-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
Copy pathtest_evoked.py
997 lines (835 loc) · 37.2 KB
/
test_evoked.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import pickle
from copy import deepcopy
from pathlib import Path
import numpy as np
import pytest
from numpy.testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
assert_equal,
)
from scipy import fftpack
from mne import (
Epochs,
EpochsArray,
SourceEstimate,
combine_evoked,
create_info,
equalize_channels,
pick_types,
read_events,
read_evokeds,
write_evokeds,
)
from mne._fiff.constants import FIFF
from mne.evoked import Evoked, EvokedArray, _get_peak
from mne.io import read_raw_fif
from mne.utils import _record_warnings, grand_average
base_dir = Path(__file__).parents[1] / "io" / "tests" / "data"
fname = base_dir / "test-ave.fif"
fname_gz = base_dir / "test-ave.fif.gz"
raw_fname = base_dir / "test_raw.fif"
event_name = base_dir / "test-eve.fif"
def test_get_data():
"""Test the get_data method for Evoked."""
evoked = read_evokeds(fname, 0)
d1 = evoked.get_data()
d2 = evoked.data
assert_array_equal(d1, d2)
eeg_idxs = np.array([i == "eeg" for i in evoked.get_channel_types()])
assert_array_equal(evoked.data[eeg_idxs], evoked.get_data(picks="eeg"))
# Get a specific time window using tmin and tmax
d3 = evoked.get_data(tmin=0)
assert np.all(
d3.shape[1] == evoked.data.shape[1] - np.nonzero(evoked.times == 0)[0]
)
assert evoked.get_data(tmin=0, tmax=0).size == 0
with pytest.raises(TypeError, match="tmin .* float, None"):
evoked.get_data(tmin=[1], tmax=1)
with pytest.raises(TypeError, match="tmax .* float, None"):
evoked.get_data(tmin=1, tmax=np.ones(5))
# Test units
# more tests in mne/io/tests/test_raw.py::test_get_data_units
# EEG is already in V, so no conversion should take place
d1 = evoked.get_data(picks="eeg", units=None)
d2 = evoked.get_data(picks="eeg", units="V")
assert_array_equal(d1, d2)
# Convert to µV
d3 = evoked.get_data(picks="eeg", units="µV")
assert_array_equal(d1 * 1e6, d3)
def test_decim():
"""Test evoked decimation."""
rng = np.random.RandomState(0)
n_channels, n_times = 10, 20
dec_1, dec_2 = 2, 3
decim = dec_1 * dec_2
sfreq = 10.0
sfreq_new = sfreq / decim
data = rng.randn(n_channels, n_times)
info = create_info(n_channels, sfreq, "eeg")
with info._unlock():
info["lowpass"] = sfreq_new / float(decim)
evoked = EvokedArray(data, info, tmin=-1)
zero_idx = evoked.times.tolist().index(0)
evoked_dec = evoked.copy().decimate(decim)
evoked_dec_2 = evoked.copy().decimate(decim, offset=1)
evoked_dec_3 = evoked.decimate(dec_1).decimate(dec_2)
start_samp = zero_idx - decim
assert_array_equal(evoked_dec.data, data[:, start_samp::decim])
# this has +1 because offset=1 when decimating ↓↓↓↓↓↓↓↓↓↓↓↓↓↓
assert_array_equal(evoked_dec_2.data, data[:, (start_samp + 1) :: decim])
# Check proper updating of various fields
assert evoked_dec.first == -1
assert evoked_dec.last == 1
assert_array_equal(evoked_dec.times, [-0.6, 0.0, 0.6])
assert evoked_dec_2.first == -1
assert evoked_dec_2.last == 1
assert_array_equal(evoked_dec_2.times, [-0.5, 0.1, 0.7])
assert evoked_dec_3.first == -1
assert evoked_dec_3.last == 1
assert_array_equal(evoked_dec_3.times, [-0.6, 0.0, 0.6])
# make sure the time nearest zero is also sample number 0.
for ev in (evoked_dec, evoked_dec_2, evoked_dec_3):
lowest_index = np.argmin(np.abs(np.arange(ev.first, ev.last)))
idxs_of_times_nearest_zero = np.where(
np.abs(ev.times) == np.min(np.abs(ev.times))
)[0]
# we use `in` here in case two times are equidistant from 0.
assert lowest_index in idxs_of_times_nearest_zero
assert len(idxs_of_times_nearest_zero) in (1, 2)
# Now let's do it with some real data
raw = read_raw_fif(raw_fname)
events = read_events(event_name)
sfreq_new = raw.info["sfreq"] / decim
with raw.info._unlock():
raw.info["lowpass"] = sfreq_new / 4.0 # suppress aliasing warnings
picks = pick_types(raw.info, meg=True, eeg=True, exclude=())
epochs = Epochs(raw, events, 1, -0.2, 0.5, picks=picks, preload=True)
for offset in (0, 1):
ev_ep_decim = epochs.copy().decimate(decim, offset).average()
ev_decim = epochs.average().decimate(decim, offset)
expected_times = epochs.times[offset::decim]
assert_allclose(ev_decim.times, expected_times)
assert_allclose(ev_ep_decim.times, expected_times)
expected_data = epochs.get_data(copy=False)[:, :, offset::decim].mean(axis=0)
assert_allclose(ev_decim.data, expected_data)
assert_allclose(ev_ep_decim.data, expected_data)
assert_equal(ev_decim.info["sfreq"], sfreq_new)
assert_array_equal(ev_decim.times, expected_times)
def test_savgol_filter():
"""Test savgol filtering."""
