fa.parallel(bfi)
## Parallel analysis suggests that the number of factors = 6 and the number of components = 6
bfi.fa <- fa(bfi, nfactors = 6, fm="pa", max.iter = 100)
## Loading required namespace: GPArotation
fa.diagram(bfi.fa)