-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
Copy pathtest_dipole.py
583 lines (526 loc) · 21.1 KB
/
test_dipole.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import os
import matplotlib.pyplot as plt
import numpy as np
import pytest
from numpy.testing import assert_allclose, assert_array_equal, assert_array_less
from mne import (
Dipole,
DipoleFixed,
Epochs,
Evoked,
EvokedArray,
SourceEstimate,
convert_forward_solution,
fit_dipole,
head_to_mni,
make_ad_hoc_cov,
make_fixed_length_events,
make_forward_solution,
make_sphere_model,
pick_info,
pick_types,
read_cov,
read_dipole,
read_evokeds,
read_forward_solution,
read_source_spaces,
transform_surface_to,
write_evokeds,
)
from mne._fiff.constants import FIFF
from mne.bem import _bem_find_surface, read_bem_solution
from mne.datasets import testing
from mne.dipole import _BDIP_ERROR_KEYS, get_phantom_dipoles
from mne.io import read_raw_ctf, read_raw_fif
from mne.proj import make_eeg_average_ref_proj
from mne.simulation import simulate_evoked
from mne.surface import _compute_nearest
from mne.transforms import _get_trans, apply_trans
from mne.utils import _record_warnings, requires_mne, run_subprocess
data_path = testing.data_path(download=False)
meg_path = data_path / "MEG" / "sample"
fname_dip_xfit_80 = meg_path / "sample_audvis-ave_xfit.dip"
fname_raw = meg_path / "sample_audvis_trunc_raw.fif"
fname_dip = meg_path / "sample_audvis_trunc_set1.dip"
fname_bdip = meg_path / "sample_audvis_trunc_set1.bdip"
fname_dip_xfit = meg_path / "sample_audvis_trunc_xfit.dip"
fname_bdip_xfit = meg_path / "sample_audvis_trunc_xfit.bdip"
fname_evo = meg_path / "sample_audvis_trunc-ave.fif"
fname_evo_full = meg_path / "sample_audvis-ave.fif"
fname_cov = meg_path / "sample_audvis_trunc-cov.fif"
fname_trans = meg_path / "sample_audvis_trunc-trans.fif"
fname_fwd = meg_path / "sample_audvis_trunc-meg-eeg-oct-6-fwd.fif"
fname_bem = (
data_path / "subjects" / "sample" / "bem" / "sample-1280-1280-1280-bem-sol.fif"
)
fname_src = data_path / "subjects" / "sample" / "bem" / "sample-oct-2-src.fif"
fname_xfit_dip = data_path / "dip" / "fixed_auto.fif"
fname_xfit_dip_txt = data_path / "dip" / "fixed_auto.dip"
fname_xfit_seq_txt = data_path / "dip" / "sequential.dip"
fname_ctf = data_path / "CTF" / "testdata_ctf_short.ds"
subjects_dir = data_path / "subjects"
def _compare_dipoles(orig, new):
"""Compare dipole results for equivalence."""
assert_allclose(orig.times, new.times, atol=1e-3, err_msg="times")
assert_allclose(orig.pos, new.pos, err_msg="pos")
assert_allclose(orig.amplitude, new.amplitude, err_msg="amplitude")
assert_allclose(orig.gof, new.gof, err_msg="gof")
assert_allclose(orig.ori, new.ori, rtol=1e-4, atol=1e-4, err_msg="ori")
assert orig.name == new.name
def _check_dipole(dip, n_dipoles):
"""Check dipole sizes."""
assert len(dip) == n_dipoles
assert dip.pos.shape == (n_dipoles, 3)
assert dip.ori.shape == (n_dipoles, 3)
assert dip.gof.shape == (n_dipoles,)
assert dip.amplitude.shape == (n_dipoles,)
@testing.requires_testing_data
def test_io_dipoles(tmp_path):
"""Test IO for .dip files."""
dipole = read_dipole(fname_dip)
assert "Dipole " in repr(dipole) # test repr
out_fname = tmp_path / "temp.dip"
dipole.save(out_fname)
dipole_new = read_dipole(out_fname)
_compare_dipoles(dipole, dipole_new)
@testing.requires_testing_data
def test_dipole_fitting_ctf():
"""Test dipole fitting with CTF data."""