h_freq = 10.0
evoked = read_evokeds(fname, 0)
freqs = fftpack.fftfreq(len(evoked.times), 1.0 / evoked.info["sfreq"])
data = np.abs(fftpack.fft(evoked.data))
match_mask = np.logical_and(freqs >= 0, freqs <= h_freq / 2.0)
mismatch_mask = np.logical_and(freqs >= h_freq * 2, freqs < 50.0)
pytest.raises(ValueError, evoked.savgol_filter, evoked.info["sfreq"])
evoked_sg = evoked.copy().savgol_filter(h_freq)
data_filt = np.abs(fftpack.fft(evoked_sg.data))
# decent in pass-band
assert_allclose(
np.mean(data[:, match_mask], 0),
np.mean(data_filt[:, match_mask], 0),
rtol=1e-4,
atol=1e-2,
)
# suppression in stop-band
assert np.mean(data[:, mismatch_mask]) > np.mean(data_filt[:, mismatch_mask]) * 5
# original preserved
assert_allclose(data, np.abs(fftpack.fft(evoked.data)), atol=1e-16)
def test_hash_evoked():
"""Test evoked hashing."""
ave = read_evokeds(fname, 0)
ave_2 = read_evokeds(fname, 0)
assert hash(ave) == hash(ave_2)
assert ave == ave_2
# do NOT use assert_equal here, failing output is terrible
assert pickle.dumps(ave) == pickle.dumps(ave_2)
ave_2.data[0, 0] -= 1
assert hash(ave) != hash(ave_2)
def _aspect_kinds():
"""Yield evoked aspect kinds."""
kinds = list()
for key in FIFF:
if not key.startswith("FIFFV_ASPECT_"):
continue
kinds.append(getattr(FIFF, str(key)))
return kinds
@pytest.mark.parametrize("aspect_kind", _aspect_kinds())
def test_evoked_aspects(aspect_kind, tmp_path):
"""Test handling of evoked aspects."""
# gh-6359
ave = read_evokeds(fname, 0)
ave._aspect_kind = aspect_kind
assert "Evoked" in repr(ave)
# for completeness let's try a round-trip
temp_fname = tmp_path / "test-ave.fif"
ave.save(temp_fname)
ave_2 = read_evokeds(temp_fname, condition=0)
assert_allclose(ave.data, ave_2.data)
assert ave.kind == ave_2.kind
@pytest.mark.slowtest
def test_io_evoked(tmp_path):
"""Test IO for evoked data (fif + gz) with integer and str args."""
ave = read_evokeds(fname, 0)
ave_double = ave.copy()
ave_double.comment = ave.comment + " doubled nave"
ave_double.nave = ave.nave * 2
write_evokeds(tmp_path / "evoked-ave.fif", [ave, ave_double])
ave2, ave_double = read_evokeds(tmp_path / "evoked-ave.fif")
assert ave2.nave * 2 == ave_double.nave
# This not being assert_array_equal due to windows rounding
assert np.allclose(ave.data, ave2.data, atol=1e-16, rtol=1e-3)
assert_array_almost_equal(ave.times, ave2.times)
assert_equal(ave.nave, ave2.nave)
assert_equal(ave._aspect_kind, ave2._aspect_kind)
assert_equal(ave.kind, ave2.kind)
assert_equal(ave.last, ave2.last)
assert_equal(ave.first, ave2.first)
assert repr(ave)
assert ave._repr_html_() # test _repr_html_
# test compressed i/o
ave2 = read_evokeds(fname_gz, 0)
assert np.allclose(ave.data, ave2.data, atol=1e-16, rtol=1e-8)
# test str access
condition = "Left Auditory"
pytest.raises(ValueError, read_evokeds, fname, condition, kind="stderr")
pytest.raises(ValueError, read_evokeds, fname, condition, kind="standard_error")
ave3 = read_evokeds(fname, condition)
assert_array_almost_equal(ave.data, ave3.data, 19)
# test read_evokeds and write_evokeds
aves1 = read_evokeds(fname)[1::2]
aves2 = read_evokeds(fname, [1, 3])
aves3 = read_evokeds(fname, ["Right Auditory", "Right visual"])
write_evokeds(tmp_path / "evoked-ave.fif", aves1, overwrite=True)
aves4 = read_evokeds(tmp_path / "evoked-ave.fif")
for aves in [aves2, aves3, aves4]:
for [av1, av2] in zip(aves1, aves):
assert_array_almost_equal(av1.data, av2.data)
assert_array_almost_equal(av1.times, av2.times)
assert_equal(av1.nave, av2.nave)
assert_equal(av1.kind, av2.kind)
assert_equal(av1._aspect_kind, av2._aspect_kind)
assert_equal(av1.last, av2.last)
assert_equal(av1.first, av2.first)
assert_equal(av1.comment, av2.comment)
# test saving and reading complex numbers in evokeds
ave_complex = ave.copy()
ave_complex._data = 1j * ave_complex.data
fname_temp = str(tmp_path / "complex-ave.fif")
ave_complex.save(fname_temp)
ave_complex = read_evokeds(fname_temp)[0]
