|
| 1 | +import argparse |
| 2 | +import sys |
| 3 | + |
| 4 | +import torch |
| 5 | +from transformers import AutoModelForCausalLM, AutoTokenizer |
| 6 | + |
| 7 | + |
| 8 | +def parse_args(): |
| 9 | + parser = argparse.ArgumentParser() |
| 10 | + parser.add_argument("model_name", type=str, help="checkpoint path or model name") |
| 11 | + parser.add_argument("--dtype", type=str, default="float16", help="float16 or float32") |
| 12 | + parser.add_argument("--hf_repo_name", type=str, help="Huggingface repository name") |
| 13 | + parser.add_argument("--auth_token", type=str, help="User access token") |
| 14 | + parser.add_argument("--output_folder", type=str, help="output folder path") |
| 15 | + parser.add_argument("--max_shard_size", type=str, default="10GB") |
| 16 | + parser.add_argument("--cache_dir", type=str) |
| 17 | + return parser.parse_args() |
| 18 | + |
| 19 | + |
| 20 | +def main(): |
| 21 | + args = parse_args() |
| 22 | + |
| 23 | + if args.dtype in ("float16", "fp16"): |
| 24 | + torch_dtype = torch.float16 |
| 25 | + elif args.dtype in ("float32", "fp32"): |
| 26 | + torch_dtype = torch.float32 |
| 27 | + else: |
| 28 | + print(f"Unsupported dtpye: {args.dtype}") |
| 29 | + sys.exit(1) |
| 30 | + |
| 31 | + if not args.hf_repo_name and not args.output_folder: |
| 32 | + print( |
| 33 | + "Please specify either `--hf_repo_name` to push to HF or `--output_folder` " |
| 34 | + "to export the model to a local folder." |
| 35 | + ) |
| 36 | + sys.exit(1) |
| 37 | + |
| 38 | + print(f"Loading tokenizer '{args.model_name}' ...") |
| 39 | + tokenizer = AutoTokenizer.from_pretrained(args.model_name) |
| 40 | + print(f"{type(tokenizer).__name__} (vocab_size={len(tokenizer)})") |
| 41 | + |
| 42 | + print(f"Loading model '{args.model_name}' ({args.dtype}) ...") |
| 43 | + model = AutoModelForCausalLM.from_pretrained(args.model_name, torch_dtype=torch_dtype, cache_dir=args.cache_dir) |
| 44 | + print(f"{type(model).__name__} (num_parameters={model.num_parameters()})") |
| 45 | + |
| 46 | + if args.output_folder: |
| 47 | + print(f"Saving model to: {args.output_folder}") |
| 48 | + model.save_pretrained(args.output_folder, max_shard_size=args.max_shard_size) |
| 49 | + |
| 50 | + print(f"Saving tokenizer to: {args.output_folder}") |
| 51 | + tokenizer.save_pretrained(args.output_folder) |
| 52 | + |
| 53 | + if args.hf_repo_name: |
| 54 | + print("Uploading model to HF...") |
| 55 | + model.push_to_hub(args.hf_repo_name, use_auth_token=args.auth_token, max_shard_size=args.max_shard_size) |
| 56 | + |
| 57 | + print("Uploading tokenizer to HF...") |
| 58 | + tokenizer.push_to_hub(args.hf_repo_name, use_auth_token=args.auth_token) |
| 59 | + |
| 60 | + |
| 61 | +if __name__ == "__main__": |
| 62 | + main() |
0 commit comments