Skip to content

Commit 1a6eb17

Browse files
authored
Update README.md
1 parent 3667e6b commit 1a6eb17

File tree

1 file changed

+51
-3
lines changed

1 file changed

+51
-3
lines changed

README.md

Lines changed: 51 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -25,6 +25,57 @@ After completing this course, you will be able to:
2525

2626
✔ Demonstrate proficiency in statistical analysis using Python and Jupyter Notebooks.
2727

28+
## Technologies used ⚙️
29+
30+
* <a href="https://github.com/mrankitgupta/Python-Lessons">Python</a> <a href="https://github.com/mrankitgupta/Python-Lessons" target="_blank"> <img src="https://raw.githubusercontent.com/devicons/devicon/master/icons/python/python-original.svg" alt="python" width="25" height="20"/> </a>
31+
32+
* <a href="https://github.com/mrankitgupta/Spotify-Data-Analysis-using-Python">Statistics</a><a href="https://github.com/mrankitgupta/Spotify-Data-Analysis-using-Python" target="_blank" rel="noreferrer"> <img src="https://raw.githubusercontent.com/mrankitgupta/66DaysOfData/c8c040f1c85d921db317152567f331354446286a/statistics-21.svg" alt="Statistics" width="25" height="25"/> </a>
33+
34+
##### Python Libraries :
35+
* <a href="https://github.com/mrankitgupta/Kaggle-Pandas-Solved-Exercises">Pandas</a><a href="https://github.com/mrankitgupta/Kaggle-Pandas-Solved-Exercises" target="_blank" rel="noreferrer"> <img src="https://raw.githubusercontent.com/devicons/devicon/2ae2a900d2f041da66e950e4d48052658d850630/icons/pandas/pandas-original.svg" alt="pandas" width="25" height="20"/> </a>
36+
37+
* <a href="https://numpy.org/">NumPy</a><a href="https://numpy.org/" target="_blank" rel="noreferrer"> <img src="https://raw.githubusercontent.com/mrankitgupta/mrankitgupta/2a582d085b324cff4917325112229027309ecae3/Numpy-logo.svg" alt="numpy" width="25" height="20"/> </a>
38+
39+
* <a href="https://matplotlib.org/">Matplotlib</a><a href="https://matplotlib.org/" target="_blank" rel="noreferrer"> <img src="https://raw.githubusercontent.com/mrankitgupta/mrankitgupta/1331979c3208a15be2c2a6177ffc38ced3d6b434/Matplotlib_icon.svg" alt="matplotlib" width="25" height="20"/> </a>
40+
41+
* <a href="https://seaborn.pydata.org">Seaborn</a><a href="https://seaborn.pydata.org" target="_blank" rel="noreferrer"> <img src="https://seaborn.pydata.org/_images/logo-mark-lightbg.svg" alt="Seaborn" width="25" height="20"/> </a>
42+
43+
44+
<h2 align="left">My Certifications 📜 🎓 ✔️</h2>
45+
46+
- [Data Analysis with Python](https://github.com/mrankitgupta) - by IBM
47+
48+
- [Data Visualization with Python](https://github.com/mrankitgupta) - by IBM
49+
50+
- [Pandas](https://www.kaggle.com/learn/certification/mrankitgupta/pandas) - by Kaggle
51+
52+
- [Numpy](https://olympus1.mygreatlearning.com/course_certificate/IQVNJSIN) - by Great Learning
53+
54+
- [Matplotlib](https://olympus1.mygreatlearning.com/course_certificate/RNVTUIMW) - by Great Learning
55+
56+
- [Databases and SQL for Data Science with Python](https://github.com/mrankitgupta) - by IBM
57+
58+
- [Statistics for Data Science with Python](https://www.credly.com/badges/354576a0-b672-4245-8cad-82dc3f3df76f/public_url) - by IBM
59+
60+
61+
## What are my Featured projects:question: 👨‍💻 🛰️
62+
63+
<code>[Data Analyst Roadmap](https://github.com/mrankitgupta/Data-Analyst-Roadmap)</code> :hourglass:
64+
65+
<code>[Spotify Data Analysis using Python](https://github.com/mrankitgupta/Spotify-Data-Analysis-using-Python)</code> 📊
66+
67+
<code>[Sales Insights - Data Analysis using Tableau & SQL](https://github.com/mrankitgupta/Sales-Insights-Data-Analysis-using-Tableau-and-SQL)</code> 📊
68+
69+
<code>[Kaggle - Pandas Solved Exercises](https://github.com/mrankitgupta/Kaggle-Pandas-Solved-Exercises)</code> 📊
70+
71+
<code>[Python Lessons](https://github.com/mrankitgupta/PythonLessons)</code> 📑
72+
73+
<code>[Python Libraries for Data Science](https://github.com/mrankitgupta/PythonLibraries)</code> 🗂️
74+
75+
## Project - Boston Housing Data Analysis using Python
76+
77+
**[My IBM Cloud Project Link](https://dataplatform.cloud.ibm.com/analytics/notebooks/v2/c1b5b665-7e89-41e6-9aae-d6f184d4245d/view?access_token=d106bb6c980e568aa5a41613f5601f81c9be999faa295fb2f2b61321e2ecbf46)** 🔗
78+
2879
### About Project - Boston Housing Data Analysis using Python
2980

3081
Each record in the database describes a Boston suburb or town. The data was drawn from the Boston Standard Metropolitan Statistical Area (SMSA) in 1970. The attributes are defined as follows (taken from the UCI Machine Learning Repository1): CRIM: per capita crime rate by town
@@ -59,6 +110,3 @@ MEDV: Median value of owner-occupied homes in $1000s
59110

60111
We can see that the input attributes have a mixture of units.
61112

62-
### Project - Boston Housing Data Analysis using Python
63-
64-
[My IBM Cloud Project Link](https://dataplatform.cloud.ibm.com/analytics/notebooks/v2/c1b5b665-7e89-41e6-9aae-d6f184d4245d/view?access_token=d106bb6c980e568aa5a41613f5601f81c9be999faa295fb2f2b61321e2ecbf46)

0 commit comments

Comments
 (0)