assert_allclose(ave.data, ave_complex.data.imag)
# test non-ascii comments (gh 11684)
aves1[0].comment = "🙃"
write_evokeds(tmp_path / "evoked-ave.fif", aves1, overwrite=True)
aves1_read = read_evokeds(tmp_path / "evoked-ave.fif")[0]
assert aves1_read.comment == aves1[0].comment
# test warnings on bad filenames
fname2 = tmp_path / "test-bad-name.fif"
with pytest.warns(RuntimeWarning, match="-ave.fif"):
write_evokeds(fname2, ave)
with pytest.warns(RuntimeWarning, match="-ave.fif"):
read_evokeds(fname2)
# test writing when order of bads doesn't match
fname3 = tmp_path / "test-bad-order-ave.fif"
condition = "Left Auditory"
ave4 = read_evokeds(fname, condition)
ave4.info["bads"] = ave4.ch_names[:3]
ave5 = ave4.copy()
ave5.info["bads"] = ave4.info["bads"][::-1]
write_evokeds(fname3, [ave4, ave5])
# constructor
pytest.raises(TypeError, Evoked, fname)
# MaxShield
fname_ms = tmp_path / "test-ave.fif"
assert ave.info["maxshield"] is False
with ave.info._unlock():
ave.info["maxshield"] = True
ave.save(fname_ms)
pytest.raises(ValueError, read_evokeds, fname_ms)
with pytest.warns(RuntimeWarning, match="Elekta"):
aves = read_evokeds(fname_ms, allow_maxshield=True)
assert all(ave.info["maxshield"] is True for ave in aves)
aves = read_evokeds(fname_ms, allow_maxshield="yes")
assert all(ave.info["maxshield"] is True for ave in aves)
# Channel names
with ave.info._unlock():
ave.info["maxshield"] = False
ave.rename_channels(lambda ch_name: ch_name.replace(" ", ":"))
assert ":" in ave.ch_names[0]
ave.save(fname_ms, overwrite=True)
ave6 = read_evokeds(fname_ms)[0]
assert ave.ch_names == ave6.ch_names
def test_shift_time_evoked(tmp_path):
"""Test for shifting of time scale."""
# Shift backward
ave = read_evokeds(fname, 0).shift_time(-0.1, relative=True)
fname_temp = tmp_path / "evoked-ave.fif"
write_evokeds(fname_temp, ave)
# Shift forward twice the amount
ave_bshift = read_evokeds(fname_temp, 0)
ave_bshift.shift_time(0.2, relative=True)
write_evokeds(fname_temp, ave_bshift, overwrite=True)
# Shift backward again
ave_fshift = read_evokeds(fname_temp, 0)
ave_fshift.shift_time(-0.1, relative=True)
write_evokeds(fname_temp, ave_fshift, overwrite=True)
ave_normal = read_evokeds(fname, 0)
ave_relative = read_evokeds(fname_temp, 0)
assert_allclose(ave_normal.data, ave_relative.data, atol=1e-16, rtol=1e-3)
assert_array_almost_equal(ave_normal.times, ave_relative.times, 8)
assert_equal(ave_normal.last, ave_relative.last)
assert_equal(ave_normal.first, ave_relative.first)
# Absolute time shift
ave = read_evokeds(fname, 0)
ave.shift_time(-0.3, relative=False)
write_evokeds(fname_temp, ave, overwrite=True)
ave_absolute = read_evokeds(fname_temp, 0)
assert_allclose(ave_normal.data, ave_absolute.data, atol=1e-16, rtol=1e-3)
assert_equal(ave_absolute.first, int(-0.3 * ave.info["sfreq"]))
# subsample shift
shift = 1e-6 # 1 µs, should be well below 1/sfreq
ave = read_evokeds(fname, 0)
times = ave.times
ave.shift_time(shift)
assert_allclose(times + shift, ave.times, atol=1e-16, rtol=1e-12)
# test handling of Evoked.first, Evoked.last
ave = read_evokeds(fname, 0)
first_last = np.array([ave.first, ave.last])
# should shift by 0 samples
ave.shift_time(1e-6)
assert_array_equal(first_last, np.array([ave.first, ave.last]))
write_evokeds(fname_temp, ave, overwrite=True)
ave_loaded = read_evokeds(fname_temp, 0)
assert_array_almost_equal(ave.times, ave_loaded.times, 8)
# should shift by 57 samples
ave.shift_time(57.0 / ave.info["sfreq"])
assert_array_equal(first_last + 57, np.array([ave.first, ave.last]))
write_evokeds(fname_temp, ave, overwrite=True)
ave_loaded = read_evokeds(fname_temp, 0)
assert_array_almost_equal(ave.times, ave_loaded.times, 8)
def test_tmin_tmax():
"""Test that the tmin and tmax attributes return the correct time."""
evoked = read_evokeds(fname, 0)
assert evoked.times[0] == evoked.tmin
assert evoked.times[-1] == evoked.tmax
def test_evoked_resample(tmp_path):
"""Test resampling evoked data."""