pytest.importorskip("nibabel")
raw_ctf = read_raw_ctf(fname_ctf).set_eeg_reference(projection=True)
events = make_fixed_length_events(raw_ctf, 1)
evoked = Epochs(raw_ctf, events, 1, 0, 0, baseline=None).average()
cov = make_ad_hoc_cov(evoked.info)
sphere = make_sphere_model((0.0, 0.0, 0.0))
# XXX Eventually we should do some better checks about accuracy, but
# for now our CTF phantom fitting tutorials will have to do
# (otherwise we need to add that to the testing dataset, which is
# a bit too big)
fit_dipole(
evoked,
cov,
sphere,
rank=dict(meg=len(evoked.data)),
tol=1e-3,
accuracy="accurate",
)
@pytest.mark.slowtest
@testing.requires_testing_data
@requires_mne
def test_dipole_fitting(tmp_path):
"""Test dipole fitting."""
pytest.importorskip("nibabel")
amp = 100e-9
rng = np.random.RandomState(0)
fname_dtemp = tmp_path / "test.dip"
fname_sim = tmp_path / "test-ave.fif"
fwd = convert_forward_solution(
read_forward_solution(fname_fwd), surf_ori=False, force_fixed=True, use_cps=True
)
evoked = read_evokeds(fname_evo)[0]
cov = read_cov(fname_cov)
n_per_hemi = 5
vertices = [np.sort(rng.permutation(s["vertno"])[:n_per_hemi]) for s in fwd["src"]]
nv = sum(len(v) for v in vertices)
stc = SourceEstimate(amp * np.eye(nv), vertices, 0, 0.001)
evoked = simulate_evoked(
fwd, stc, evoked.info, cov, nave=evoked.nave, random_state=rng
)
# For speed, let's use a subset of channels (strange but works)
picks = np.sort(
np.concatenate(
[
pick_types(evoked.info, meg=True, eeg=False)[::2],
pick_types(evoked.info, meg=False, eeg=True)[::2],
]
)
)
evoked.pick([evoked.ch_names[p] for p in picks])
evoked.add_proj(make_eeg_average_ref_proj(evoked.info))
write_evokeds(fname_sim, evoked)
# Run MNE-C version
run_subprocess(
[
"mne_dipole_fit",
"--meas",
fname_sim,
"--meg",
"--eeg",
"--noise",
fname_cov,
"--dip",
fname_dtemp,
"--mri",
fname_fwd,
"--reg",
"0",
"--tmin",
"0",
]
)
dip_c = read_dipole(fname_dtemp)
# Run mne-python version
sphere = make_sphere_model(head_radius=0.1)
with pytest.warns(RuntimeWarning, match="projection"):
dip, residual = fit_dipole(
evoked, cov, sphere, fname_fwd, rank="info"
) # just to test rank support
assert isinstance(residual, Evoked)
# Test conversion of dip.pos to MNI coordinates.
dip_mni_pos = dip.to_mni("sample", fname_trans, subjects_dir=subjects_dir)
head_to_mni_dip_pos = head_to_mni(
dip.pos, "sample", fwd["mri_head_t"], subjects_dir=subjects_dir
)
assert_allclose(dip_mni_pos, head_to_mni_dip_pos, rtol=1e-3, atol=0)
# Test finding label for dip.pos in an aseg, also tests `to_mri`
target_labels = [
"Left-Cerebral-Cortex",
"Unknown",
"Left-Cerebral-Cortex",
"Right-Cerebral-Cortex",
"Left-Cerebral-Cortex",
"Unknown",
"Unknown",
"Unknown",
"Right-Cerebral-White-Matter",
"Right-Cerebral-Cortex",
]
labels = dip.to_volume_labels(
fname_trans, subject="fsaverage", aseg="aseg", subjects_dir=subjects_dir
)
