You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
<code>[Spotify Data Analysis using Python](https://github.com/mrankitgupta/Spotify-Data-Analysis-using-Python)</code> 📊
66
+
67
+
<code>[Sales Insights - Data Analysis using Tableau & SQL](https://github.com/mrankitgupta/Sales-Insights-Data-Analysis-using-Tableau-and-SQL)</code> 📊
<code>[Python Libraries for Data Science](https://github.com/mrankitgupta/PythonLibraries)</code> 🗂️
74
+
75
+
## Project - Boston Housing Data Analysis using Python
76
+
77
+
**[My IBM Cloud Project Link](https://dataplatform.cloud.ibm.com/analytics/notebooks/v2/c1b5b665-7e89-41e6-9aae-d6f184d4245d/view?access_token=d106bb6c980e568aa5a41613f5601f81c9be999faa295fb2f2b61321e2ecbf46)** 🔗
78
+
28
79
### About Project - Boston Housing Data Analysis using Python
29
80
30
81
Each record in the database describes a Boston suburb or town. The data was drawn from the Boston Standard Metropolitan Statistical Area (SMSA) in 1970. The attributes are defined as follows (taken from the UCI Machine Learning Repository1): CRIM: per capita crime rate by town
@@ -59,6 +110,3 @@ MEDV: Median value of owner-occupied homes in $1000s
59
110
60
111
We can see that the input attributes have a mixture of units.
61
112
62
-
### Project - Boston Housing Data Analysis using Python
63
-
64
-
[My IBM Cloud Project Link](https://dataplatform.cloud.ibm.com/analytics/notebooks/v2/c1b5b665-7e89-41e6-9aae-d6f184d4245d/view?access_token=d106bb6c980e568aa5a41613f5601f81c9be999faa295fb2f2b61321e2ecbf46)
0 commit comments