# upsample, write it out, read it in
ave = read_evokeds(fname, 0)
orig_lp = ave.info["lowpass"]
sfreq_normal = ave.info["sfreq"]
ave.resample(2 * sfreq_normal, npad=100)
assert ave.info["lowpass"] == orig_lp
fname_temp = tmp_path / "evoked-ave.fif"
write_evokeds(fname_temp, ave)
ave_up = read_evokeds(fname_temp, 0)
# compare it to the original
ave_normal = read_evokeds(fname, 0)
# and compare the original to the downsampled upsampled version
ave_new = read_evokeds(fname_temp, 0)
ave_new.resample(sfreq_normal, npad=100)
assert ave.info["lowpass"] == orig_lp
assert_array_almost_equal(ave_normal.data, ave_new.data, 2)
assert_array_almost_equal(ave_normal.times, ave_new.times)
assert_equal(ave_normal.nave, ave_new.nave)
assert_equal(ave_normal._aspect_kind, ave_new._aspect_kind)
assert_equal(ave_normal.kind, ave_new.kind)
assert_equal(ave_normal.last, ave_new.last)
assert_equal(ave_normal.first, ave_new.first)
# for the above to work, the upsampling just about had to, but
# we'll add a couple extra checks anyway
assert len(ave_up.times) == 2 * len(ave_normal.times)
assert ave_up.data.shape[1] == 2 * ave_normal.data.shape[1]
ave_new.resample(50)
assert ave_new.info["sfreq"] == 50.0
assert ave_new.info["lowpass"] == 25.0
def test_evoked_resamp_noop():
"""Tests resampling doesn't affect data if sfreq is identical."""
ave = read_evokeds(fname, 0)
data_before = ave.data
data_after = ave.resample(sfreq=ave.info["sfreq"]).data
assert_array_equal(data_before, data_after)
def test_evoked_filter():
"""Test filtering evoked data."""
# this is mostly a smoke test as the Epochs and raw tests are more complete
ave = read_evokeds(fname, 0).pick(picks="grad")
ave.data[:] = 1.0
assert round(ave.info["lowpass"]) == 172
ave_filt = ave.copy().filter(None, 40.0, fir_design="firwin")
assert ave_filt.info["lowpass"] == 40.0
assert_allclose(ave.data, 1.0, atol=1e-6)
def test_evoked_detrend():
"""Test for detrending evoked data."""
ave = read_evokeds(fname, 0)
ave_normal = read_evokeds(fname, 0)
ave.detrend(0)
ave_normal.data -= np.mean(ave_normal.data, axis=1)[:, np.newaxis]
picks = pick_types(ave.info, meg=True, eeg=True, exclude="bads")
assert_allclose(ave.data[picks], ave_normal.data[picks], rtol=1e-8, atol=1e-16)
def test_to_data_frame():
"""Test evoked Pandas exporter."""
pytest.importorskip("pandas")
ave = read_evokeds(fname, 0)
# test index checking
with pytest.raises(ValueError, match="options. Valid index options are"):
ave.to_data_frame(index=["foo", "bar"])
with pytest.raises(ValueError, match='"qux" is not a valid option'):
ave.to_data_frame(index="qux")
with pytest.raises(TypeError, match="index must be `None` or a string or"):
ave.to_data_frame(index=np.arange(400))
# test setting index
df = ave.to_data_frame(index="time")
assert "time" not in df.columns
assert "time" in df.index.names
# test wide and long formats
df_wide = ave.to_data_frame()
assert all(np.isin(ave.ch_names, df_wide.columns))
df_long = ave.to_data_frame(long_format=True)
expected = ("time", "channel", "ch_type", "value")
assert set(expected) == set(df_long.columns)
assert set(ave.ch_names) == set(df_long["channel"])
assert len(df_long) == ave.data.size
del df_wide, df_long
# test scalings
df = ave.to_data_frame(index="time")
assert (df.columns == ave.ch_names).all()
assert_array_equal(df.values[:, 0], ave.data[0] * 1e13)
assert_array_equal(df.values[:, 2], ave.data[2] * 1e15)
@pytest.mark.parametrize("time_format", (None, "ms", "timedelta"))
def test_to_data_frame_time_format(time_format):
"""Test time conversion in evoked Pandas exporter."""
pd = pytest.importorskip("pandas")
ave = read_evokeds(fname, 0)
# test time_format
df = ave.to_data_frame(time_format=time_format)
dtypes = {None: np.float64, "ms": np.int64, "timedelta": pd.Timedelta}
assert isinstance(df["time"].iloc[0], dtypes[time_format])
def test_evoked_proj():
"""Test SSP proj operations."""
for proj in [True, False]:
ave = read_evokeds(fname, condition=0, proj=proj)
assert all(p["active"] == proj for p in ave.info["projs"])
# test adding / deleting proj
if proj:
pytest.raises(ValueError, ave.add_proj, [], {"remove_existing": True})
pytest.raises(ValueError, ave.del_proj, 0)
else:
projs = deepcopy(ave.info["projs"])
n_proj = len(ave.info["projs"])
ave.del_proj(0)
assert len(ave.info["projs"]) == n_proj - 1
# Test that already existing projections are not added.
ave.add_proj(projs, remove_existing=False)
assert len(ave.info["projs"]) == n_proj
ave.add_proj(projs[:-1], remove_existing=True)
assert len(ave.info["projs"]) == n_proj - 1
ave = read_evokeds(fname, condition=0, proj=False)
data = ave.data.copy()
ave.apply_proj()
assert_allclose(np.dot(ave._projector, data), ave.data)
def test_get_peak():
"""Test peak getter."""