assert labels == target_labels
# Sanity check: do our residuals have less power than orig data?
data_rms = np.sqrt(np.sum(evoked.data**2, axis=0))
resi_rms = np.sqrt(np.sum(residual.data**2, axis=0))
assert (data_rms > resi_rms * 0.95).all(), (
f"{(data_rms / resi_rms).min()} (factor: {0.95})"
)
# Compare to original points
transform_surface_to(fwd["src"][0], "head", fwd["mri_head_t"])
transform_surface_to(fwd["src"][1], "head", fwd["mri_head_t"])
assert fwd["src"][0]["coord_frame"] == FIFF.FIFFV_COORD_HEAD
src_rr = np.concatenate([s["rr"][v] for s, v in zip(fwd["src"], vertices)], axis=0)
src_nn = np.concatenate([s["nn"][v] for s, v in zip(fwd["src"], vertices)], axis=0)
# MNE-C skips the last "time" point :(
out = dip.crop(dip_c.times[0], dip_c.times[-1])
assert dip is out
src_rr, src_nn = src_rr[:-1], src_nn[:-1]
# check that we did about as well
corrs, dists, gc_dists, amp_errs, gofs = [], [], [], [], []
for d in (dip_c, dip):
new = d.pos
diffs = new - src_rr
corrs += [np.corrcoef(src_rr.ravel(), new.ravel())[0, 1]]
dists += [np.sqrt(np.mean(np.sum(diffs * diffs, axis=1)))]
gc_dists += [180 / np.pi * np.mean(np.arccos(np.sum(src_nn * d.ori, axis=1)))]
amp_errs += [np.sqrt(np.mean((amp - d.amplitude) ** 2))]
gofs += [np.mean(d.gof)]
# XXX possibly some OpenBLAS numerical differences make
# things slightly worse for us
factor = 0.7
assert dists[0] / factor >= dists[1], f"dists: {dists}"
assert corrs[0] * factor <= corrs[1], f"corrs: {corrs}"
assert gc_dists[0] / factor >= gc_dists[1] * 0.8, f"gc-dists (ori): {gc_dists}"
assert amp_errs[0] / factor >= amp_errs[1], f"amplitude errors: {amp_errs}"
# This one is weird because our cov/sim/picking is weird
assert gofs[0] * factor <= gofs[1] * 2, f"gof: {gofs}"
@testing.requires_testing_data
def test_dipole_fitting_fixed(tmp_path):
"""Test dipole fitting with a fixed position."""
tpeak = 0.073
sphere = make_sphere_model(head_radius=0.1)
evoked = read_evokeds(fname_evo, baseline=(None, 0))[0]
evoked.pick("meg")
t_idx = np.argmin(np.abs(tpeak - evoked.times))
evoked_crop = evoked.copy().crop(tpeak, tpeak)
assert len(evoked_crop.times) == 1
cov = read_cov(fname_cov)
dip_seq, resid = fit_dipole(evoked_crop, cov, sphere)
assert isinstance(dip_seq, Dipole)
assert isinstance(resid, Evoked)
assert len(dip_seq.times) == 1
pos, ori, gof = dip_seq.pos[0], dip_seq.ori[0], dip_seq.gof[0]
amp = dip_seq.amplitude[0]
# Fix position, allow orientation to change
dip_free, resid_free = fit_dipole(evoked, cov, sphere, pos=pos)
assert isinstance(dip_free, Dipole)
assert isinstance(resid_free, Evoked)
assert_allclose(dip_free.times, evoked.times)
assert_allclose(np.tile(pos[np.newaxis], (len(evoked.times), 1)), dip_free.pos)
assert_allclose(ori, dip_free.ori[t_idx]) # should find same ori
assert np.dot(dip_free.ori, ori).mean() < 0.9 # but few the same
assert_allclose(gof, dip_free.gof[t_idx]) # ... same gof
assert_allclose(amp, dip_free.amplitude[t_idx]) # and same amp
assert_allclose(resid.data, resid_free.data[:, [t_idx]])
# Fix position and orientation
dip_fixed, resid_fixed = fit_dipole(evoked, cov, sphere, pos=pos, ori=ori)
assert isinstance(dip_fixed, DipoleFixed)