evoked = read_evokeds(fname, condition=0, proj=True)
with pytest.raises(ValueError, match="tmin.*must be <= tmax"):
evoked.get_peak(ch_type="mag", tmin=1)
with pytest.raises(ValueError, match="tmax.*is out of bounds"):
evoked.get_peak(ch_type="mag", tmax=0.9)
with pytest.raises(ValueError, match="tmin.*must be <= tmax"):
evoked.get_peak(ch_type="mag", tmin=0.02, tmax=0.01)
with pytest.raises(ValueError, match="Invalid.*'mode' parameter"):
evoked.get_peak(ch_type="mag", mode="foo")
with pytest.raises(RuntimeError, match="Multiple data channel types"):
evoked.get_peak(ch_type=None, mode="foo")
with pytest.raises(ValueError, match="Channel type.*not found"):
evoked.get_peak(ch_type="misc", mode="foo")
ch_name, time_idx = evoked.get_peak(ch_type="mag")
assert ch_name in evoked.ch_names
assert time_idx in evoked.times
ch_name, time_idx, max_amp = evoked.get_peak(
ch_type="mag", time_as_index=True, return_amplitude=True
)
assert time_idx < len(evoked.times)
assert_equal(ch_name, "MEG 1421")
assert_allclose(max_amp, 7.17057e-13, rtol=1e-5)
with pytest.raises(ValueError, match='must be "grad" for merge_grads'):
evoked.get_peak(ch_type="mag", merge_grads=True)
with pytest.raises(ValueError, match="Negative mode.*does not make sense"):
evoked.get_peak(ch_type="grad", merge_grads=True, mode="neg")
ch_name, time_idx = evoked.get_peak(ch_type="grad", merge_grads=True)
assert_equal(ch_name, "MEG 244X")
data = np.array([[0.0, 1.0, 2.0], [0.0, -3.0, 0]])
times = np.array([0.1, 0.2, 0.3])
ch_idx, time_idx, max_amp = _get_peak(data, times, mode="abs")
assert_equal(ch_idx, 1)
assert_equal(time_idx, 1)
assert_allclose(max_amp, -3.0)
ch_idx, time_idx, max_amp = _get_peak(data * -1, times, mode="neg")
assert_equal(ch_idx, 0)
assert_equal(time_idx, 2)
assert_allclose(max_amp, -2.0)
ch_idx, time_idx, max_amp = _get_peak(data, times, mode="pos")
assert_equal(ch_idx, 0)
assert_equal(time_idx, 2)
assert_allclose(max_amp, 2.0)
# Check behavior if `mode` doesn't match the available data
evoked_all_pos = evoked.copy().crop(0, 0.1).pick("EEG 001")
evoked_all_neg = evoked.copy().crop(0, 0.1).pick("EEG 001")
evoked_all_pos.data = np.abs(evoked_all_pos.data) # all values positive
evoked_all_neg.data = -np.abs(evoked_all_neg.data) # all negative
with pytest.raises(ValueError, match="No negative values"):
evoked_all_pos.get_peak(mode="neg")
with pytest.raises(ValueError, match="No positive values"):
evoked_all_neg.get_peak(mode="pos")
# Test finding minimum and maximum values
evoked_all_neg_outlier = evoked_all_neg.copy()
evoked_all_pos_outlier = evoked_all_pos.copy()
# Add an outlier to the data
evoked_all_neg_outlier.data[0, 15] = -1e-20
evoked_all_pos_outlier.data[0, 15] = 1e-20
ch_name, time_idx, max_amp = evoked_all_neg_outlier.get_peak(
mode="pos", return_amplitude=True, strict=False
)
assert max_amp == -1e-20
ch_name, time_idx, min_amp = evoked_all_pos_outlier.get_peak(
mode="neg", return_amplitude=True, strict=False
)
assert min_amp == 1e-20
# Test interaction between `mode` and `tmin` / `tmax`
# For the test, create an Evoked where half of the values are negative
# and the rest is positive
evoked_neg_and_pos = evoked_all_neg.copy()
time_sep_neg_and_pos = 0.05
idx_time_sep_neg_and_pos = evoked_neg_and_pos.time_as_index(time_sep_neg_and_pos)[0]
evoked_neg_and_pos.data[:, idx_time_sep_neg_and_pos:] *= -1
with pytest.raises(ValueError, match="No positive values"):
evoked_neg_and_pos.get_peak(
mode="pos",
# subtract 1 time instant, otherwise were off-by-one
tmax=time_sep_neg_and_pos - 1 / evoked_neg_and_pos.info["sfreq"],
)
with pytest.raises(ValueError, match="No negative values"):
evoked_neg_and_pos.get_peak(mode="neg", tmin=time_sep_neg_and_pos)
def test_drop_channels_mixin():
"""Test channels-dropping functionality."""
evoked = read_evokeds(fname, condition=0, proj=True)
drop_ch = evoked.ch_names[:3]
ch_names = evoked.ch_names[3:]
ch_names_orig = evoked.ch_names
dummy = evoked.copy().drop_channels(drop_ch)
assert_equal(ch_names, dummy.ch_names)
assert_equal(ch_names_orig, evoked.ch_names)
assert_equal(len(ch_names_orig), len(evoked.data))
dummy2 = evoked.copy().drop_channels([drop_ch[0]])
assert_equal(dummy2.ch_names, ch_names_orig[1:])
evoked.drop_channels(drop_ch)
assert_equal(ch_names, evoked.ch_names)
assert_equal(len(ch_names), len(evoked.data))
for ch_names in ([1, 2], "fake", ["fake"]):
pytest.raises(ValueError, evoked.drop_channels, ch_names)
def test_pick_channels_mixin():
"""Test channel-picking functionality."""
evoked = read_evokeds(fname, condition=0, proj=True)
ch_names = evoked.ch_names[:3]
ch_names_orig = evoked.ch_names
dummy = evoked.copy().pick(ch_names)
assert_equal(ch_names, dummy.ch_names)
assert_equal(ch_names_orig, evoked.ch_names)
assert_equal(len(ch_names_orig), len(evoked.data))
evoked.pick(ch_names)
assert_equal(ch_names, evoked.ch_names)
assert_equal(len(ch_names), len(evoked.data))
evoked = read_evokeds(fname, condition=0, proj=True)
assert "meg" in evoked
assert "eeg" in evoked
evoked.pick(picks="eeg")
assert "meg" not in evoked
assert "eeg" in evoked
assert len(evoked.ch_names) == 60
def test_equalize_channels():
"""Test equalization of channels."""
evoked1 = read_evokeds(fname, condition=0, proj=True)
evoked2 = evoked1.copy()
ch_names = evoked1.ch_names[2:]
evoked1.drop_channels(evoked1.ch_names[:1])
evoked2.drop_channels(evoked2.ch_names[1:2])
my_comparison = [evoked1, evoked2]
my_comparison = equalize_channels(my_comparison)
for e in my_comparison:
assert_equal(ch_names, e.ch_names)
def test_arithmetic():
"""Test evoked arithmetic."""
ev = read_evokeds(fname, condition=0)
ev20 = EvokedArray(np.ones_like(ev.data), ev.info, ev.times[0], nave=20)
ev30 = EvokedArray(np.ones_like(ev.data), ev.info, ev.times[0], nave=30)
tol = dict(rtol=1e-9, atol=0)
# test subtraction
sub1 = combine_evoked([ev, ev], weights=[1, -1])
sub2 = combine_evoked([ev, -ev], weights=[1, 1])
assert np.allclose(sub1.data, np.zeros_like(sub1.data), atol=1e-20)
assert np.allclose(sub2.data, np.zeros_like(sub2.data), atol=1e-20)
# test nave weighting. Expect signal ampl.: 1*(20/50) + 1*(30/50) == 1
# and expect nave == ev1.nave + ev2.nave
ev = combine_evoked([ev20, ev30], weights="nave")
assert np.allclose(ev.nave, ev20.nave + ev30.nave)
assert np.allclose(ev.data, np.ones_like(ev.data), **tol)
# test equal-weighted sum. Expect signal ampl. == 2
# and expect nave == 1/sum(1/naves) == 1/(1/20 + 1/30) == 12
ev = combine_evoked([ev20, ev30], weights=[1, 1])
assert np.allclose(ev.nave, 12.0)
assert np.allclose(ev.data, ev20.data + ev30.data, **tol)
# test equal-weighted average. Expect signal ampl. == 1
# and expect nave == 1/sum(weights²/naves) == 1/(0.5²/20 + 0.5²/30) == 48
ev = combine_evoked([ev20, ev30], weights="equal")
assert np.allclose(ev.nave, 48.0)
assert np.allclose(ev.data, np.mean([ev20.data, ev30.data], axis=0), **tol)
# test zero weights
ev = combine_evoked([ev20, ev30], weights=[1, 0])
assert ev.nave == ev20.nave
assert np.allclose(ev.data, ev20.data, **tol)
# default comment behavior if evoked.comment is None
old_comment1 = ev20.comment
ev20.comment = None
ev = combine_evoked([ev20, -ev30], weights=[1, -1])
assert_equal(ev.comment.count("unknown"), 2)
assert ev.comment == "unknown + unknown"
ev20.comment = old_comment1
with pytest.raises(ValueError, match="Invalid value for the 'weights'"):
combine_evoked([ev20, ev30], weights="foo")
with pytest.raises(ValueError, match="weights must be the same size as"):
combine_evoked([ev20, ev30], weights=[1])
# grand average
evoked1, evoked2 = read_evokeds(fname, condition=[0, 1], proj=True)
ch_names = evoked1.ch_names[2:]
evoked1.info["bads"] = ["EEG 008"] # test interpolation
evoked1.drop_channels(evoked1.ch_names[:1])
evoked2.drop_channels(evoked2.ch_names[1:2])
gave = grand_average([evoked1, evoked2])
assert_equal(gave.data.shape, [len(ch_names), evoked1.data.shape[1]])
assert_equal(ch_names, gave.ch_names)
assert_equal(gave.nave, 2)
with pytest.raises(TypeError, match="All elements must be an instance of"):
grand_average([1, evoked1])
gave = grand_average([ev20, ev20, -ev30]) # (1 + 1 + -1) / 3 = 1/3
assert_allclose(gave.data, np.full_like(gave.data, 1.0 / 3.0))
# test channel (re)ordering
evoked1, evoked2 = read_evokeds(fname, condition=[0, 1], proj=True)
data2 = evoked2.data # assumes everything is ordered to the first evoked
data = (evoked1.data + evoked2.data) / 2.0
evoked2.reorder_channels(evoked2.ch_names[::-1])
assert not np.allclose(data2, evoked2.data)
with pytest.warns(RuntimeWarning, match="reordering"):
evoked3 = combine_evoked([evoked1, evoked2], weights=[0.5, 0.5])
assert np.allclose(evoked3.data, data)
assert evoked1.ch_names != evoked2.ch_names
assert evoked1.ch_names == evoked3.ch_names
def test_array_epochs(tmp_path):
"""Test creating evoked from array."""