assert_allclose(dip_fixed.times, evoked.times)
assert_allclose(dip_fixed.info["chs"][0]["loc"][:3], pos)
assert_allclose(dip_fixed.info["chs"][0]["loc"][3:6], ori)
assert_allclose(dip_fixed.data[1, t_idx], gof)
assert_allclose(resid.data, resid_fixed.data[:, [t_idx]])
_check_roundtrip_fixed(dip_fixed, tmp_path)
# bad resetting
evoked.info["bads"] = [evoked.ch_names[3]]
dip_fixed, resid_fixed = fit_dipole(evoked, cov, sphere, pos=pos, ori=ori)
# Degenerate conditions
evoked_nan = evoked.copy().crop(0, 0)
evoked_nan.data[0, 0] = None
pytest.raises(ValueError, fit_dipole, evoked_nan, cov, sphere)
pytest.raises(ValueError, fit_dipole, evoked, cov, sphere, ori=[1, 0, 0])
pytest.raises(
ValueError, fit_dipole, evoked, cov, sphere, pos=[0, 0, 0], ori=[2, 0, 0]
)
pytest.raises(ValueError, fit_dipole, evoked, cov, sphere, pos=[0.1, 0, 0])
# copying
dip_fixed_2 = dip_fixed.copy()
dip_fixed_2.data[:] = 0.0
assert not np.isclose(dip_fixed.data, 0.0, atol=1e-20).any()
# plotting
plt.close("all")
dip_fixed.plot()
plt.close("all")
orig_times = np.array(dip_fixed.times)
shift_times = dip_fixed.shift_time(1.0).times
assert_allclose(shift_times, orig_times + 1)
@testing.requires_testing_data
def test_len_index_dipoles():
"""Test len and indexing of Dipole objects."""
dipole = read_dipole(fname_dip)
d0 = dipole[0]
d1 = dipole[:1]
_check_dipole(d0, 1)
_check_dipole(d1, 1)
_compare_dipoles(d0, d1)
mask = dipole.gof > 15
idx = np.where(mask)[0]
d_mask = dipole[mask]
_check_dipole(d_mask, 4)
_compare_dipoles(d_mask, dipole[idx])
@pytest.mark.slowtest # slow-ish on Travis OSX
@testing.requires_testing_data
def test_min_distance_fit_dipole():
"""Test dipole min_dist to inner_skull."""
subject = "sample"
raw = read_raw_fif(fname_raw, preload=True)
# select eeg data
picks = pick_types(raw.info, meg=False, eeg=True, exclude="bads")
info = pick_info(raw.info, picks)
# Let's use cov = Identity
cov = read_cov(fname_cov)
cov["data"] = np.eye(cov["data"].shape[0])
# Simulated scal map
simulated_scalp_map = np.zeros(picks.shape[0])
simulated_scalp_map[27:34] = 1
simulated_scalp_map = simulated_scalp_map[:, None]
evoked = EvokedArray(simulated_scalp_map, info, tmin=0)
min_dist = 5.0 # distance in mm
bem = read_bem_solution(fname_bem)
dip, residual = fit_dipole(
evoked, cov, bem, fname_trans, min_dist=min_dist, tol=1e-4
)
assert isinstance(residual, Evoked)
dist = _compute_depth(dip, fname_bem, fname_trans, subject, subjects_dir)
# Constraints are not exact, so bump the minimum slightly
assert min_dist - 0.1 < (dist[0] * 1000.0) < (min_dist + 1.0)
with pytest.raises(ValueError, match="min_dist should be positive"):
fit_dipole(evoked, cov, fname_bem, fname_trans, -1.0)
def _compute_depth(dip, fname_bem, fname_trans, subject, subjects_dir):
"""Compute dipole depth."""
trans = _get_trans(fname_trans)[0]
bem = read_bem_solution(fname_bem)
surf = _bem_find_surface(bem, "inner_skull")
points = surf["rr"]
points = apply_trans(trans["trans"], points)
depth = _compute_nearest(points, dip.pos, return_dists=True)[1][0]
return np.ravel(depth)
@testing.requires_testing_data
def test_accuracy():
"""Test dipole fitting to sub-mm accuracy."""
evoked = read_evokeds(fname_evo)[0].crop(
0.0,
0.0,
)
evoked.pick("meg")
evoked.pick([c for c in evoked.ch_names[::4]])
for rad, perc_90 in zip((0.09, None), (0.002, 0.004)):
bem = make_sphere_model(
"auto", rad, evoked.info, relative_radii=(0.999, 0.998, 0.997, 0.995)
)
src = read_source_spaces(fname_src)
fwd = make_forward_solution(evoked.info, None, src, bem)
fwd = convert_forward_solution(fwd, force_fixed=True, use_cps=True)
vertices = [src[0]["vertno"], src[1]["vertno"]]
n_vertices = sum(len(v) for v in vertices)
amp = 10e-9
data = np.eye(n_vertices + 1)[:n_vertices]
data[-1, -1] = 1.0
data *= amp
stc = SourceEstimate(data, vertices, 0.0, 1e-3, "sample")
evoked.info.normalize_proj()
sim = simulate_evoked(fwd, stc, evoked.info, cov=None, nave=np.inf)
cov = make_ad_hoc_cov(evoked.info)
dip = fit_dipole(sim, cov, bem, min_dist=0.001)[0]
ds = []
for vi in range(n_vertices):
if vi < len(vertices[0]):
hi = 0
vertno = vi
else:
hi = 1
vertno = vi - len(vertices[0])
vertno = src[hi]["vertno"][vertno]
rr = src[hi]["rr"][vertno]
d = np.sqrt(np.sum((rr - dip.pos[vi]) ** 2))
ds.append(d)
# make sure that our median is sub-mm and the large majority are very
# close (we expect some to be off by a bit e.g. because they are
# radial)
assert_array_less(np.percentile(ds, [50, 90]), [0.0005, perc_90])
@testing.requires_testing_data
def test_dipole_fixed(tmp_path):
"""Test reading a fixed-position dipole (from Xfit)."""
dip = read_dipole(fname_xfit_dip)
# print the representation of the object DipoleFixed
assert "DipoleFixed " in repr(dip)
_check_roundtrip_fixed(dip, tmp_path)
with pytest.warns(RuntimeWarning, match="extra fields"):
dip_txt = read_dipole(fname_xfit_dip_txt)
assert_allclose(dip.info["chs"][0]["loc"][:3], dip_txt.pos[0])
assert_allclose(dip_txt.amplitude[0], 12.1e-9)
with pytest.warns(RuntimeWarning, match="extra fields"):
dip_txt_seq = read_dipole(fname_xfit_seq_txt)
assert_allclose(dip_txt_seq.gof, [27.3, 46.4, 43.7, 41.0, 37.3, 32.5])
def _check_roundtrip_fixed(dip, tmp_path):
"""Check roundtrip IO for fixed dipoles."""
dip.save(tmp_path / "test-dip.fif.gz")
dip_read = read_dipole(tmp_path / "test-dip.fif.gz")
assert_allclose(dip_read.data, dip_read.data)
assert_allclose(dip_read.times, dip.times, atol=1e-8)
assert dip_read.info["xplotter_layout"] == dip.info["xplotter_layout"]
assert dip_read.ch_names == dip.ch_names
for ch_1, ch_2 in zip(dip_read.info["chs"], dip.info["chs"]):
assert ch_1["ch_name"] == ch_2["ch_name"]
for key in (
"loc",
"kind",
"unit_mul",
"range",
"coord_frame",
"unit",
"cal",
"coil_type",
"scanno",
"logno",
):
assert_allclose(ch_1[key], ch_2[key], err_msg=key)
@pytest.mark.parametrize(
"kind, count",
[
("vectorview", 32),
("otaniemi", 32),
("oyama", 50),
],
)
def test_get_phantom_dipoles(kind, count):
"""Test getting phantom dipole locations."""
with pytest.raises(TypeError, match="must be an instance of"):
get_phantom_dipoles(0)
with pytest.raises(ValueError, match="Invalid value for"):
get_phantom_dipoles("foo")
pos, ori = get_phantom_dipoles(kind)
assert pos.shape == (count, 3)
assert ori.shape == (count, 3)
# pos should be orthogonal to ori for all dipoles
assert_allclose(np.sum(pos * ori, axis=1), 0.0, atol=1e-7)
@testing.requires_testing_data
def test_confidence(tmp_path):
"""Test confidence limits."""