# creating
rng = np.random.RandomState(42)
data1 = rng.randn(20, 60)
sfreq = 1e3
ch_names = [f"EEG {i + 1:03}" for i in range(20)]
types = ["eeg"] * 20
info = create_info(ch_names, sfreq, types)
evoked1 = EvokedArray(data1, info, tmin=-0.01)
# save, read, and compare evokeds
tmp_fname = tmp_path / "evkdary-ave.fif"
evoked1.save(tmp_fname)
evoked2 = read_evokeds(tmp_fname)[0]
data2 = evoked2.data
assert_allclose(data1, data2)
assert_array_almost_equal(evoked1.times, evoked2.times, 8)
assert_equal(evoked1.first, evoked2.first)
assert_equal(evoked1.last, evoked2.last)
assert_equal(evoked1.kind, evoked2.kind)
assert_equal(evoked1.nave, evoked2.nave)
# now compare with EpochsArray (with single epoch)
data3 = data1[np.newaxis, :, :]
events = np.c_[10, 0, 1]
evoked3 = EpochsArray(data3, info, events=events, tmin=-0.01).average()
assert_allclose(evoked1.data, evoked3.data)
assert_allclose(evoked1.times, evoked3.times)
assert_equal(evoked1.first, evoked3.first)
assert_equal(evoked1.last, evoked3.last)
assert_equal(evoked1.kind, evoked3.kind)
assert_equal(evoked1.nave, evoked3.nave)
# test kind check
with pytest.raises(ValueError, match="Invalid value"):
EvokedArray(data1, info, tmin=0, kind=1)
with pytest.raises(ValueError, match="Invalid value"):
EvokedArray(data1, info, kind="mean")
# test match between channels info and data
ch_names = [f"EEG {i + 1:03}" for i in range(19)]
types = ["eeg"] * 19
info = create_info(ch_names, sfreq, types)
pytest.raises(ValueError, EvokedArray, data1, info, tmin=-0.01)
def test_time_as_index_and_crop():
"""Test time as index and cropping."""
tmin, tmax = -0.1, 0.1
evoked = read_evokeds(fname, condition=0).crop(tmin, tmax)
delta = 1.0 / evoked.info["sfreq"]
atol = 0.5 * delta
assert_allclose(evoked.times[[0, -1]], [tmin, tmax], atol=atol)
assert_array_equal(
evoked.time_as_index([-0.1, 0.1], use_rounding=True), [0, len(evoked.times) - 1]
)
evoked.crop(evoked.tmin, evoked.tmax, include_tmax=False)
n_times = len(evoked.times)
with _record_warnings(), pytest.warns(RuntimeWarning, match="tmax is set to"):
evoked.crop(tmin, tmax, include_tmax=False)
assert len(evoked.times) == n_times
assert_allclose(evoked.times[[0, -1]], [tmin, tmax - delta], atol=atol)
def test_add_channels():
"""Test evoked splitting / re-appending channel types."""
evoked = read_evokeds(fname, condition=0)
hpi_coils = [
{"event_bits": []},
{"event_bits": np.array([256, 0, 256, 256])},
{"event_bits": np.array([512, 0, 512, 512])},
]
with evoked.info._unlock():
evoked.info["hpi_subsystem"] = dict(hpi_coils=hpi_coils, ncoil=2)
evoked_eeg = evoked.copy().pick(picks="eeg")
evoked_meg = evoked.copy().pick(picks="meg")
evoked_stim = evoked.copy().pick(picks="stim")
evoked_eeg_meg = evoked.copy().pick(picks=["meg", "eeg"])
evoked_new = evoked_meg.copy().add_channels([evoked_eeg, evoked_stim])
assert all(
ch in evoked_new.ch_names for ch in evoked_stim.ch_names + evoked_meg.ch_names
)
evoked_new = evoked_meg.copy().add_channels([evoked_eeg])
assert (ch in evoked_new.ch_names for ch in evoked.ch_names)
assert_array_equal(evoked_new.data, evoked_eeg_meg.data)
assert all(ch not in evoked_new.ch_names for ch in evoked_stim.ch_names)
# Now test errors
evoked_badsf = evoked_eeg.copy()
with evoked_badsf.info._unlock():
evoked_badsf.info["sfreq"] = 3.1415927
evoked_eeg = evoked_eeg.crop(-0.1, 0.1)
pytest.raises(RuntimeError, evoked_meg.add_channels, [evoked_badsf])
pytest.raises(ValueError, evoked_meg.add_channels, [evoked_eeg])
pytest.raises(ValueError, evoked_meg.add_channels, [evoked_meg])
pytest.raises(TypeError, evoked_meg.add_channels, evoked_badsf)
def test_evoked_baseline(tmp_path):
"""Test evoked baseline."""