evoked = read_evokeds(fname_evo_full, "Left Auditory", baseline=(None, 0))
evoked.crop(0.08, 0.08).pick("meg") # MEG-only
cov = make_ad_hoc_cov(evoked.info)
sphere = make_sphere_model((0.0, 0.0, 0.04), 0.08)
dip_py = fit_dipole(evoked, cov, sphere)[0]
fname_test = tmp_path / "temp-dip.txt"
dip_py.save(fname_test)
dip_read = read_dipole(fname_test)
with pytest.warns(RuntimeWarning, match="'noise/ft/cm', 'prob'"):
dip_xfit = read_dipole(fname_dip_xfit_80)
for dip_check in (dip_py, dip_read):
assert_allclose(dip_check.pos, dip_xfit.pos, atol=5e-4) # < 0.5 mm
assert_allclose(dip_check.gof, dip_xfit.gof, atol=5e-1) # < 0.5%
assert_array_equal(dip_check.nfree, dip_xfit.nfree) # exact match
assert_allclose(dip_check.khi2, dip_xfit.khi2, rtol=2e-2) # 2% miss
assert set(dip_check.conf.keys()) == set(dip_xfit.conf.keys())
for key in sorted(dip_check.conf.keys()):
assert_allclose(
dip_check.conf[key], dip_xfit.conf[key], rtol=1.5e-1, err_msg=key
)
# bdip created with:
# mne_dipole_fit --meas sample_audvis_trunc-ave.fif --set 1 --meg --tmin 40 --tmax 95 --bmin -200 --bmax 0 --noise sample_audvis_trunc-cov.fif --bem ../../subjects/sample/bem/sample-1280-1280-1280-bem-sol.fif --origin 0\:0\:40 --mri sample_audvis_trunc-trans.fif --bdip sample_audvis_trunc_set1.bdip # noqa: E501
# It gives equivalent results to .dip in non-dipole mode.
# xfit bdip created by taking sample_audvis_trunc-ave.fif, picking MEG
# channels, writitng to disk (with MNE), then running xfit on 40-95 ms
# with a 3.3 ms step
@testing.requires_testing_data
@pytest.mark.parametrize(
"fname_dip_, fname_bdip_",
[
(fname_dip, fname_bdip),
(fname_dip_xfit, fname_bdip_xfit),
],
)
def test_bdip(fname_dip_, fname_bdip_, tmp_path):
"""Test bdip I/O."""
# use text as veridical
with _record_warnings(): # ignored fields
dip = read_dipole(fname_dip_)
# read binary
orig_size = os.stat(fname_bdip_).st_size
bdip = read_dipole(fname_bdip_)
# test round-trip by writing and reading, too
fname = tmp_path / "test.bdip"
bdip.save(fname)
bdip_read = read_dipole(fname)
write_size = os.stat(str(fname)).st_size
assert orig_size == write_size
assert len(dip) == len(bdip) == len(bdip_read) == 17
dip_has_conf = fname_dip_ == fname_dip_xfit
for kind, this_bdip in (("orig", bdip), ("read", bdip_read)):
for key, atol in (
("pos", 5e-5),
("ori", 5e-3),
("gof", 0.5e-1),
("times", 5e-5),
("khi2", 1e-2),
):
d = getattr(dip, key)
b = getattr(this_bdip, key)
if key == "khi2" and dip_has_conf:
if d is not None:
assert_allclose(d, b, atol=atol, err_msg=f"{kind}: {key}")
else:
assert b is None
if dip_has_conf:
# conf
conf_keys = _BDIP_ERROR_KEYS + ("vol",)
assert set(this_bdip.conf.keys()) == set(dip.conf.keys()) == set(conf_keys)
for key in conf_keys:
d = dip.conf[key]
b = this_bdip.conf[key]
assert_allclose(
d,
b,
rtol=0.12, # no so great, text I/O
err_msg=f"{kind}: {key}",
)
# Not stored
assert this_bdip.name is None
assert this_bdip.nfree is None
# Test whether indexing works
this_bdip0 = this_bdip[0]
_check_dipole(this_bdip0, 1)