evoked = read_evokeds(fname, condition=0, baseline=None)
# Here we create a data_set with constant data.
evoked = EvokedArray(np.ones_like(evoked.data), evoked.info, evoked.times[0])
assert evoked.baseline is None
evoked_baselined = EvokedArray(
np.ones_like(evoked.data), evoked.info, evoked.times[0], baseline=(None, 0)
)
assert_allclose(evoked_baselined.baseline, (evoked_baselined.tmin, 0))
del evoked_baselined
# Mean baseline correction is applied, since the data is equal to its mean
# the resulting data should be a matrix of zeroes.
baseline = (None, None)
evoked.apply_baseline(baseline)
assert_allclose(evoked.baseline, (evoked.tmin, evoked.tmax))
assert_allclose(evoked.data, np.zeros_like(evoked.data))
# Test that the .baseline attribute changes if we apply a different
# baseline now.
baseline = (None, 0)
evoked.apply_baseline(baseline)
assert_allclose(evoked.baseline, (evoked.tmin, 0))
# By default for our test file, no baseline should be set upon reading
evoked = read_evokeds(fname, condition=0)
assert evoked.baseline is None
# Test that the .baseline attribute is set when we call read_evokeds()
# with a `baseline` parameter.
baseline = (-0.2, -0.1)
evoked = read_evokeds(fname, condition=0, baseline=baseline)
assert_allclose(evoked.baseline, baseline)
# Test that the .baseline attribute survives an I/O roundtrip.
evoked = read_evokeds(fname, condition=0)
baseline = (-0.2, -0.1)
evoked.apply_baseline(baseline)
assert_allclose(evoked.baseline, baseline)
tmp_fname = tmp_path / "test-ave.fif"
evoked.save(tmp_fname)
evoked_read = read_evokeds(tmp_fname, condition=0)
assert_allclose(evoked_read.baseline, evoked.baseline)
# We shouldn't be able to remove a baseline correction after it has been
# applied.
evoked = read_evokeds(fname, condition=0)
baseline = (-0.2, -0.1)
evoked.apply_baseline(baseline)
with pytest.raises(ValueError, match="already been baseline-corrected"):
evoked.apply_baseline(None)
def test_hilbert():
"""Test hilbert on raw, epochs, evoked and SourceEstimate data."""
raw = read_raw_fif(raw_fname).load_data()
raw.del_proj()
raw.pick(raw.ch_names[:2])
events = read_events(event_name)
epochs = Epochs(raw, events)
with pytest.raises(RuntimeError, match="requires epochs data to be load"):
epochs.apply_hilbert()
epochs.load_data()
evoked = epochs.average()
# Create SourceEstimate stc data
verts = [np.arange(10), np.arange(90)]
data = np.random.default_rng(0).normal(size=(100, 10))
stc = SourceEstimate(data, verts, 0, 1e-1, "foo")
raw_hilb = raw.apply_hilbert()
epochs_hilb = epochs.apply_hilbert()
evoked_hilb = evoked.copy().apply_hilbert()
evoked_hilb_2_data = epochs_hilb.get_data(copy=False).mean(0)
stc_hilb = stc.copy().apply_hilbert()
stc_hilb_env = stc.copy().apply_hilbert(envelope=True)
assert_allclose(evoked_hilb.data, evoked_hilb_2_data)
# This one is only approximate because of edge artifacts
evoked_hilb_3 = Epochs(raw_hilb, events).average()
corr = np.corrcoef(
np.abs(evoked_hilb_3.data.ravel()), np.abs(evoked_hilb.data.ravel())
)[0, 1]
assert 0.96 < corr < 0.98
# envelope=True mode
evoked_hilb_env = evoked.apply_hilbert(envelope=True)
assert_allclose(evoked_hilb_env.data, np.abs(evoked_hilb.data))
assert len(stc_hilb.data) == len(stc.data)
assert_allclose(stc_hilb_env.data, np.abs(stc_hilb.data))
def test_apply_function_evk():
"""Check the apply_function method for evoked data."""
# create fake evoked data to use for checking apply_function
data = np.random.rand(10, 1000)
info = create_info(10, 1000.0, "eeg")
evoked = EvokedArray(data, info)
evoked_data = evoked.data.copy()
# check apply_function channel-wise
def fun(data, multiplier):
return data * multiplier
mult = -1
applied = evoked.apply_function(fun, n_jobs=None, multiplier=mult)
assert np.shape(applied.data) == np.shape(evoked_data)
assert np.equal(applied.data, evoked_data * mult).all()
def test_apply_function_evk_ch_access():
"""Check ch-access within the apply_function method for evoked data."""
def _bad_ch_idx(x, ch_idx):
assert x[0] == ch_idx
return x
def _bad_ch_name(x, ch_name):
assert isinstance(ch_name, str)
assert x[0] == float(ch_name)
return x
# create fake evoked data to use for checking apply_function
data = np.full((2, 100), np.arange(2).reshape(-1, 1))
evoked = EvokedArray(data, create_info(2, 1000.0, "eeg"))
# test ch_idx access in both code paths (parallel / 1 job)
evoked.apply_function(_bad_ch_idx)
evoked.apply_function(_bad_ch_idx, n_jobs=2)
evoked.apply_function(_bad_ch_name)
evoked.apply_function(_bad_ch_name, n_jobs=2)
# test input catches
with pytest.raises(
ValueError,
match="cannot access.*when channel_wise=False",
):
evoked.apply_function(_bad_ch_idx, channel_wise=False)